organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-{4-[Bis(4-meth­­oxy­phen­yl)meth­yl]piperazin-1-yl}-3-(4-methyl­phen­yl)prop-2-en-1-one

aSchool of Chemistry and Chemical Engineering, Southeast University, Sipailou No.2 Nanjing, Nanjing 210096, People's Republic of China, and bSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No.140 Nanjing, Nanjing 210029, People's Republic of China
*Correspondence e-mail: wubin@njmu.edu.cn

(Received 24 September 2011; accepted 25 September 2011; online 30 September 2011)

In the title mol­ecule, C29H32N2O3, the piperazine ring has a chair conformation. The amide N atom is almost planar (bond angle sum = 359.5°), whereas the other N atom is clearly pyramidal (bond angle sum = 330.4°). The dihedral angle between the meth­oxy­benzene rings is 81.29 (16)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds.

Related literature

For structures and properties of cinnamic acid derivatives, see: Shi et al. (2005[Shi, Y., Chen, Q.-X., Wang, Q., Song, K.-K. & Qiu, L. (2005). Food Chem. 92, 707-712.]); Qian et al. (2010[Qian, Y., Zhang, H.-J., Zhang, H., Xu, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 4991-4996.]). For the synthesis, see: Wu et al. (2008[Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163-1166.]). For related structures, see: Mouillé et al. (1975)[Mouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495-1496.]; Teng et al. (2011[Teng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.]).

[Scheme 1]

Experimental

Crystal data
  • C29H32N2O3

  • Mr = 456.57

  • Monoclinic, P 21 /n

  • a = 10.114 (2) Å

  • b = 11.867 (2) Å

  • c = 21.573 (4) Å

  • β = 97.12 (3)°

  • V = 2569.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 5002 measured reflections

  • 4718 independent reflections

  • 2269 reflections with I > 2σ(I)

  • Rint = 0.037

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.189

  • S = 1.01

  • 4718 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.93 2.60 3.360 (4) 140
C22—H22A⋯O3ii 0.93 2.59 3.483 (4) 160
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, many compounds containing a cinnamoyl moiety have drawn much attention owing to their significant pharacological properties such as antimicrobial, anticancer and neuroprotective activities (Shi et al., 2005; Qian et al., 2010). As a part of our ongoing study of the substituent effect on the stuctures of cinnamide derivatives, we report herein the crystal structure of the title compound. The molecule of the title compound exists an E configulation with respect to the C21=C22 ethene bond [1.318 (4)] and the torsion angle C20—C21—C22—C23 = -178.7 (3). The piperazine ring adopts a chair conformation. In the crystal, moleculaes are linked by intermolecular C—H···O interactions.

Related literature top

For structures and properties of cinnamic acid derivatives, see: Shi et al. (2005); Qian et al. (2010). For the synthesis, see: Wu et al. (2008). For related structures, see: Mouillé et al. (1975); Teng et al. (2011).

Experimental top

The synthesis follows the method of Wu et al. (2008). The title compound was prepared by stirring a mixture of (E)-3-(4-methylphenyl)acrylic acid (0.649 g; 4 mmol), dimethyl sulfoxide (2 ml) and dichloromethane (30 ml) for 6 h at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in acetone (15 ml) and reacted with 1-(bis(4-methoxyphenyl)methyl) piperazine (1.874 g; 6 mmol) in the presence of triethylamine (5 ml) for 12 h at room temperature. The resultant mixture was cooled. The solid, (E)-1-(4-(bis(4-methoxyphenyl)methyl) piperazin-1-yl)-3- (4-methylphenyl)prop-2-en-1-one obtained was filtered and was recrystallized from ethanol. The colorless single crystals of the title compound used in x-ray diffraction studies were grown in ethanol by a slow evaporation at room temperature.

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 Å to 0.98 Å and refined as riding on their parent atoms with Uĩso~(H) = 1.2 or 1.5U~eq~ of the carrier atom.

Structure description top

Recently, many compounds containing a cinnamoyl moiety have drawn much attention owing to their significant pharacological properties such as antimicrobial, anticancer and neuroprotective activities (Shi et al., 2005; Qian et al., 2010). As a part of our ongoing study of the substituent effect on the stuctures of cinnamide derivatives, we report herein the crystal structure of the title compound. The molecule of the title compound exists an E configulation with respect to the C21=C22 ethene bond [1.318 (4)] and the torsion angle C20—C21—C22—C23 = -178.7 (3). The piperazine ring adopts a chair conformation. In the crystal, moleculaes are linked by intermolecular C—H···O interactions.

For structures and properties of cinnamic acid derivatives, see: Shi et al. (2005); Qian et al. (2010). For the synthesis, see: Wu et al. (2008). For related structures, see: Mouillé et al. (1975); Teng et al. (2011).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 70% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound.
(E)-1-{4-[Bis(4-methoxyphenyl)methyl]piperazin-1-yl}- 3-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C29H32N2O3F(000) = 976
Mr = 456.57Dx = 1.180 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.114 (2) Åθ = 9–13°
b = 11.867 (2) ŵ = 0.08 mm1
c = 21.573 (4) ÅT = 293 K
β = 97.12 (3)°Block, colorless
V = 2569.3 (9) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.037
Radiation source: fine-focus sealed tubeθmax = 25.4°, θmin = 1.9°
Graphite monochromatorh = 012
ω/2θ scansk = 014
5002 measured reflectionsl = 2525
4718 independent reflections3 standard reflections every 200 reflections
2269 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4718 reflectionsΔρmax = 0.17 e Å3
308 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0091 (15)
Crystal data top
C29H32N2O3V = 2569.3 (9) Å3
Mr = 456.57Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.114 (2) ŵ = 0.08 mm1
b = 11.867 (2) ÅT = 293 K
c = 21.573 (4) Å0.30 × 0.20 × 0.20 mm
β = 97.12 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.037
5002 measured reflections3 standard reflections every 200 reflections
4718 independent reflections intensity decay: 1%
2269 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
4718 reflectionsΔρmin = 0.16 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1506 (2)0.6822 (2)0.16861 (11)0.0805 (7)
N10.3133 (2)0.4580 (2)0.35291 (12)0.0619 (7)
C10.1571 (3)0.5157 (3)0.19907 (15)0.0668 (9)
H1A0.20510.46170.18000.080*
N20.3059 (3)0.2833 (2)0.44379 (13)0.0758 (8)
O20.6891 (2)0.8783 (2)0.30391 (14)0.1012 (9)
C20.0404 (3)0.5583 (3)0.16694 (15)0.0685 (9)
H2A0.01160.53370.12660.082*
O30.4449 (2)0.15376 (19)0.49261 (11)0.0832 (7)
C30.0322 (3)0.6364 (3)0.19481 (14)0.0589 (8)
C40.0133 (3)0.6732 (3)0.25457 (15)0.0667 (9)
H4A0.03550.72600.27410.080*
C50.1310 (3)0.6317 (3)0.28509 (14)0.0638 (9)
H5A0.16220.65870.32470.077*
C60.2032 (3)0.5510 (2)0.25791 (14)0.0555 (8)
C70.2053 (4)0.6408 (4)0.10938 (18)0.1126 (15)
H7A0.28770.67880.09610.169*
H7B0.22130.56140.11220.169*
H7C0.14390.65420.07960.169*
C80.3347 (3)0.5063 (3)0.29208 (15)0.0627 (9)
H8A0.36740.44650.26660.075*
C90.4351 (3)0.6013 (3)0.29770 (15)0.0607 (8)
C100.5010 (3)0.6272 (3)0.24752 (17)0.0716 (9)
H10A0.48770.58150.21230.086*
C110.5857 (3)0.7177 (3)0.24720 (19)0.0786 (10)
H11A0.62910.73210.21250.094*
C120.6056 (3)0.7869 (3)0.2986 (2)0.0740 (10)
C130.5425 (4)0.7637 (3)0.35055 (18)0.0772 (10)
H13A0.55710.80910.38590.093*
C140.4574 (3)0.6722 (3)0.34940 (16)0.0710 (9)
H14A0.41390.65760.38410.085*
C150.7257 (4)0.9251 (3)0.2473 (2)0.1188 (17)
H15A0.78400.98810.25700.178*
H15B0.64700.94960.22130.178*
H15C0.77050.86890.22570.178*
C160.2141 (3)0.3666 (3)0.34414 (16)0.0738 (10)
H16A0.24780.30630.32010.089*
H16B0.13260.39490.32080.089*
C170.4359 (3)0.4114 (3)0.38666 (16)0.0709 (10)
H17A0.50410.46930.39190.085*
H17B0.46800.35020.36280.085*
C180.4094 (3)0.3686 (3)0.45001 (17)0.0802 (10)
H18A0.49060.33700.47180.096*
H18B0.38220.43090.47460.096*
C190.1841 (3)0.3211 (3)0.40618 (18)0.0801 (11)
H19A0.14220.37940.42850.096*
H19B0.12230.25850.39920.096*
C200.3342 (3)0.1781 (3)0.46539 (15)0.0644 (9)
C210.2268 (3)0.0911 (3)0.45499 (14)0.0664 (9)
H21A0.13870.11390.44510.080*
C220.2550 (3)0.0172 (3)0.45954 (13)0.0627 (9)
H22A0.34410.03610.47030.075*
C230.1603 (3)0.1113 (3)0.44938 (13)0.0598 (8)
C240.2069 (4)0.2212 (3)0.45818 (15)0.0700 (9)
H24A0.29730.23380.46980.084*
C250.1216 (4)0.3106 (3)0.44992 (16)0.0783 (10)
H25A0.15540.38290.45710.094*
C260.0126 (4)0.2975 (3)0.43129 (16)0.0758 (10)
C270.0588 (4)0.1881 (4)0.42178 (19)0.0875 (11)
H27A0.14890.17580.40900.105*
C280.0254 (4)0.0979 (3)0.43089 (18)0.0828 (11)
H28A0.00900.02560.42450.099*
C290.1073 (4)0.3960 (3)0.4196 (2)0.1091 (14)
H29A0.05930.46510.42840.164*
H29B0.14630.39560.37670.164*
H29C0.17630.38980.44620.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0657 (15)0.1064 (19)0.0666 (15)0.0123 (13)0.0028 (12)0.0018 (13)
N10.0574 (15)0.0505 (15)0.0751 (19)0.0007 (13)0.0018 (13)0.0095 (13)
C10.064 (2)0.071 (2)0.066 (2)0.0023 (17)0.0119 (17)0.0140 (17)
N20.0694 (18)0.0615 (19)0.091 (2)0.0016 (15)0.0121 (15)0.0209 (15)
O20.0820 (18)0.0766 (18)0.142 (3)0.0202 (15)0.0005 (16)0.0127 (17)
C20.070 (2)0.081 (2)0.054 (2)0.0048 (19)0.0091 (17)0.0109 (18)
O30.0748 (16)0.0746 (16)0.0935 (18)0.0067 (13)0.0159 (14)0.0169 (13)
C30.0573 (19)0.069 (2)0.0500 (19)0.0021 (17)0.0072 (15)0.0069 (16)
C40.069 (2)0.075 (2)0.056 (2)0.0135 (18)0.0081 (17)0.0032 (17)
C50.072 (2)0.068 (2)0.0492 (18)0.0056 (18)0.0014 (16)0.0064 (16)
C60.0589 (19)0.0534 (18)0.0545 (19)0.0033 (15)0.0083 (15)0.0008 (15)
C70.082 (3)0.178 (5)0.071 (3)0.013 (3)0.019 (2)0.003 (3)
C80.062 (2)0.0521 (18)0.074 (2)0.0035 (16)0.0099 (17)0.0032 (16)
C90.0533 (18)0.058 (2)0.071 (2)0.0066 (16)0.0072 (16)0.0023 (17)
C100.062 (2)0.070 (2)0.086 (2)0.0013 (18)0.0222 (19)0.0059 (19)
C110.063 (2)0.074 (2)0.103 (3)0.003 (2)0.028 (2)0.006 (2)
C120.052 (2)0.059 (2)0.110 (3)0.0011 (17)0.005 (2)0.016 (2)
C130.085 (2)0.060 (2)0.083 (3)0.004 (2)0.004 (2)0.0008 (19)
C140.075 (2)0.065 (2)0.073 (2)0.0015 (19)0.0083 (18)0.0036 (18)
C150.107 (3)0.074 (3)0.185 (5)0.013 (2)0.058 (3)0.019 (3)
C160.063 (2)0.060 (2)0.094 (3)0.0029 (17)0.0091 (18)0.0113 (19)
C170.058 (2)0.058 (2)0.093 (3)0.0010 (16)0.0062 (18)0.0048 (18)
C180.080 (2)0.067 (2)0.087 (3)0.0058 (19)0.0167 (19)0.011 (2)
C190.066 (2)0.068 (2)0.104 (3)0.0004 (18)0.002 (2)0.029 (2)
C200.071 (2)0.061 (2)0.061 (2)0.0073 (19)0.0064 (18)0.0068 (16)
C210.066 (2)0.063 (2)0.071 (2)0.0108 (18)0.0084 (17)0.0160 (17)
C220.071 (2)0.061 (2)0.056 (2)0.0088 (18)0.0078 (16)0.0108 (16)
C230.068 (2)0.061 (2)0.0508 (18)0.0069 (18)0.0082 (15)0.0097 (15)
C240.079 (2)0.063 (2)0.066 (2)0.009 (2)0.0013 (18)0.0006 (17)
C250.099 (3)0.062 (2)0.071 (2)0.008 (2)0.004 (2)0.0009 (17)
C260.097 (3)0.069 (2)0.062 (2)0.012 (2)0.012 (2)0.0043 (18)
C270.066 (2)0.089 (3)0.107 (3)0.000 (2)0.010 (2)0.003 (2)
C280.074 (2)0.063 (2)0.110 (3)0.008 (2)0.005 (2)0.017 (2)
C290.121 (3)0.097 (3)0.109 (3)0.023 (3)0.014 (3)0.006 (3)
Geometric parameters (Å, º) top
O1—C31.372 (3)C13—H13A0.9300
O1—C71.416 (4)C14—H14A0.9300
N1—C171.466 (4)C15—H15A0.9600
N1—C81.472 (4)C15—H15B0.9600
N1—C161.474 (4)C15—H15C0.9600
C1—C61.363 (4)C16—C191.508 (4)
C1—C21.388 (4)C16—H16A0.9700
C1—H1A0.9300C16—H16B0.9700
N2—C201.351 (4)C17—C181.513 (4)
N2—C181.450 (4)C17—H17A0.9700
N2—C191.460 (4)C17—H17B0.9700
O2—C121.371 (4)C18—H18A0.9700
O2—C151.431 (5)C18—H18B0.9700
C2—C31.367 (4)C19—H19A0.9700
C2—H2A0.9300C19—H19B0.9700
O3—C201.232 (4)C20—C211.495 (4)
C3—C41.385 (4)C21—C221.318 (4)
C4—C51.377 (4)C21—H21A0.9300
C4—H4A0.9300C22—C231.470 (4)
C5—C61.379 (4)C22—H22A0.9300
C5—H5A0.9300C23—C281.382 (4)
C6—C81.533 (4)C23—C241.392 (4)
C7—H7A0.9600C24—C251.365 (4)
C7—H7B0.9600C24—H24A0.9300
C7—H7C0.9600C25—C261.375 (5)
C8—C91.513 (4)C25—H25A0.9300
C8—H8A0.9800C26—C271.387 (5)
C9—C101.374 (4)C26—C291.512 (5)
C9—C141.393 (4)C27—C281.366 (5)
C10—C111.375 (4)C27—H27A0.9300
C10—H10A0.9300C28—H28A0.9300
C11—C121.374 (5)C29—H29A0.9600
C11—H11A0.9300C29—H29B0.9600
C12—C131.385 (5)C29—H29C0.9600
C13—C141.383 (4)
C3—O1—C7117.2 (3)H15A—C15—H15C109.5
C17—N1—C8112.4 (2)H15B—C15—H15C109.5
C17—N1—C16107.9 (2)N1—C16—C19111.0 (3)
C8—N1—C16110.2 (2)N1—C16—H16A109.4
C6—C1—C2121.6 (3)C19—C16—H16A109.4
C6—C1—H1A119.2N1—C16—H16B109.4
C2—C1—H1A119.2C19—C16—H16B109.4
C20—N2—C18119.6 (3)H16A—C16—H16B108.0
C20—N2—C19127.2 (3)N1—C17—C18109.9 (3)
C18—N2—C19112.7 (3)N1—C17—H17A109.7
C12—O2—C15117.2 (3)C18—C17—H17A109.7
C3—C2—C1119.8 (3)N1—C17—H17B109.7
C3—C2—H2A120.1C18—C17—H17B109.7
C1—C2—H2A120.1H17A—C17—H17B108.2
C2—C3—O1125.2 (3)N2—C18—C17111.0 (3)
C2—C3—C4119.3 (3)N2—C18—H18A109.4
O1—C3—C4115.5 (3)C17—C18—H18A109.4
C5—C4—C3120.0 (3)N2—C18—H18B109.4
C5—C4—H4A120.0C17—C18—H18B109.4
C3—C4—H4A120.0H18A—C18—H18B108.0
C4—C5—C6121.1 (3)N2—C19—C16110.8 (3)
C4—C5—H5A119.4N2—C19—H19A109.5
C6—C5—H5A119.4C16—C19—H19A109.5
C1—C6—C5118.1 (3)N2—C19—H19B109.5
C1—C6—C8121.2 (3)C16—C19—H19B109.5
C5—C6—C8120.6 (3)H19A—C19—H19B108.1
O1—C7—H7A109.5O3—C20—N2121.5 (3)
O1—C7—H7B109.5O3—C20—C21120.7 (3)
H7A—C7—H7B109.5N2—C20—C21117.8 (3)
O1—C7—H7C109.5C22—C21—C20121.0 (3)
H7A—C7—H7C109.5C22—C21—H21A119.5
H7B—C7—H7C109.5C20—C21—H21A119.5
N1—C8—C9113.0 (2)C21—C22—C23126.8 (3)
N1—C8—C6110.4 (2)C21—C22—H22A116.6
C9—C8—C6108.3 (2)C23—C22—H22A116.6
N1—C8—H8A108.3C28—C23—C24116.9 (3)
C9—C8—H8A108.3C28—C23—C22123.9 (3)
C6—C8—H8A108.3C24—C23—C22119.2 (3)
C10—C9—C14116.7 (3)C25—C24—C23120.8 (3)
C10—C9—C8119.3 (3)C25—C24—H24A119.6
C14—C9—C8123.7 (3)C23—C24—H24A119.6
C9—C10—C11122.8 (3)C24—C25—C26122.4 (3)
C9—C10—H10A118.6C24—C25—H25A118.8
C11—C10—H10A118.6C26—C25—H25A118.8
C12—C11—C10119.5 (3)C25—C26—C27116.8 (3)
C12—C11—H11A120.3C25—C26—C29122.9 (4)
C10—C11—H11A120.3C27—C26—C29120.2 (4)
O2—C12—C11124.6 (4)C28—C27—C26121.3 (3)
O2—C12—C13115.5 (4)C28—C27—H27A119.4
C11—C12—C13119.9 (3)C26—C27—H27A119.4
C14—C13—C12119.3 (3)C27—C28—C23121.8 (3)
C14—C13—H13A120.3C27—C28—H28A119.1
C12—C13—H13A120.3C23—C28—H28A119.1
C13—C14—C9121.8 (3)C26—C29—H29A109.5
C13—C14—H14A119.1C26—C29—H29B109.5
C9—C14—H14A119.1H29A—C29—H29B109.5
O2—C15—H15A109.5C26—C29—H29C109.5
O2—C15—H15B109.5H29A—C29—H29C109.5
H15A—C15—H15B109.5H29B—C29—H29C109.5
O2—C15—H15C109.5
C6—C1—C2—C31.0 (5)C12—C13—C14—C91.2 (5)
C1—C2—C3—O1178.1 (3)C10—C9—C14—C130.5 (5)
C1—C2—C3—C41.0 (5)C8—C9—C14—C13174.8 (3)
C7—O1—C3—C23.5 (5)C17—N1—C16—C1960.7 (3)
C7—O1—C3—C4175.6 (3)C8—N1—C16—C19176.3 (2)
C2—C3—C4—C50.5 (5)C8—N1—C17—C18177.1 (3)
O1—C3—C4—C5179.6 (3)C16—N1—C17—C1861.3 (3)
C3—C4—C5—C62.0 (5)C20—N2—C18—C17118.8 (3)
C2—C1—C6—C50.5 (5)C19—N2—C18—C1753.6 (4)
C2—C1—C6—C8177.9 (3)N1—C17—C18—N258.3 (4)
C4—C5—C6—C12.0 (5)C20—N2—C19—C16119.4 (4)
C4—C5—C6—C8179.4 (3)C18—N2—C19—C1652.4 (4)
C17—N1—C8—C960.0 (3)N1—C16—C19—N256.1 (4)
C16—N1—C8—C9179.7 (2)C18—N2—C20—O32.9 (5)
C17—N1—C8—C6178.5 (2)C19—N2—C20—O3174.1 (3)
C16—N1—C8—C658.2 (3)C18—N2—C20—C21176.8 (3)
C1—C6—C8—N1124.9 (3)C19—N2—C20—C215.6 (5)
C5—C6—C8—N157.7 (4)O3—C20—C21—C2217.6 (5)
C1—C6—C8—C9110.9 (3)N2—C20—C21—C22162.1 (3)
C5—C6—C8—C966.4 (4)C20—C21—C22—C23178.7 (3)
N1—C8—C9—C10156.6 (3)C21—C22—C23—C282.5 (5)
C6—C8—C9—C1080.7 (3)C21—C22—C23—C24177.9 (3)
N1—C8—C9—C1429.2 (4)C28—C23—C24—C251.2 (5)
C6—C8—C9—C1493.4 (4)C22—C23—C24—C25179.2 (3)
C14—C9—C10—C110.2 (5)C23—C24—C25—C261.6 (5)
C8—C9—C10—C11174.7 (3)C24—C25—C26—C270.7 (5)
C9—C10—C11—C120.6 (5)C24—C25—C26—C29177.6 (3)
C15—O2—C12—C1119.9 (5)C25—C26—C27—C280.3 (5)
C15—O2—C12—C13162.4 (3)C29—C26—C27—C28178.7 (4)
C10—C11—C12—O2178.9 (3)C26—C27—C28—C230.6 (6)
C10—C11—C12—C131.3 (5)C24—C23—C28—C270.2 (5)
O2—C12—C13—C14179.4 (3)C22—C23—C28—C27179.7 (3)
C11—C12—C13—C141.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.932.603.360 (4)140
C22—H22A···O3ii0.932.593.483 (4)160
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC29H32N2O3
Mr456.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.114 (2), 11.867 (2), 21.573 (4)
β (°) 97.12 (3)
V3)2569.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5002, 4718, 2269
Rint0.037
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.189, 1.01
No. of reflections4718
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.932.603.360 (4)140
C22—H22A···O3ii0.932.593.483 (4)160
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of the Education Department of Jiangsu Province (No. 05KJB350084) and the Natural Science Foundation of Jiangsu Province (No. BK2010538).

References

First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495–1496.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationQian, Y., Zhang, H.-J., Zhang, H., Xu, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 4991–4996.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y., Chen, Q.-X., Wang, Q., Song, K.-K. & Qiu, L. (2005). Food Chem. 92, 707–712.  CrossRef CAS Google Scholar
First citationTeng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds