organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[2-(3-meth­­oxy­phen­yl)hydrazinyl­­idene]-3-oxo­butano­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 22 September 2011; accepted 26 September 2011; online 30 September 2011)

The title compound, C13H16N2O4, is approximately planar (r.m.s. deviation = 0.065 Å for the 19 non-H atoms). An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif and the mol­ecule adopts an E conformation with respect to the central C=N double bond. In the crystal, pairs of inter­molecular C—H⋯O hydrogen bonds link adjacent mol­ecules into inversion dimers. The crystal structure also features weak C—H⋯π inter­actions.

Related literature

For the biological activity of oxobutano­ate derivatives, see: Billington et al. (1979[Billington, D. C., Golding, B. T. & Primrose, S. B. (1979). Biochem. J. 182, 827-836.]); Stancho et al. (2008[Stancho, S., Georgi, M., Frank, J. & Ilia, M. (2008). Eur. J. Med. Chem. 43, 694-706.]); For the biological activity of pyrazole derivatives, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Girisha et al. (2010[Girisha, K.S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640-4644.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Shetty, S. & Kalluraya, B. K. (2011). Acta Cryst. E67, o2571.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2O4

  • Mr = 264.28

  • Triclinic, [P \overline 1]

  • a = 5.7796 (4) Å

  • b = 7.4691 (5) Å

  • c = 16.9842 (11) Å

  • α = 77.956 (2)°

  • β = 89.394 (2)°

  • γ = 72.547 (2)°

  • V = 682.97 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.53 × 0.36 × 0.25 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.977

  • 11969 measured reflections

  • 3108 independent reflections

  • 2419 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.180

  • S = 1.04

  • 3108 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3 0.87 (2) 1.87 (2) 2.5629 (18) 135.3 (18)
C5—H5A⋯O3i 0.93 2.54 3.4389 (19) 164
C13—H13C⋯O4ii 0.96 2.58 3.219 (3) 124
C12—H12BCg1iii 0.96 2.82 3.6422 (17) 145
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+2, y-1, z; (iii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of oxobutanoates are biologically important. 4-Methylthio-2-oxobutanoate was identified in the culture fluids of a range of bacteria, e.g. the yeast Saccharomyces cerevisiae and the fungus Penicillium digitatum (Billington et al., 1979). Some oxobutanoates exhibit cytotoxic properties (Stancho et al., 2008). Pyrazole derivatives are well established in the literatures as important biologically effective heterocyclic compounds (Rai et al., 2008). These derivatives are the subject of many research studies due to their widespread pharmacological activities such as anti-inflammatory (Girisha et al., 2010), antipyretic, antimicrobial (Isloor et al., 2009), and antiviral activities. The widely prescribed anti-inflammatory pyrazole derivatives, celecoxib and deracoxib, are selective COX-2 inhibitors with reduced ulcerogenic side effects. The title compound (I), ethyl-2-[2-(3-methoxyphenyl)hydrazinylidene]-3-oxobutanoate, is a key intermediate in the preparation of pyrazole derivative. Condensation of oxobutanoate with thiosemicarbazide in glacial acetic acid medium gave the required pyrazole derivatives.

In the title compound of (I) (Fig. 1), an intramolecular N1—H1N1···O3 hydrogen bond (Table 1) generates a six–membered ring producing an S(6) ring motif (Bernstein et al., 1995). The molecule adopts an E-configuration with respect to the central C7N2 double bond. Similar configuration was also reported in the crystal structure of (Fun et al., 2011).

In the crystal structure of (Fig. 2), intermolecular C5—H5A···O3 and C13—H13C···O4 hydrogen bonds link the molecules into dimers. The crystal structure is further stabilizied by weak C—H···π interactions (Table 1) with distance of 3.6422 (17) Å involving the C1–C6 (centroid Cg1) ring.

Related literature top

For the biological activity of oxobutanoate derivatives, see: Billington et al. (1979); Stancho et al. (2008); For the biological activity of pyrazole derivatives, see: Rai et al. (2008); Girisha et al. (2010); Isloor et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Fun et al. (2011).

Experimental top

The title compound was prepared by dissolving 3-methoxy aniline (0.01 mol) in dilute hydrochloric acid (10 ml) and cooled to 0 °C in an ice bath. To this, a cold solution of sodium nitrite (0.02 mol) was added. The resulting diazonium salt solution was filtered into a cold solution of ethyl acetoacetate (0.05 mol) and sodium acetate in ethanol. The separated yellow solid was filtered, washed with water and recrystallized from ethanol to yield yellow blocks of (I).

Refinement top

Atom H1N1 was located in a difference Fourier map and refined freely with N–H = 0.871 (19) Å. The remaining H atoms were positioned geometrically with C–H = 0.93–0.97 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Derivatives of oxobutanoates are biologically important. 4-Methylthio-2-oxobutanoate was identified in the culture fluids of a range of bacteria, e.g. the yeast Saccharomyces cerevisiae and the fungus Penicillium digitatum (Billington et al., 1979). Some oxobutanoates exhibit cytotoxic properties (Stancho et al., 2008). Pyrazole derivatives are well established in the literatures as important biologically effective heterocyclic compounds (Rai et al., 2008). These derivatives are the subject of many research studies due to their widespread pharmacological activities such as anti-inflammatory (Girisha et al., 2010), antipyretic, antimicrobial (Isloor et al., 2009), and antiviral activities. The widely prescribed anti-inflammatory pyrazole derivatives, celecoxib and deracoxib, are selective COX-2 inhibitors with reduced ulcerogenic side effects. The title compound (I), ethyl-2-[2-(3-methoxyphenyl)hydrazinylidene]-3-oxobutanoate, is a key intermediate in the preparation of pyrazole derivative. Condensation of oxobutanoate with thiosemicarbazide in glacial acetic acid medium gave the required pyrazole derivatives.

In the title compound of (I) (Fig. 1), an intramolecular N1—H1N1···O3 hydrogen bond (Table 1) generates a six–membered ring producing an S(6) ring motif (Bernstein et al., 1995). The molecule adopts an E-configuration with respect to the central C7N2 double bond. Similar configuration was also reported in the crystal structure of (Fun et al., 2011).

In the crystal structure of (Fig. 2), intermolecular C5—H5A···O3 and C13—H13C···O4 hydrogen bonds link the molecules into dimers. The crystal structure is further stabilizied by weak C—H···π interactions (Table 1) with distance of 3.6422 (17) Å involving the C1–C6 (centroid Cg1) ring.

For the biological activity of oxobutanoate derivatives, see: Billington et al. (1979); Stancho et al. (2008); For the biological activity of pyrazole derivatives, see: Rai et al. (2008); Girisha et al. (2010); Isloor et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Fun et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing, viewed along the a-axis, showing the formation of dimers. Hydrogen atoms that not involved in hydrogen bonding (dashed lines) are omitted for clarity.
Ethyl 2-[2-(3-methoxyphenyl)hydrazinylidene]-3-oxobutanoate top
Crystal data top
C13H16N2O4Z = 2
Mr = 264.28F(000) = 280
Triclinic, P1Dx = 1.285 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7796 (4) ÅCell parameters from 5306 reflections
b = 7.4691 (5) Åθ = 2.9–31.0°
c = 16.9842 (11) ŵ = 0.10 mm1
α = 77.956 (2)°T = 296 K
β = 89.394 (2)°Block, yellow
γ = 72.547 (2)°0.53 × 0.36 × 0.25 mm
V = 682.97 (8) Å3
Data collection top
Bruker APEX DUO CCD
diffractometer
3108 independent reflections
Radiation source: fine-focus sealed tube2419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.942, Tmax = 0.977k = 99
11969 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1108P)2 + 0.0852P]
where P = (Fo2 + 2Fc2)/3
3108 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H16N2O4γ = 72.547 (2)°
Mr = 264.28V = 682.97 (8) Å3
Triclinic, P1Z = 2
a = 5.7796 (4) ÅMo Kα radiation
b = 7.4691 (5) ŵ = 0.10 mm1
c = 16.9842 (11) ÅT = 296 K
α = 77.956 (2)°0.53 × 0.36 × 0.25 mm
β = 89.394 (2)°
Data collection top
Bruker APEX DUO CCD
diffractometer
3108 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2419 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.977Rint = 0.021
11969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
3108 reflectionsΔρmin = 0.20 e Å3
179 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1556 (2)0.3160 (2)0.33318 (7)0.0707 (4)
O21.1429 (2)0.1952 (2)0.34750 (7)0.0743 (4)
O30.2371 (2)0.53420 (17)0.05938 (7)0.0633 (3)
O40.1755 (2)0.5181 (2)0.26261 (8)0.0777 (4)
N10.5632 (2)0.27108 (17)0.15513 (8)0.0466 (3)
N20.4082 (2)0.29646 (16)0.21110 (7)0.0465 (3)
C10.8606 (3)0.0293 (2)0.25233 (9)0.0506 (4)
H1A0.75050.04260.29270.061*
C21.0931 (3)0.0981 (2)0.26917 (9)0.0522 (4)
C31.2578 (3)0.1225 (2)0.20927 (10)0.0542 (4)
H3A1.41290.20930.22080.065*
C41.1857 (3)0.0148 (2)0.13213 (9)0.0553 (4)
H4A1.29430.03050.09150.066*
C50.9560 (3)0.1162 (2)0.11373 (9)0.0505 (3)
H5A0.91070.18900.06170.061*
C60.7950 (2)0.13607 (19)0.17489 (8)0.0441 (3)
C70.1888 (2)0.41968 (19)0.19492 (8)0.0461 (3)
C80.0353 (3)0.4262 (2)0.26510 (9)0.0528 (4)
C90.0175 (4)0.3139 (4)0.40468 (11)0.0865 (7)
H9A0.11660.26410.39860.104*
H9B0.04750.44290.41410.104*
C100.1857 (5)0.1891 (5)0.47226 (13)0.1126 (10)
H10A0.09900.17880.52070.169*
H10B0.31320.24330.47920.169*
H10C0.25450.06380.46090.169*
C110.0984 (3)0.5402 (2)0.11476 (9)0.0487 (3)
C120.1580 (3)0.6703 (2)0.09875 (10)0.0597 (4)
H12A0.18470.73150.04260.090*
H12B0.18530.76630.13050.090*
H12C0.26830.59630.11290.090*
C131.3843 (3)0.3131 (4)0.37051 (12)0.0847 (6)
H13A1.39490.37390.42660.127*
H13B1.49200.23570.36160.127*
H13C1.42970.40960.33890.127*
H1N10.517 (3)0.341 (3)0.1067 (12)0.065 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0532 (7)0.0947 (9)0.0492 (6)0.0042 (6)0.0115 (5)0.0101 (6)
O20.0537 (7)0.0919 (9)0.0512 (6)0.0048 (6)0.0072 (5)0.0013 (6)
O30.0516 (6)0.0726 (7)0.0522 (6)0.0059 (5)0.0090 (5)0.0036 (5)
O40.0511 (7)0.0915 (9)0.0686 (8)0.0058 (6)0.0189 (5)0.0105 (6)
N10.0392 (6)0.0488 (6)0.0478 (6)0.0087 (5)0.0078 (5)0.0093 (5)
N20.0400 (6)0.0487 (6)0.0508 (6)0.0117 (5)0.0082 (5)0.0138 (5)
C10.0434 (7)0.0565 (8)0.0474 (7)0.0094 (6)0.0133 (6)0.0106 (6)
C20.0459 (8)0.0560 (8)0.0482 (8)0.0087 (6)0.0081 (6)0.0073 (6)
C30.0406 (7)0.0566 (8)0.0602 (9)0.0061 (6)0.0114 (6)0.0142 (6)
C40.0468 (8)0.0621 (9)0.0554 (8)0.0128 (6)0.0190 (6)0.0158 (6)
C50.0471 (8)0.0526 (8)0.0486 (7)0.0124 (6)0.0115 (6)0.0086 (6)
C60.0394 (7)0.0429 (6)0.0492 (7)0.0108 (5)0.0080 (5)0.0112 (5)
C70.0409 (7)0.0474 (7)0.0493 (7)0.0105 (5)0.0078 (5)0.0134 (6)
C80.0458 (7)0.0558 (8)0.0533 (8)0.0087 (6)0.0088 (6)0.0145 (6)
C90.0712 (12)0.1166 (17)0.0559 (10)0.0087 (11)0.0213 (9)0.0142 (10)
C100.1045 (18)0.146 (2)0.0604 (13)0.0132 (17)0.0132 (12)0.0019 (14)
C110.0444 (7)0.0495 (7)0.0518 (8)0.0124 (6)0.0054 (6)0.0127 (6)
C120.0452 (8)0.0624 (9)0.0617 (9)0.0073 (6)0.0031 (6)0.0054 (7)
C130.0576 (10)0.1074 (16)0.0643 (11)0.0002 (10)0.0048 (8)0.0013 (10)
Geometric parameters (Å, º) top
O1—C81.3321 (19)C5—C61.3885 (19)
O1—C91.446 (2)C5—H5A0.9300
O2—C21.3635 (19)C7—C111.469 (2)
O2—C131.416 (2)C7—C81.479 (2)
O3—C111.2286 (18)C9—C101.471 (3)
O4—C81.2018 (18)C9—H9A0.9700
N1—N21.3029 (16)C9—H9B0.9700
N1—C61.4077 (17)C10—H10A0.9600
N1—H1N10.871 (19)C10—H10B0.9600
N2—C71.3159 (17)C10—H10C0.9600
C1—C61.379 (2)C11—C121.500 (2)
C1—C21.386 (2)C12—H12A0.9600
C1—H1A0.9300C12—H12B0.9600
C2—C31.388 (2)C12—H12C0.9600
C3—C41.381 (2)C13—H13A0.9600
C3—H3A0.9300C13—H13B0.9600
C4—C51.385 (2)C13—H13C0.9600
C4—H4A0.9300
C8—O1—C9115.96 (13)O1—C8—C7112.55 (12)
C2—O2—C13117.72 (13)O1—C9—C10106.80 (17)
N2—N1—C6119.45 (12)O1—C9—H9A110.4
N2—N1—H1N1117.5 (13)C10—C9—H9A110.4
C6—N1—H1N1123.0 (13)O1—C9—H9B110.4
N1—N2—C7121.32 (12)C10—C9—H9B110.4
C6—C1—C2118.99 (12)H9A—C9—H9B108.6
C6—C1—H1A120.5C9—C10—H10A109.5
C2—C1—H1A120.5C9—C10—H10B109.5
O2—C2—C1114.90 (12)H10A—C10—H10B109.5
O2—C2—C3123.92 (13)C9—C10—H10C109.5
C1—C2—C3121.17 (13)H10A—C10—H10C109.5
C4—C3—C2118.42 (13)H10B—C10—H10C109.5
C4—C3—H3A120.8O3—C11—C7118.97 (13)
C2—C3—H3A120.8O3—C11—C12119.17 (13)
C3—C4—C5121.74 (13)C7—C11—C12121.85 (13)
C3—C4—H4A119.1C11—C12—H12A109.5
C5—C4—H4A119.1C11—C12—H12B109.5
C4—C5—C6118.40 (13)H12A—C12—H12B109.5
C4—C5—H5A120.8C11—C12—H12C109.5
C6—C5—H5A120.8H12A—C12—H12C109.5
C1—C6—C5121.26 (13)H12B—C12—H12C109.5
C1—C6—N1121.21 (12)O2—C13—H13A109.5
C5—C6—N1117.53 (12)O2—C13—H13B109.5
N2—C7—C11124.15 (12)H13A—C13—H13B109.5
N2—C7—C8114.01 (12)O2—C13—H13C109.5
C11—C7—C8121.84 (12)H13A—C13—H13C109.5
O4—C8—O1122.46 (14)H13B—C13—H13C109.5
O4—C8—C7124.99 (14)
C6—N1—N2—C7179.23 (12)N2—N1—C6—C5178.85 (12)
C13—O2—C2—C1173.78 (16)N1—N2—C7—C110.8 (2)
C13—O2—C2—C36.6 (3)N1—N2—C7—C8178.50 (12)
C6—C1—C2—O2179.03 (14)C9—O1—C8—O40.3 (3)
C6—C1—C2—C31.3 (2)C9—O1—C8—C7179.75 (16)
O2—C2—C3—C4179.68 (15)N2—C7—C8—O4174.52 (16)
C1—C2—C3—C40.7 (2)C11—C7—C8—O44.8 (3)
C2—C3—C4—C50.4 (2)N2—C7—C8—O14.92 (19)
C3—C4—C5—C60.9 (2)C11—C7—C8—O1175.78 (13)
C2—C1—C6—C50.9 (2)C8—O1—C9—C10178.4 (2)
C2—C1—C6—N1178.33 (12)N2—C7—C11—O33.6 (2)
C4—C5—C6—C10.2 (2)C8—C7—C11—O3177.20 (13)
C4—C5—C6—N1179.44 (13)N2—C7—C11—C12176.54 (13)
N2—N1—C6—C10.4 (2)C8—C7—C11—C122.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O30.87 (2)1.87 (2)2.5629 (18)135.3 (18)
C5—H5A···O3i0.932.543.4389 (19)164
C13—H13C···O4ii0.962.583.219 (3)124
C12—H12B···Cg1iii0.962.823.6422 (17)145
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y1, z; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H16N2O4
Mr264.28
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.7796 (4), 7.4691 (5), 16.9842 (11)
α, β, γ (°)77.956 (2), 89.394 (2), 72.547 (2)
V3)682.97 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.53 × 0.36 × 0.25
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.942, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
11969, 3108, 2419
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.180, 1.04
No. of reflections3108
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O30.87 (2)1.87 (2)2.5629 (18)135.3 (18)
C5—H5A···O3i0.932.543.4389 (19)164
C13—H13C···O4ii0.962.583.219 (3)124
C12—H12B···Cg1iii0.962.823.6422 (17)145
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y1, z; (iii) x1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF, IAR and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grants (Nos. 1001/PFIZIK/811160 and 1001/PFIZIK/811151).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBillington, D. C., Golding, B. T. & Primrose, S. B. (1979). Biochem. J. 182, 827–836.  CAS PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Hemamalini, M., Shetty, S. & Kalluraya, B. K. (2011). Acta Cryst. E67, o2571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGirisha, K.S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644.  Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStancho, S., Georgi, M., Frank, J. & Ilia, M. (2008). Eur. J. Med. Chem. 43, 694–706.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds