organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-N-(4-chloro­phen­yl)-2-methyl­propanamide

aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and cInstituto de Química de São Carlos, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 29 August 2011; accepted 31 August 2011; online 14 September 2011)

In the title mol­ecule, C10H11BrClNO, there is a twist between the mean plane of the amide group and the benzene ring [C(=O)—N—C—C torsion angle = −27.1 (3)°]. In the crystal, inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into chains along [010].

Related literature

For initiators in ATRP processes (polymerization by atom transfer radical), see: Matyjaszewski & Xia (2001[Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921-2990.]); Pietrasik & Tsarevsky (2010[Pietrasik, J. & Tsarevsky, N. V. (2010). Eur. Polym. J. 46, 2333-2340.]). For end-functionalized linear polymers, see: Matyjaszewski & Mueller (2008[Matyjaszewski, K. & Mueller, L. (2008). Macromolecules, 41, 1067-1069.]); Stenzel-Rosenbaum et al. 2001[Stenzel-Rosenbaum, M., Davis, T. P., Chen, V. & Fane, A. G. (2001). J. Polym. Sci. Part A Polym. Chem. 39, 2777-2783.]). For hydrogen-bond graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11BrClNO

  • Mr = 276.56

  • Orthorhombic, P b c a

  • a = 9.7449 (3) Å

  • b = 10.1063 (3) Å

  • c = 22.8803 (7) Å

  • V = 2253.36 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.85 mm−1

  • T = 123 K

  • 0.45 × 0.22 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.387, Tmax = 1.000

  • 9676 measured reflections

  • 2684 independent reflections

  • 2225 reflections with I > 2σ(I)

  • Rint = 0.028

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.069

  • S = 1.05

  • 2684 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.81 (3) 2.17 (3) 2.972 (2) 169 (3)
C10—H10⋯O1i 0.95 2.71 3.433 (3) 133
C4—H4B⋯O1i 0.98 2.53 3.453 (3) 158
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I), is a monofunctional alkyl halyde derivative, which can be used as an initiator in Atom Transfer Radical Polymerization processes (ATRP) (Matyjaszewski & Xia, 2001; Pietrasik & Tsarevsky, 2010). This derivative can form end-functionalized linear polymers when used as an initiator (Matyjaszewski et al. 2008; Stenzel-Rosenbaum et al. 2001). The molecular structure of (I) is shown in Fig. 1. There is a twist between the mean plane of the amide group and benzene ring giving a C3—N1—C5—C6 torsion angle of -27.1 (3)°. The crystal structure is stabilized by intermolecular N—H···O and weak C—H···O hydrogen bonds (see Table 1, Nardelli, 1995). Indeed, molecules of (I) are linked by N1—H1N···O1i, C10—H10···O1i and C4—H4B···O1i hydrogen bonds (i: -x + 3/2,+y + 1/2,+z) which lead to the formation of C(4) (Etter, 1990) one dimensional chain along [010] (Fig. 2).

Related literature top

For initiators in ATRP processes (polymerization by atom transfer radical), see: Matyjaszewski & Xia (2001); Pietrasik & Tsarevsky (2010). For end-functionalized linear polymers, see: Matyjaszewski & Mueller (2008); Stenzel-Rosenbaum et al. 2001). For hydrogen-bond graph-set motifs, see: Etter (1990). For hydrogen bonding, see: Nardelli (1995).

Experimental top

The initial reagents were purchased from Aldrich Chemical Co. and were used as received. In a 100 mL round bottom flask 4-chloroaniline (2.315 mmoles, 0.295 g), triethylamine (0.463 mmol, 0.027 g) were mixed, then a solution of 2-bromo isobutyryl bromide (0.450 g) in anhydrous THF (5 ml) was added drop wise, under an argon stream. The reaction was carried out in a dry bag overnight under magnetic stirring. The solid was filtered off and dichloromethane (20 ml) added to the organic phase which was washed with brine (50 ml) followed by water (10 ml). The solution was concentrated at low pressure affording colourless crystals and recrystalized from a solution of hexane and ethyl acetate (80:20). M.p. 386 (1) K.

Refinement top

The H-atoms were positioned geometrically [C—H= 0.95 Å for aromatic and C—H= 0.98 Å for methyl, and with Uiso(H) (1.2 and 1.5 times Ueq of the parent atom respectivelly]. The amide-H1N atom was located in a difference Fourier map and was refined freely.

Structure description top

The title compound (I), is a monofunctional alkyl halyde derivative, which can be used as an initiator in Atom Transfer Radical Polymerization processes (ATRP) (Matyjaszewski & Xia, 2001; Pietrasik & Tsarevsky, 2010). This derivative can form end-functionalized linear polymers when used as an initiator (Matyjaszewski et al. 2008; Stenzel-Rosenbaum et al. 2001). The molecular structure of (I) is shown in Fig. 1. There is a twist between the mean plane of the amide group and benzene ring giving a C3—N1—C5—C6 torsion angle of -27.1 (3)°. The crystal structure is stabilized by intermolecular N—H···O and weak C—H···O hydrogen bonds (see Table 1, Nardelli, 1995). Indeed, molecules of (I) are linked by N1—H1N···O1i, C10—H10···O1i and C4—H4B···O1i hydrogen bonds (i: -x + 3/2,+y + 1/2,+z) which lead to the formation of C(4) (Etter, 1990) one dimensional chain along [010] (Fig. 2).

For initiators in ATRP processes (polymerization by atom transfer radical), see: Matyjaszewski & Xia (2001); Pietrasik & Tsarevsky (2010). For end-functionalized linear polymers, see: Matyjaszewski & Mueller (2008); Stenzel-Rosenbaum et al. 2001). For hydrogen-bond graph-set motifs, see: Etter (1990). For hydrogen bonding, see: Nardelli (1995).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a one dimensional chain along [010]. Symmetry code: (i) -x + 3/2,+y + 1/2,+z
2-Bromo-N-(4-chlorophenyl)-2-methylpropanamide top
Crystal data top
C10H11BrClNODx = 1.630 Mg m3
Mr = 276.56Melting point: 386(1) K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4107 reflections
a = 9.7449 (3) Åθ = 2.9–29.7°
b = 10.1063 (3) ŵ = 3.85 mm1
c = 22.8803 (7) ÅT = 123 K
V = 2253.36 (12) Å3Bar, colourless
Z = 80.45 × 0.22 × 0.08 mm
F(000) = 1104
Data collection top
Oxford Diffraction Gemini S
diffractometer
2684 independent reflections
Radiation source: fine-focus sealed tube2225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 28.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1212
Tmin = 0.387, Tmax = 1.000k = 1113
9676 measured reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0275P)2 + 1.8897P]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C10H11BrClNOV = 2253.36 (12) Å3
Mr = 276.56Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.7449 (3) ŵ = 3.85 mm1
b = 10.1063 (3) ÅT = 123 K
c = 22.8803 (7) Å0.45 × 0.22 × 0.08 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
2684 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2225 reflections with I > 2σ(I)
Tmin = 0.387, Tmax = 1.000Rint = 0.028
9676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.00 e Å3
2684 reflectionsΔρmin = 0.60 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.48117 (2)0.03662 (3)0.143191 (11)0.02744 (9)
Cl11.31938 (6)0.04546 (7)0.00111 (2)0.02798 (15)
O10.77815 (16)0.19000 (14)0.15413 (7)0.0189 (3)
N10.81397 (19)0.03082 (19)0.14313 (8)0.0150 (4)
C10.5483 (3)0.1697 (2)0.22170 (11)0.0275 (6)
H1A0.61220.21440.24830.041*
H1B0.52650.22860.18890.041*
H1C0.46390.14760.24280.041*
C20.6140 (2)0.0437 (2)0.19856 (9)0.0168 (5)
C30.7429 (2)0.0750 (2)0.16220 (9)0.0138 (4)
C40.6432 (3)0.0534 (2)0.24801 (10)0.0215 (5)
H4A0.55950.06700.27100.032*
H4B0.67340.13810.23160.032*
H4C0.71540.01750.27330.032*
C50.9350 (2)0.0288 (2)0.10845 (9)0.0139 (4)
C61.0272 (2)0.0771 (2)0.10905 (10)0.0176 (5)
H61.00880.15320.13210.021*
C71.1457 (2)0.0702 (2)0.07567 (10)0.0193 (5)
H71.20920.14150.07610.023*
C81.1717 (2)0.0402 (2)0.04186 (9)0.0191 (5)
C91.0812 (2)0.1457 (2)0.04075 (9)0.0196 (5)
H91.09990.22110.01730.024*
C100.9626 (2)0.1399 (2)0.07439 (10)0.0172 (5)
H100.90000.21200.07420.021*
H1N0.778 (3)0.103 (3)0.1467 (11)0.024 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01641 (13)0.03536 (16)0.03055 (14)0.00118 (10)0.00217 (9)0.00496 (12)
Cl10.0173 (3)0.0437 (4)0.0230 (3)0.0036 (3)0.0062 (2)0.0048 (3)
O10.0206 (8)0.0105 (7)0.0256 (8)0.0002 (6)0.0060 (6)0.0013 (6)
N10.0178 (9)0.0096 (9)0.0176 (9)0.0016 (8)0.0048 (7)0.0001 (8)
C10.0317 (14)0.0173 (12)0.0335 (14)0.0036 (10)0.0161 (11)0.0016 (11)
C20.0172 (11)0.0139 (11)0.0194 (10)0.0012 (9)0.0025 (9)0.0004 (9)
C30.0155 (10)0.0133 (10)0.0125 (9)0.0004 (8)0.0016 (8)0.0008 (8)
C40.0259 (12)0.0177 (11)0.0210 (11)0.0022 (10)0.0066 (9)0.0044 (10)
C50.0141 (10)0.0158 (10)0.0117 (9)0.0024 (9)0.0006 (8)0.0027 (9)
C60.0203 (11)0.0152 (10)0.0171 (10)0.0004 (9)0.0016 (9)0.0022 (9)
C70.0166 (11)0.0214 (12)0.0199 (11)0.0026 (9)0.0017 (9)0.0019 (9)
C80.0135 (10)0.0295 (13)0.0142 (10)0.0053 (10)0.0017 (8)0.0013 (10)
C90.0217 (12)0.0217 (12)0.0155 (10)0.0072 (10)0.0008 (9)0.0036 (9)
C100.0186 (11)0.0153 (11)0.0178 (10)0.0005 (9)0.0002 (9)0.0008 (9)
Geometric parameters (Å, º) top
Br1—C21.985 (2)C4—H4B0.9800
Cl1—C81.744 (2)C4—H4C0.9800
O1—C31.226 (2)C5—C101.393 (3)
N1—C31.346 (3)C5—C61.397 (3)
N1—C51.422 (3)C6—C71.387 (3)
N1—H1N0.81 (3)C6—H60.9500
C1—C21.521 (3)C7—C81.381 (3)
C1—H1A0.9800C7—H70.9500
C1—H1B0.9800C8—C91.384 (3)
C1—H1C0.9800C9—C101.390 (3)
C2—C41.524 (3)C9—H90.9500
C2—C31.539 (3)C10—H100.9500
C4—H4A0.9800
C3—N1—C5126.59 (19)C2—C4—H4C109.5
C3—N1—H1N117.2 (19)H4A—C4—H4C109.5
C5—N1—H1N115.3 (19)H4B—C4—H4C109.5
C2—C1—H1A109.5C10—C5—C6119.9 (2)
C2—C1—H1B109.5C10—C5—N1117.43 (19)
H1A—C1—H1B109.5C6—C5—N1122.59 (19)
C2—C1—H1C109.5C7—C6—C5119.4 (2)
H1A—C1—H1C109.5C7—C6—H6120.3
H1B—C1—H1C109.5C5—C6—H6120.3
C1—C2—C4111.06 (18)C8—C7—C6120.1 (2)
C1—C2—C3111.06 (18)C8—C7—H7119.9
C4—C2—C3112.42 (18)C6—C7—H7119.9
C1—C2—Br1106.84 (16)C7—C8—C9121.1 (2)
C4—C2—Br1109.42 (14)C7—C8—Cl1119.44 (18)
C3—C2—Br1105.74 (14)C9—C8—Cl1119.49 (18)
O1—C3—N1124.1 (2)C8—C9—C10119.2 (2)
O1—C3—C2120.33 (19)C8—C9—H9120.4
N1—C3—C2115.56 (18)C10—C9—H9120.4
C2—C4—H4A109.5C9—C10—C5120.3 (2)
C2—C4—H4B109.5C9—C10—H10119.9
H4A—C4—H4B109.5C5—C10—H10119.9
C5—N1—C3—O13.7 (3)C10—C5—C6—C70.1 (3)
C5—N1—C3—C2179.28 (19)N1—C5—C6—C7177.7 (2)
C1—C2—C3—O11.6 (3)C5—C6—C7—C80.4 (3)
C4—C2—C3—O1126.7 (2)C6—C7—C8—C90.3 (3)
Br1—C2—C3—O1113.94 (19)C6—C7—C8—Cl1178.54 (17)
C1—C2—C3—N1175.6 (2)C7—C8—C9—C100.1 (3)
C4—C2—C3—N150.5 (2)Cl1—C8—C9—C10178.97 (17)
Br1—C2—C3—N168.9 (2)C8—C9—C10—C50.4 (3)
C3—N1—C5—C10155.0 (2)C6—C5—C10—C90.3 (3)
C3—N1—C5—C627.1 (3)N1—C5—C10—C9178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (3)2.17 (3)2.972 (2)169 (3)
C10—H10···O1i0.952.713.433 (3)133
C4—H4B···O1i0.982.533.453 (3)158
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H11BrClNO
Mr276.56
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)9.7449 (3), 10.1063 (3), 22.8803 (7)
V3)2253.36 (12)
Z8
Radiation typeMo Kα
µ (mm1)3.85
Crystal size (mm)0.45 × 0.22 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini S
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.387, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9676, 2684, 2225
Rint0.028
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.05
No. of reflections2684
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.00, 0.60

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (3)2.17 (3)2.972 (2)169 (3)
C10—H10···O1i0.952.713.433 (3)133.4
C4—H4B···O1i0.982.533.453 (3)157.8
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF and FZ also thank the Universidad del Valle, Colombia, and Instituto de Química de São Carlos, USP, Brazil for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatyjaszewski, K. & Mueller, L. (2008). Macromolecules, 41, 1067–1069.  Google Scholar
First citationMatyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921–2990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPietrasik, J. & Tsarevsky, N. V. (2010). Eur. Polym. J. 46, 2333–2340.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStenzel-Rosenbaum, M., Davis, T. P., Chen, V. & Fane, A. G. (2001). J. Polym. Sci. Part A Polym. Chem. 39, 2777–2783.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds