organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-p-Tolyl­benzo[g]quinolin-3-yl)ethanol

aDepartment of Aviation Oil and Material, Xuzhou Airforce College, Xuzhou Jiangsu 221110, People's Republic of China, and bDeparement of Chemistry, Xuzhou Medical College, Xuzhou Jiangsu 221004, People's Republic of China
*Correspondence e-mail: xuzhou@xzmc.edu.cn

(Received 5 August 2011; accepted 21 September 2011; online 30 September 2011)

In the title compound, C22H19NO, the pyridine ring and the adjacent naphthalene ring system are nearly coplanar, making a dihedral angle of 3.3 (1)°, while the pyridine and benzene rings are perpendicular to each other, with a dihedral angle of 89.9 (1)°. The crystal packing is stabilized by inter­molecular O—H⋯N hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the biological activity of quinoline derivatives, see: Faber et al. (1984[Faber, K., Stueckler, H. & Kappe, T. (1984). J. Heterocycl. Chem. 21, 1177-1178.]); Johnson et al. (1989[Johnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem. 32, 1942-1949.]); Nesterova et al. (1995[Nesterova, I., Alekseeva, L. M., Andreeva, L. M., Andreeva, N. I., Golovira, S. M. & Granic, V. G. (1995). Khim. Farm. Zh. 29, 31-34.]); Yamada et al. (1992[Yamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol. 44, 1211-1213.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19NO

  • Mr = 313.38

  • Triclinic, [P \overline 1]

  • a = 7.2044 (4) Å

  • b = 10.1704 (4) Å

  • c = 12.1194 (3) Å

  • α = 108.125 (3)°

  • β = 98.115 (4)°

  • γ = 99.370 (5)°

  • V = 815.08 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.49 × 0.21 × 0.07 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • 10164 measured reflections

  • 2879 independent reflections

  • 2232 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.03

  • 2879 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1,C1–C5 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.93 (3) 1.98 (3) 2.9110 (18) 174 (2)
C21—H21ACgii 0.93 2.97 3.7358 (19) 140
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoline derivatives possess varies of biological properties, such as psychotropic activity (Nesterova, et al., 1995), anti-allergic (Yamada et al., 1992) and anti-inflammatory activity (Faber et al., 1984 and Johnson et al., 1989). Therefore, the title compound (Fig. 1), may be used as a new precursor for obtaining bioactive molecules. Herein, we report the crystal structure of the title compound, (I).

In the crystal structure of (I), there are four aromatic rings and the pyridine ring is the new formed ring. The pyridine ring is a coplanar conformation. The pyridine ring and the adjacent naphthalene ring are nearly coplanar, with a dihedral angle of 3.3 (1)°. While the pyridine ring and the benzene ring are vertical with each other, with a dihedral angle of 89.9 (1)°. The molecules are connected by the O1—H1···N1 intermolecular hydrogen bond and C—H···π interactions (Figure 2). Besides, there is intermolecular π-π interaction between the two neighboring benzene rings (C4C5C6C7C8C13), symmetry code: (1-X, 2-Y, –Z). The two rings are parallel to each other. The centroid distance, plane-plane distance and displacement distance are 3.642, 3.499 and 1.010 Å, respectively, which strongly indicate the existence of intermolecular π-π interactions.

Related literature top

For the biological activity of quinoline derivatives, see: Faber et al. (1984); Johnson et al. (1989); Nesterova et al. (1995); Yamada et al. (1992).

Experimental top

The title compound, (I), was prepared by the reaction of 4-methylbenzaldehyde (0.240 g, 2.0 mmol), naphthalen-2-amine (0.286 g, 2.0 mmol) and I2 (0.051 g, 0.2 mmol) in THF (10 ml) at reflux for 40 h (yield 86%, mp. 486–487 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a THF solution.

Refinement top

The hydrogen atom of hydroxy group, was positioned from a Fourier difference map and was refined freely. Other H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(parent atom).

Structure description top

Quinoline derivatives possess varies of biological properties, such as psychotropic activity (Nesterova, et al., 1995), anti-allergic (Yamada et al., 1992) and anti-inflammatory activity (Faber et al., 1984 and Johnson et al., 1989). Therefore, the title compound (Fig. 1), may be used as a new precursor for obtaining bioactive molecules. Herein, we report the crystal structure of the title compound, (I).

In the crystal structure of (I), there are four aromatic rings and the pyridine ring is the new formed ring. The pyridine ring is a coplanar conformation. The pyridine ring and the adjacent naphthalene ring are nearly coplanar, with a dihedral angle of 3.3 (1)°. While the pyridine ring and the benzene ring are vertical with each other, with a dihedral angle of 89.9 (1)°. The molecules are connected by the O1—H1···N1 intermolecular hydrogen bond and C—H···π interactions (Figure 2). Besides, there is intermolecular π-π interaction between the two neighboring benzene rings (C4C5C6C7C8C13), symmetry code: (1-X, 2-Y, –Z). The two rings are parallel to each other. The centroid distance, plane-plane distance and displacement distance are 3.642, 3.499 and 1.010 Å, respectively, which strongly indicate the existence of intermolecular π-π interactions.

For the biological activity of quinoline derivatives, see: Faber et al. (1984); Johnson et al. (1989); Nesterova et al. (1995); Yamada et al. (1992).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure drawing shows 30% probability of displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of title compound viewed along the b axis. Dashed lines indicate hydrogen bonds of type O1—H1···N1 and C—H···π interactions.
2-(2-p-Tolylbenzo[g]quinolin-3-yl)ethanol top
Crystal data top
C22H19NOZ = 2
Mr = 313.38F(000) = 332
Triclinic, P1Dx = 1.277 Mg m3
Hall symbol: -P 1Melting point = 486–487 K
a = 7.2044 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1704 (4) ÅCell parameters from 3017 reflections
c = 12.1194 (3) Åθ = 2.9–26.5°
α = 108.125 (3)°µ = 0.08 mm1
β = 98.115 (4)°T = 296 K
γ = 99.370 (5)°Sheet, yellow
V = 815.08 (6) Å30.49 × 0.21 × 0.07 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2232 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
phi and ω scansh = 88
10164 measured reflectionsk = 1212
2879 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.1533P]
where P = (Fo2 + 2Fc2)/3
2879 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C22H19NOγ = 99.370 (5)°
Mr = 313.38V = 815.08 (6) Å3
Triclinic, P1Z = 2
a = 7.2044 (4) ÅMo Kα radiation
b = 10.1704 (4) ŵ = 0.08 mm1
c = 12.1194 (3) ÅT = 296 K
α = 108.125 (3)°0.49 × 0.21 × 0.07 mm
β = 98.115 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
2232 reflections with I > 2σ(I)
10164 measured reflectionsRint = 0.020
2879 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
2879 reflectionsΔρmin = 0.16 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.94638 (19)0.74485 (14)0.16847 (12)0.0671 (4)
N10.34813 (18)0.89390 (13)0.23730 (12)0.0473 (3)
C40.5880 (2)1.05942 (15)0.19621 (13)0.0428 (4)
C50.3959 (2)0.99592 (15)0.18921 (13)0.0442 (4)
C10.4871 (2)0.84951 (15)0.29047 (13)0.0445 (4)
C30.7299 (2)1.00948 (15)0.25305 (14)0.0462 (4)
H3A0.85851.04870.25940.055*
C130.6286 (2)1.16905 (15)0.14470 (13)0.0442 (4)
C60.2436 (2)1.03711 (17)0.12868 (15)0.0532 (4)
H6A0.11670.99580.12500.064*
C20.6844 (2)0.90436 (15)0.29965 (13)0.0452 (4)
C80.4736 (2)1.20451 (15)0.08298 (13)0.0478 (4)
C160.4202 (2)0.73826 (16)0.34132 (14)0.0454 (4)
C90.5119 (3)1.30789 (17)0.03012 (15)0.0580 (5)
H9A0.41031.33030.01150.070*
C70.2812 (2)1.13509 (17)0.07688 (15)0.0552 (4)
H7A0.17951.15830.03600.066*
C190.2814 (2)0.52892 (18)0.43403 (17)0.0545 (4)
C140.8416 (2)0.84739 (17)0.35334 (15)0.0537 (4)
H14A0.95790.92150.38420.064*
H14B0.80430.82290.41950.064*
C180.3153 (2)0.49386 (18)0.32095 (16)0.0594 (5)
H18A0.29170.39870.27410.071*
C170.3831 (3)0.59584 (17)0.27504 (15)0.0561 (4)
H17A0.40430.56830.19800.067*
C120.8149 (2)1.24194 (17)0.15198 (16)0.0557 (4)
H12A0.91881.22100.19290.067*
C110.8479 (3)1.34320 (18)0.10038 (17)0.0647 (5)
H11A0.97301.39020.10660.078*
C150.8844 (2)0.71879 (18)0.26679 (17)0.0583 (5)
H15A0.98320.68640.30790.070*
H15B0.76950.64330.23840.070*
C210.3886 (3)0.77368 (18)0.45560 (16)0.0628 (5)
H21A0.41420.86860.50320.075*
C220.2070 (3)0.4166 (2)0.4833 (2)0.0769 (6)
H22A0.28320.34610.46970.115*
H22B0.07560.37280.44460.115*
H22C0.21470.45910.56690.115*
C100.6947 (3)1.37576 (18)0.03868 (16)0.0641 (5)
H10A0.71741.44420.00320.077*
C200.3197 (3)0.6706 (2)0.50019 (17)0.0655 (5)
H20A0.29850.69780.57720.079*
H11.074 (4)0.793 (3)0.196 (2)0.111 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0505 (8)0.0835 (9)0.0729 (9)0.0124 (6)0.0160 (6)0.0342 (7)
N10.0446 (7)0.0461 (7)0.0529 (8)0.0092 (6)0.0146 (6)0.0176 (6)
C40.0459 (9)0.0390 (7)0.0424 (8)0.0093 (6)0.0116 (7)0.0115 (6)
C50.0462 (9)0.0418 (8)0.0442 (9)0.0108 (6)0.0123 (7)0.0122 (7)
C10.0457 (9)0.0433 (8)0.0445 (9)0.0090 (7)0.0133 (7)0.0138 (7)
C30.0420 (8)0.0455 (8)0.0515 (9)0.0058 (6)0.0109 (7)0.0185 (7)
C130.0518 (9)0.0387 (8)0.0414 (9)0.0114 (7)0.0109 (7)0.0112 (6)
C60.0435 (9)0.0544 (9)0.0620 (11)0.0125 (7)0.0105 (8)0.0196 (8)
C20.0467 (9)0.0437 (8)0.0458 (9)0.0087 (7)0.0107 (7)0.0161 (7)
C80.0593 (10)0.0411 (8)0.0414 (9)0.0149 (7)0.0098 (7)0.0101 (7)
C160.0404 (8)0.0477 (8)0.0503 (9)0.0072 (6)0.0123 (7)0.0199 (7)
C90.0745 (12)0.0502 (9)0.0514 (10)0.0205 (9)0.0074 (9)0.0196 (8)
C70.0532 (10)0.0549 (9)0.0581 (10)0.0199 (8)0.0059 (8)0.0184 (8)
C190.0383 (8)0.0633 (10)0.0714 (12)0.0083 (7)0.0124 (8)0.0373 (9)
C140.0480 (9)0.0580 (10)0.0600 (11)0.0053 (7)0.0062 (8)0.0322 (8)
C180.0601 (11)0.0470 (9)0.0667 (12)0.0011 (8)0.0105 (9)0.0200 (8)
C170.0647 (11)0.0514 (9)0.0492 (10)0.0049 (8)0.0133 (8)0.0162 (8)
C120.0542 (10)0.0522 (9)0.0649 (11)0.0081 (7)0.0108 (8)0.0283 (8)
C110.0668 (12)0.0573 (10)0.0725 (12)0.0023 (9)0.0126 (10)0.0322 (9)
C150.0444 (9)0.0620 (10)0.0790 (12)0.0120 (8)0.0151 (9)0.0373 (9)
C210.0784 (12)0.0499 (9)0.0585 (11)0.0069 (8)0.0286 (9)0.0136 (8)
C220.0576 (11)0.0869 (14)0.1071 (17)0.0101 (10)0.0221 (11)0.0628 (13)
C100.0861 (14)0.0502 (9)0.0610 (11)0.0119 (9)0.0129 (10)0.0284 (9)
C200.0731 (12)0.0716 (12)0.0567 (11)0.0087 (9)0.0272 (9)0.0264 (9)
Geometric parameters (Å, º) top
O1—C151.413 (2)C7—H7A0.9300
O1—H10.93 (3)C19—C181.372 (3)
N1—C11.3294 (19)C19—C201.373 (3)
N1—C51.3606 (19)C19—C221.505 (2)
C4—C31.402 (2)C14—C151.508 (2)
C4—C51.407 (2)C14—H14A0.9700
C4—C131.448 (2)C14—H14B0.9700
C5—C61.426 (2)C18—C171.377 (2)
C1—C21.415 (2)C18—H18A0.9300
C1—C161.494 (2)C17—H17A0.9300
C3—C21.372 (2)C12—C111.368 (2)
C3—H3A0.9300C12—H12A0.9300
C13—C121.400 (2)C11—C101.388 (3)
C13—C81.414 (2)C11—H11A0.9300
C6—C71.345 (2)C15—H15A0.9700
C6—H6A0.9300C15—H15B0.9700
C2—C141.511 (2)C21—C201.377 (2)
C8—C91.402 (2)C21—H21A0.9300
C8—C71.430 (2)C22—H22A0.9600
C16—C171.380 (2)C22—H22B0.9600
C16—C211.380 (2)C22—H22C0.9600
C9—C101.357 (3)C10—H10A0.9300
C9—H9A0.9300C20—H20A0.9300
C15—O1—H1105.8 (15)C15—C14—H14A108.9
C1—N1—C5119.18 (13)C2—C14—H14A108.9
C3—C4—C5116.48 (14)C15—C14—H14B108.9
C3—C4—C13123.98 (14)C2—C14—H14B108.9
C5—C4—C13119.54 (14)H14A—C14—H14B107.7
N1—C5—C4122.42 (14)C19—C18—C17121.72 (16)
N1—C5—C6117.78 (14)C19—C18—H18A119.1
C4—C5—C6119.79 (14)C17—C18—H18A119.1
N1—C1—C2122.65 (14)C18—C17—C16121.16 (16)
N1—C1—C16115.17 (13)C18—C17—H17A119.4
C2—C1—C16122.17 (14)C16—C17—H17A119.4
C2—C3—C4121.90 (14)C11—C12—C13121.65 (17)
C2—C3—H3A119.1C11—C12—H12A119.2
C4—C3—H3A119.0C13—C12—H12A119.2
C12—C13—C8117.79 (14)C12—C11—C10120.04 (18)
C12—C13—C4123.31 (14)C12—C11—H11A120.0
C8—C13—C4118.90 (14)C10—C11—H11A120.0
C7—C6—C5120.72 (15)O1—C15—C14113.27 (14)
C7—C6—H6A119.6O1—C15—H15A108.9
C5—C6—H6A119.6C14—C15—H15A108.9
C3—C2—C1117.33 (14)O1—C15—H15B108.9
C3—C2—C14120.10 (14)C14—C15—H15B108.9
C1—C2—C14122.52 (13)H15A—C15—H15B107.7
C9—C8—C13119.27 (15)C20—C21—C16121.03 (16)
C9—C8—C7121.50 (15)C20—C21—H21A119.5
C13—C8—C7119.23 (14)C16—C21—H21A119.5
C17—C16—C21117.21 (15)C19—C22—H22A109.5
C17—C16—C1121.38 (14)C19—C22—H22B109.5
C21—C16—C1121.40 (14)H22A—C22—H22B109.5
C10—C9—C8121.18 (16)C19—C22—H22C109.5
C10—C9—H9A119.4H22A—C22—H22C109.5
C8—C9—H9A119.4H22B—C22—H22C109.5
C6—C7—C8121.74 (15)C9—C10—C11120.07 (16)
C6—C7—H7A119.1C9—C10—H10A120.0
C8—C7—H7A119.1C11—C10—H10A120.0
C18—C19—C20117.08 (15)C19—C20—C21121.80 (17)
C18—C19—C22121.27 (17)C19—C20—H20A119.1
C20—C19—C22121.65 (17)C21—C20—H20A119.1
C15—C14—C2113.54 (14)
C1—N1—C5—C41.7 (2)C2—C1—C16—C1790.9 (2)
C1—N1—C5—C6177.53 (13)N1—C1—C16—C2188.66 (19)
C3—C4—C5—N11.6 (2)C2—C1—C16—C2190.7 (2)
C13—C4—C5—N1179.01 (13)C13—C8—C9—C101.0 (2)
C3—C4—C5—C6177.56 (13)C7—C8—C9—C10178.41 (15)
C13—C4—C5—C61.8 (2)C5—C6—C7—C81.8 (3)
C5—N1—C1—C20.2 (2)C9—C8—C7—C6179.16 (15)
C5—N1—C1—C16179.51 (12)C13—C8—C7—C60.2 (2)
C5—C4—C3—C20.1 (2)C3—C2—C14—C1592.86 (18)
C13—C4—C3—C2179.40 (13)C1—C2—C14—C1584.48 (19)
C3—C4—C13—C123.5 (2)C20—C19—C18—C170.5 (3)
C5—C4—C13—C12177.21 (14)C22—C19—C18—C17179.92 (16)
C3—C4—C13—C8176.03 (13)C19—C18—C17—C160.1 (3)
C5—C4—C13—C83.3 (2)C21—C16—C17—C180.7 (3)
N1—C5—C6—C7178.50 (14)C1—C16—C17—C18177.77 (15)
C4—C5—C6—C70.7 (2)C8—C13—C12—C110.7 (2)
C4—C3—C2—C11.3 (2)C4—C13—C12—C11178.83 (15)
C4—C3—C2—C14176.17 (14)C13—C12—C11—C100.1 (3)
N1—C1—C2—C31.3 (2)C2—C14—C15—O160.50 (18)
C16—C1—C2—C3177.99 (13)C17—C16—C21—C201.1 (3)
N1—C1—C2—C14176.11 (14)C1—C16—C21—C20177.39 (17)
C16—C1—C2—C144.6 (2)C8—C9—C10—C110.1 (3)
C12—C13—C8—C91.2 (2)C12—C11—C10—C90.4 (3)
C4—C13—C8—C9178.32 (13)C18—C19—C20—C210.1 (3)
C12—C13—C8—C7178.16 (14)C22—C19—C20—C21179.70 (17)
C4—C13—C8—C72.3 (2)C16—C21—C20—C190.7 (3)
N1—C1—C16—C1789.77 (18)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1,C1–C5 pyridine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.93 (3)1.98 (3)2.9110 (18)174 (2)
C21—H21A···Cgii0.932.973.7358 (19)140
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H19NO
Mr313.38
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2044 (4), 10.1704 (4), 12.1194 (3)
α, β, γ (°)108.125 (3), 98.115 (4), 99.370 (5)
V3)815.08 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.49 × 0.21 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10164, 2879, 2232
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.03
No. of reflections2879
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1,C1–C5 pyridine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.93 (3)1.98 (3)2.9110 (18)174 (2)
C21—H21A···Cgii0.932.973.7358 (19)140.0
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

We are grateful to the Special Presidential Foundation of Xuzhou Medical College (2010KJZ15) for financial support. We thank Su Hong of Zhejiang Normal University for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaber, K., Stueckler, H. & Kappe, T. (1984). J. Heterocycl. Chem. 21, 1177–1178.  CrossRef CAS Google Scholar
First citationJohnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem. 32, 1942–1949.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNesterova, I., Alekseeva, L. M., Andreeva, L. M., Andreeva, N. I., Golovira, S. M. & Granic, V. G. (1995). Khim. Farm. Zh. 29, 31–34.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol. 44, 1211–1213.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds