organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Chloro-3-phenyl­benzo[4,5]thia­zolo[2,3-c][1,2,4]triazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bChemistry Division, School of Advanced Sciences, VIT University, Vellore-632014, Tamil Nadu, India, and cDepartment of Chemistry, P A College of Engineering, Nadupadavu, D.K., Mangalore, India
*Correspondence e-mail: hkfun@usm.my

(Received 22 September 2011; accepted 26 September 2011; online 30 September 2011)

In the title compound, C14H8ClN3S, the dihedral angle between the approximately planar triple-fused ring system (r.m.s. deviation = 0.065 Å) and the pendant phenyl ring is 62.25 (5)°. In the crystal, mol­ecules are linked into infinite chains along the c-axis direction by C—H⋯N hydrogen bonds. Aromatic ππ stacking inter­actions [centroid–centroid distances = 3.7499 (8) and 3.5644 (8) Å] and weak C—H⋯π inter­actions are also observed.

Related literature

For the biological activity of benzothio­zole derivatives, see: Yaseen et al. (2006[Yaseen, A., Haitham, A. S., Houssain, A. S. & Najim, A. (2006). Z. Naturforsch. 62, 523-528.]); Kini et al. (2007[Kini, S., Swain, S. P. & Gandhi, A. M. (2007). Indian J. Pharm. Sci. 69, 46-50.]); Munirajasekhar et al. (2011[Munirajasekhar, D., Himaja, M. & Sunil, V. M. (2011). Intl Res. J. Pharm. 2, 114-117.]); Gurupadayya et al. (2008[Gurupadayya, B. M., Gopal, M., Padmashali, B. & Manohara, Y. N. (2008). Indian J. Pharm. Sci. 70, 572-577.]); Bowyer et al. (2007[Bowyer, P.W., Ruwani, S & Gunaratne. (2007). Biochem J. 2, 173-180.]); Mittal et al. (2007[Mittal, S., Samottra, M. K., Kaur, J. & Gita, S. (2007). Phosphorus, Sulfur Silicon Relat. Elem. 9, 2105-2113.]); Pozas et al. (2005[Pozas, R., Carballo, J., Castro, C. & Rubio, J. (2005). Bioorg. Med. Chem. Lett. 15, 1417-421.]); Rana et al. (2008[Rana, A., Siddiqui, N. & Khan, S. (2008). Eur. J. Med. Chem. 43, 1114-1122.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8ClN3S

  • Mr = 285.74

  • Monoclinic, P 21 /c

  • a = 16.9941 (13) Å

  • b = 5.8895 (5) Å

  • c = 12.0930 (9) Å

  • β = 91.770 (1)°

  • V = 1209.77 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 296 K

  • 0.41 × 0.31 × 0.18 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.828, Tmax = 0.919

  • 14981 measured reflections

  • 4033 independent reflections

  • 3342 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.101

  • S = 1.02

  • 4033 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯N3i 0.93 2.57 3.3135 (16) 138
C4—H4ACg3ii 0.93 2.92 3.5851 (15) 130
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiazole derivatives have emerged as significant components in various diversified therapeutic applications. Literature review reveals that benzothiazoles and their derivatives show considerable activity including potent inhibition of human immunodeficiency virus type 1 (HIV-1), replication by HIV-1 protease inhibition (Yaseen et al.,2006), antitumor (Kini et al., 2007), anthelmintic (Munirajasekhar et al., 2011), analgesic, anti-inflammatory (Gurupadayya et al.,2008), antimalarial (Bowyer et al.,2007), antifungal (Mittal et al., 2007), anticandidous (Pozas et al.,2005) and various CNS activities (Rana et al., 2008). The present work describes the synthesis and crystal structure of the title compound, 7-Chloro-3- phenylbenzo[4,5]thiazolo[2,3-c][1,2,4]triazole, which was prepared from the reaction of 2-benzylidene-1-(6-chlorobenzo[d]thiazol-2-yl)hydrazine treated with iodobenzene diacetate.

In the title compound of (I), (Fig. 1), the benzene (C9–C14) ring makes dihedral angles of 5.59 (7) and 2.45 (6)° with the thiazole ring (S1/N1/C8/C9/C14) and the mean plane of triazole (N1–N3/C7/C8) ring, respectively. The dihedral angle between the two benzene (C1–C6 and C9–C14) rings is 64.11 (6)°.

In the crystal structure of (Fig. 2), the molecules are linked into infinite chains along the c axis by C10—H10A···N3 hydrogen bonds. ππ stacking interactions are observed between the triazole (N1–N3/C7/C8) ; centroid Cg2) and benzene (C1–C6) ; centroid Cg3) rings with a distance of Cg2···Cg3 = 3.7499 (8) Å and between triazole (N1–N3/C7/C8) ; centroid Cg2) and benzene (C9–C14) ; centroid Cg4) rings with a separation of Cg2···Cg4 = 3.5644 (8) Å. Furthermore the crystal structure is stabilized by weak C—H···π interactions (Table 1) with distance of 3.5851 (15) Å.

Related literature top

For the biological activity of benzothiozole derivatives, see: Yaseen et al. (2006); Kini et al. (2007); Munirajasekhar et al. (2011); Gurupadayya et al. (2008); Bowyer et al. (2007); Mittal et al. (2007); Pozas et al. (2005); Rana et al. (2008).

Experimental top

To a solution of the 2-benzylidene-1-(6-chlorobenzo[d]thiazol-2-yl)hydrazine (2 mmol) in dichloromethane (10 mL) at room temperature, iodobenzene diacetate (2 mmol) was added in 2–3 portions over 5 min. The resultant reaction mixture was stirred for 45 min. The solvent was evaporated under high vacuum and then purified by column chromatography (40% ethyl acetate in chloroform). The product was recrystalized from ethanol to give colourless blocks.

Refinement top

All the H atoms were placed in calculated positions with C–H = 0.93 Å. The Uiso values were constrained to be 1.2Ueq of the carrier atom for the H atoms.

Structure description top

Benzothiazole derivatives have emerged as significant components in various diversified therapeutic applications. Literature review reveals that benzothiazoles and their derivatives show considerable activity including potent inhibition of human immunodeficiency virus type 1 (HIV-1), replication by HIV-1 protease inhibition (Yaseen et al.,2006), antitumor (Kini et al., 2007), anthelmintic (Munirajasekhar et al., 2011), analgesic, anti-inflammatory (Gurupadayya et al.,2008), antimalarial (Bowyer et al.,2007), antifungal (Mittal et al., 2007), anticandidous (Pozas et al.,2005) and various CNS activities (Rana et al., 2008). The present work describes the synthesis and crystal structure of the title compound, 7-Chloro-3- phenylbenzo[4,5]thiazolo[2,3-c][1,2,4]triazole, which was prepared from the reaction of 2-benzylidene-1-(6-chlorobenzo[d]thiazol-2-yl)hydrazine treated with iodobenzene diacetate.

In the title compound of (I), (Fig. 1), the benzene (C9–C14) ring makes dihedral angles of 5.59 (7) and 2.45 (6)° with the thiazole ring (S1/N1/C8/C9/C14) and the mean plane of triazole (N1–N3/C7/C8) ring, respectively. The dihedral angle between the two benzene (C1–C6 and C9–C14) rings is 64.11 (6)°.

In the crystal structure of (Fig. 2), the molecules are linked into infinite chains along the c axis by C10—H10A···N3 hydrogen bonds. ππ stacking interactions are observed between the triazole (N1–N3/C7/C8) ; centroid Cg2) and benzene (C1–C6) ; centroid Cg3) rings with a distance of Cg2···Cg3 = 3.7499 (8) Å and between triazole (N1–N3/C7/C8) ; centroid Cg2) and benzene (C9–C14) ; centroid Cg4) rings with a separation of Cg2···Cg4 = 3.5644 (8) Å. Furthermore the crystal structure is stabilized by weak C—H···π interactions (Table 1) with distance of 3.5851 (15) Å.

For the biological activity of benzothiozole derivatives, see: Yaseen et al. (2006); Kini et al. (2007); Munirajasekhar et al. (2011); Gurupadayya et al. (2008); Bowyer et al. (2007); Mittal et al. (2007); Pozas et al. (2005); Rana et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing, viewed along the b-axis, showing the molecules linked into infinite chains along the c axis. Hydrogen atoms that not involved in hydrogen bonding (dashed lines) are omitted for clarity.
7-Chloro-3-phenylbenzo[4,5]thiazolo[2,3-c][1,2,4]triazole top
Crystal data top
C14H8ClN3SF(000) = 584
Mr = 285.74Dx = 1.569 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6868 reflections
a = 16.9941 (13) Åθ = 2.4–31.4°
b = 5.8895 (5) ŵ = 0.47 mm1
c = 12.0930 (9) ÅT = 296 K
β = 91.770 (1)°Block, colourless
V = 1209.77 (16) Å30.41 × 0.31 × 0.18 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
4033 independent reflections
Radiation source: fine-focus sealed tube3342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 31.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2325
Tmin = 0.828, Tmax = 0.919k = 86
14981 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.051P)2 + 0.2986P]
where P = (Fo2 + 2Fc2)/3
4033 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H8ClN3SV = 1209.77 (16) Å3
Mr = 285.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.9941 (13) ŵ = 0.47 mm1
b = 5.8895 (5) ÅT = 296 K
c = 12.0930 (9) Å0.41 × 0.31 × 0.18 mm
β = 91.770 (1)°
Data collection top
Bruker APEX DUO CCD
diffractometer
4033 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3342 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.919Rint = 0.021
14981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
4033 reflectionsΔρmin = 0.23 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14776 (2)0.26324 (6)0.56813 (2)0.04078 (10)
Cl10.03783 (2)1.00056 (7)0.32558 (4)0.05570 (12)
N10.24962 (6)0.23101 (16)0.41312 (8)0.03099 (19)
N20.31988 (7)0.07810 (19)0.44194 (8)0.0384 (2)
N30.26554 (7)0.06213 (19)0.52726 (9)0.0401 (2)
C10.35771 (8)0.0067 (2)0.19026 (10)0.0383 (3)
H1A0.32990.14230.19400.046*
C20.40171 (9)0.0410 (3)0.09818 (11)0.0454 (3)
H2A0.40290.06210.04000.055*
C30.44371 (8)0.2413 (3)0.09278 (12)0.0455 (3)
H3A0.47360.27190.03140.055*
C40.44144 (8)0.3969 (2)0.17883 (11)0.0430 (3)
H4A0.46980.53160.17500.052*
C50.39691 (7)0.3515 (2)0.27057 (10)0.0371 (2)
H5A0.39480.45660.32780.045*
C60.35531 (6)0.1482 (2)0.27673 (9)0.0309 (2)
C70.30952 (7)0.0965 (2)0.37544 (9)0.0316 (2)
C80.22587 (7)0.1233 (2)0.50709 (9)0.0344 (2)
C90.20460 (6)0.42020 (19)0.38183 (9)0.0297 (2)
C100.21108 (7)0.5535 (2)0.28811 (9)0.0340 (2)
H10A0.24950.52390.23690.041*
C110.15893 (8)0.7317 (2)0.27264 (11)0.0382 (3)
H11A0.16200.82340.21030.046*
C120.10195 (7)0.7744 (2)0.34998 (11)0.0383 (3)
C130.09432 (7)0.6425 (2)0.44419 (10)0.0386 (3)
H13A0.05590.67340.49520.046*
C140.14623 (7)0.4629 (2)0.45909 (9)0.0334 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.04819 (18)0.04410 (18)0.03082 (15)0.00110 (13)0.01342 (12)0.00439 (12)
Cl10.0502 (2)0.0465 (2)0.0703 (3)0.01117 (15)0.00102 (16)0.00577 (17)
N10.0376 (5)0.0308 (5)0.0248 (4)0.0036 (4)0.0054 (3)0.0017 (3)
N20.0467 (5)0.0359 (5)0.0328 (5)0.0011 (4)0.0035 (4)0.0031 (4)
N30.0516 (6)0.0377 (5)0.0313 (5)0.0006 (5)0.0058 (4)0.0061 (4)
C10.0435 (6)0.0336 (6)0.0379 (6)0.0007 (5)0.0065 (5)0.0041 (5)
C20.0540 (7)0.0473 (7)0.0357 (6)0.0068 (6)0.0112 (5)0.0061 (5)
C30.0442 (7)0.0528 (8)0.0403 (6)0.0066 (6)0.0146 (5)0.0078 (6)
C40.0399 (6)0.0421 (7)0.0475 (7)0.0046 (5)0.0072 (5)0.0075 (5)
C50.0394 (6)0.0360 (6)0.0362 (6)0.0041 (5)0.0037 (4)0.0035 (5)
C60.0319 (5)0.0317 (5)0.0292 (5)0.0004 (4)0.0026 (4)0.0001 (4)
C70.0361 (5)0.0306 (5)0.0283 (5)0.0018 (4)0.0027 (4)0.0017 (4)
C80.0436 (6)0.0353 (6)0.0246 (5)0.0056 (5)0.0054 (4)0.0032 (4)
C90.0342 (5)0.0289 (5)0.0261 (4)0.0042 (4)0.0022 (4)0.0007 (4)
C100.0384 (5)0.0351 (6)0.0288 (5)0.0050 (4)0.0040 (4)0.0021 (4)
C110.0412 (6)0.0370 (6)0.0361 (6)0.0036 (5)0.0017 (4)0.0066 (5)
C120.0364 (5)0.0334 (6)0.0449 (6)0.0014 (4)0.0027 (5)0.0004 (5)
C130.0367 (6)0.0395 (6)0.0398 (6)0.0018 (5)0.0061 (4)0.0038 (5)
C140.0373 (5)0.0343 (5)0.0288 (5)0.0049 (4)0.0054 (4)0.0003 (4)
Geometric parameters (Å, º) top
S1—C81.7454 (13)C3—H3A0.9300
S1—C141.7663 (12)C4—C51.3881 (17)
Cl1—C121.7405 (13)C4—H4A0.9300
N1—C81.3729 (13)C5—C61.3935 (16)
N1—C71.3783 (15)C5—H5A0.9300
N1—C91.3972 (14)C6—C71.4768 (15)
N2—C71.3140 (16)C9—C101.3860 (15)
N2—N31.4088 (15)C9—C141.4062 (15)
N3—C81.3026 (17)C10—C111.3826 (17)
C1—C61.3895 (16)C10—H10A0.9300
C1—C21.3891 (18)C11—C121.3898 (19)
C1—H1A0.9300C11—H11A0.9300
C2—C31.381 (2)C12—C131.3882 (18)
C2—H2A0.9300C13—C141.3856 (17)
C3—C41.388 (2)C13—H13A0.9300
C8—S1—C1489.57 (5)N2—C7—N1109.50 (10)
C8—N1—C7104.31 (10)N2—C7—C6126.31 (11)
C8—N1—C9114.84 (10)N1—C7—C6124.17 (10)
C7—N1—C9140.59 (9)N3—C8—N1112.25 (10)
C7—N2—N3108.51 (10)N3—C8—S1135.45 (9)
C8—N3—N2105.43 (10)N1—C8—S1112.26 (9)
C6—C1—C2119.94 (12)C10—C9—N1128.07 (10)
C6—C1—H1A120.0C10—C9—C14121.17 (11)
C2—C1—H1A120.0N1—C9—C14110.75 (10)
C3—C2—C1120.18 (13)C11—C10—C9118.29 (11)
C3—C2—H2A119.9C11—C10—H10A120.9
C1—C2—H2A119.9C9—C10—H10A120.9
C2—C3—C4120.13 (12)C10—C11—C12120.20 (12)
C2—C3—H3A119.9C10—C11—H11A119.9
C4—C3—H3A119.9C12—C11—H11A119.9
C3—C4—C5120.03 (13)C11—C12—C13122.41 (12)
C3—C4—H4A120.0C11—C12—Cl1118.02 (10)
C5—C4—H4A120.0C13—C12—Cl1119.57 (10)
C4—C5—C6119.88 (12)C14—C13—C12117.30 (11)
C4—C5—H5A120.1C14—C13—H13A121.3
C6—C5—H5A120.1C12—C13—H13A121.3
C1—C6—C5119.83 (10)C13—C14—C9120.62 (11)
C1—C6—C7120.08 (11)C13—C14—S1126.87 (9)
C5—C6—C7120.09 (10)C9—C14—S1112.50 (9)
C7—N2—N3—C80.41 (14)C7—N1—C8—S1178.75 (8)
C6—C1—C2—C30.6 (2)C9—N1—C8—S13.47 (13)
C1—C2—C3—C40.7 (2)C14—S1—C8—N3175.12 (14)
C2—C3—C4—C50.0 (2)C14—S1—C8—N12.37 (9)
C3—C4—C5—C60.8 (2)C8—N1—C9—C10175.66 (11)
C2—C1—C6—C50.19 (19)C7—N1—C9—C102.9 (2)
C2—C1—C6—C7179.13 (12)C8—N1—C9—C142.82 (14)
C4—C5—C6—C10.91 (18)C7—N1—C9—C14175.61 (13)
C4—C5—C6—C7178.41 (11)N1—C9—C10—C11178.84 (11)
N3—N2—C7—N10.01 (13)C14—C9—C10—C110.51 (17)
N3—N2—C7—C6178.56 (11)C9—C10—C11—C120.20 (18)
C8—N1—C7—N20.37 (13)C10—C11—C12—C130.4 (2)
C9—N1—C7—N2172.89 (13)C10—C11—C12—Cl1179.79 (9)
C8—N1—C7—C6178.22 (10)C11—C12—C13—C140.12 (19)
C9—N1—C7—C68.5 (2)Cl1—C12—C13—C14179.26 (9)
C1—C6—C7—N259.23 (17)C12—C13—C14—C90.83 (17)
C5—C6—C7—N2120.09 (14)C12—C13—C14—S1177.69 (9)
C1—C6—C7—N1122.43 (13)C10—C9—C14—C131.05 (17)
C5—C6—C7—N158.25 (16)N1—C9—C14—C13179.65 (10)
N2—N3—C8—N10.66 (14)C10—C9—C14—S1177.67 (9)
N2—N3—C8—S1178.15 (11)N1—C9—C14—S10.93 (12)
C7—N1—C8—N30.66 (13)C8—S1—C14—C13177.83 (12)
C9—N1—C8—N3174.63 (10)C8—S1—C14—C90.79 (9)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···N3i0.932.573.3135 (16)138
C4—H4A···Cg3ii0.932.923.5851 (15)130
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H8ClN3S
Mr285.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.9941 (13), 5.8895 (5), 12.0930 (9)
β (°) 91.770 (1)
V3)1209.77 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.41 × 0.31 × 0.18
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.828, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
14981, 4033, 3342
Rint0.021
(sin θ/λ)max1)0.739
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.101, 1.02
No. of reflections4033
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···N3i0.932.573.3135 (16)138
C4—H4A···Cg3ii0.932.923.5851 (15)130
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/ 811151).

References

First citationBowyer, P.W., Ruwani, S & Gunaratne. (2007). Biochem J. 2, 173–180.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGurupadayya, B. M., Gopal, M., Padmashali, B. & Manohara, Y. N. (2008). Indian J. Pharm. Sci. 70, 572–577.  Web of Science CAS PubMed Google Scholar
First citationKini, S., Swain, S. P. & Gandhi, A. M. (2007). Indian J. Pharm. Sci. 69, 46–50.  CrossRef CAS Google Scholar
First citationMittal, S., Samottra, M. K., Kaur, J. & Gita, S. (2007). Phosphorus, Sulfur Silicon Relat. Elem. 9, 2105–2113.  Google Scholar
First citationMunirajasekhar, D., Himaja, M. & Sunil, V. M. (2011). Intl Res. J. Pharm. 2, 114–117.  CAS Google Scholar
First citationPozas, R., Carballo, J., Castro, C. & Rubio, J. (2005). Bioorg. Med. Chem. Lett. 15, 1417–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRana, A., Siddiqui, N. & Khan, S. (2008). Eur. J. Med. Chem. 43, 1114–1122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaseen, A., Haitham, A. S., Houssain, A. S. & Najim, A. (2006). Z. Naturforsch. 62, 523–528.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds