organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[Bis(4-fluoro­phenyl)methyl]piperazin-1-ium picrate

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa, bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and cMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 31 August 2011; accepted 2 September 2011; online 14 September 2011)

The title compound {systematic name: 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium 2,4,6-tri­nitro­phenolate}, C17H19F2N2+·C6H2N3O7, is the picrate salt of a piperazine-supported amine bearing a benzhydryl substituent on one of its N atoms. During co-crystallisation, protonation took place on the N atom of the secondary amine functionality. The non-aromatic six-membered heterocycle adopts a chair conformation. In the crystal, N—H⋯O hydrogen bonds as well as C—H⋯O contacts connect the components into a three-dimensional network.

Related literature

For background to the biological activity of piperazines, see: Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]); Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]). For related structures, see: Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Ramesha, A. R. (2010). Acta Cryst. E66, o3167.], 2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500-o501.]); Dutkiewicz et al. (2011[Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o390-o391.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19F2N2+·C6H2N3O7

  • Mr = 517.45

  • Monoclinic, P 21 /c

  • a = 8.9425 (2) Å

  • b = 11.8286 (2) Å

  • c = 23.0922 (4) Å

  • β = 105.720 (1)°

  • V = 2351.27 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 200 K

  • 0.52 × 0.49 × 0.41 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS: Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 1.000

  • 20823 measured reflections

  • 5842 independent reflections

  • 5041 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.03

  • 5842 reflections

  • 342 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H721⋯O1i 0.909 (17) 1.924 (17) 2.7696 (12) 154.0 (14)
N2—H721⋯O52i 0.909 (17) 2.369 (16) 3.0018 (14) 126.7 (12)
N2—H722⋯O1ii 0.926 (16) 1.927 (16) 2.7402 (13) 145.4 (14)
N2—H722⋯O31ii 0.926 (16) 2.345 (16) 3.0791 (15) 136.0 (13)
C3—H3A⋯O52i 0.99 2.60 3.0002 (16) 104
C13—H13⋯O32iii 0.95 2.39 3.2159 (16) 145
C23—H23⋯O42iv 0.95 2.61 3.2827 (17) 129
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4,4'-Difluorobenzhydryl piperazine is an intermediate for the preparation of flunarizine which is a calcium channel blocker. Piperazines are among the most important building blocks in today's drug discovery. They are found in biologically active compounds across a number of different therapeutic areas such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Brockunier et al., 2004; Bogatcheva et al., 2006). The crystal structures of some related salts viz., levocetirizinium dipicrate (Jasinski et al., 2010), cinnarizinium dipicrate (Jasinski et al., 2011), 1-methylpiperazine-1,4-diium dipicrate (Dutkiewicz et al., 2011), have been reported. In the course of our studies on picrates of simple organic cations and in view of the importance of piperazines, we have determined the crystal and molecular structure of the title salt.

Protonation occurred at the nitrogen atom that is part of the secondary amine functionality. The non-aromatic heterocycle adopts a chair conformation (1C4, N1CN2) according to a conformation analysis (Cremer & Pople, 1975). The least-squares planes defined by the carbon atoms of the two fluorophenyl moieties intersect at an angle of 73.71 (4) °. The planes defined by the atoms of the nitro groups on the picrate anion enclose angles of 7.62 (14) °, 33.52 (18) ° and 37.08 (17) °, respectively with the aromatic system they are bonded to (Fig. 1).

In the crystal, hydrogen bonds of the N–H···O type as well as C–H···O contacts are present. Both classical hydrogen bonds show bifurcation between the phenolic O atom as well as one of the nitro group's O atoms. The C–H···O contacts are supported by one of the hydrogen atoms of the non-aromatic heterocycle as well as one of the hydrogen atoms in ortho position to F atom in each of the fluorophenyl moieties. Apart from one O atom of a nitro group that forms a N–O···Cg contact with a neighbouring picrate anion, all O atoms act as acceptors for hydrogen atoms. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDDD on the unitary level while the C–H···O contacts require a DD descriptor on the same level. In total, the entities of the title compound are connected to a three-dimensional network in the crystal. The shortest intercentroid distance between two centers of gravity was found at 4.0808 (7) Å and is apparent between one of the fluorophenyl moieties and the picrate anion (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For background to the biological activity of piperazines, see: Brockunier et al. (2004); Bogatcheva et al. (2006). For related structures, see: Jasinski et al. (2010, 2011); Dutkiewicz et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

4,4'-Difluorobenzhydryl piperazine was obtained from R. L. Fine Chem., Bengaluru, India. 4,4'-Difluorobenzhydryl piperazine (2.88 g, 0.01 mol) was dissolved in 10 ml of methanol and picric acid (2.29 g, 0.01 mol) was also dissolved in 10 ml of methanol. Both the solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for a day at room temperature. The salt formed was filtered & dried in vaccum desiccator over phosphorous pentoxide. The compound was recrystallized from a mixture of (1:1) acetone and acetonitrile by slow evaporation (m.p: 513–516 K).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Structure description top

4,4'-Difluorobenzhydryl piperazine is an intermediate for the preparation of flunarizine which is a calcium channel blocker. Piperazines are among the most important building blocks in today's drug discovery. They are found in biologically active compounds across a number of different therapeutic areas such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Brockunier et al., 2004; Bogatcheva et al., 2006). The crystal structures of some related salts viz., levocetirizinium dipicrate (Jasinski et al., 2010), cinnarizinium dipicrate (Jasinski et al., 2011), 1-methylpiperazine-1,4-diium dipicrate (Dutkiewicz et al., 2011), have been reported. In the course of our studies on picrates of simple organic cations and in view of the importance of piperazines, we have determined the crystal and molecular structure of the title salt.

Protonation occurred at the nitrogen atom that is part of the secondary amine functionality. The non-aromatic heterocycle adopts a chair conformation (1C4, N1CN2) according to a conformation analysis (Cremer & Pople, 1975). The least-squares planes defined by the carbon atoms of the two fluorophenyl moieties intersect at an angle of 73.71 (4) °. The planes defined by the atoms of the nitro groups on the picrate anion enclose angles of 7.62 (14) °, 33.52 (18) ° and 37.08 (17) °, respectively with the aromatic system they are bonded to (Fig. 1).

In the crystal, hydrogen bonds of the N–H···O type as well as C–H···O contacts are present. Both classical hydrogen bonds show bifurcation between the phenolic O atom as well as one of the nitro group's O atoms. The C–H···O contacts are supported by one of the hydrogen atoms of the non-aromatic heterocycle as well as one of the hydrogen atoms in ortho position to F atom in each of the fluorophenyl moieties. Apart from one O atom of a nitro group that forms a N–O···Cg contact with a neighbouring picrate anion, all O atoms act as acceptors for hydrogen atoms. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDDD on the unitary level while the C–H···O contacts require a DD descriptor on the same level. In total, the entities of the title compound are connected to a three-dimensional network in the crystal. The shortest intercentroid distance between two centers of gravity was found at 4.0808 (7) Å and is apparent between one of the fluorophenyl moieties and the picrate anion (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

For background to the biological activity of piperazines, see: Brockunier et al. (2004); Bogatcheva et al. (2006). For related structures, see: Jasinski et al. (2010, 2011); Dutkiewicz et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Selected intermolecular contacts, viewed along [0 0 - 1]. For clarity, the aromatic substituents on the tertiary nitrogen atom are omitted. Green dashed lines indicate C–H···O contacts, blue dashed lines indicate classical hydrogen bonds. Symmetry operators: i -x + 1, y + 1/2, -z + 1/2; ii x + 1, -y + 1/2, z + 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
4-[bis(4-fluorophenyl)methyl]piperazin-1-ium 2,4,6-trinitrophenolate top
Crystal data top
C17H19F2N2+·C6H2N3O7F(000) = 1072
Mr = 517.45Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9984 reflections
a = 8.9425 (2) Åθ = 2.5–28.3°
b = 11.8286 (2) ŵ = 0.12 mm1
c = 23.0922 (4) ÅT = 200 K
β = 105.720 (1)°Block, yellow
V = 2351.27 (8) Å30.52 × 0.49 × 0.41 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5842 independent reflections
Radiation source: fine-focus sealed tube5041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS: Bruker, 2008)
h = 1011
Tmin = 0.928, Tmax = 1.000k = 1513
20823 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.058P)2 + 0.8015P]
where P = (Fo2 + 2Fc2)/3
5842 reflections(Δ/σ)max < 0.001
342 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H19F2N2+·C6H2N3O7V = 2351.27 (8) Å3
Mr = 517.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9425 (2) ŵ = 0.12 mm1
b = 11.8286 (2) ÅT = 200 K
c = 23.0922 (4) Å0.52 × 0.49 × 0.41 mm
β = 105.720 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5842 independent reflections
Absorption correction: multi-scan
(SADABS: Bruker, 2008)
5041 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 1.000Rint = 0.013
20823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
5842 reflectionsΔρmin = 0.31 e Å3
342 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.59114 (13)0.42083 (9)0.07691 (4)0.0571 (3)
F20.17242 (8)0.30044 (8)0.27076 (4)0.0414 (2)
N10.53229 (10)0.45389 (8)0.34157 (4)0.02357 (19)
N20.77494 (11)0.44880 (8)0.45221 (4)0.02322 (19)
H7210.8435 (19)0.4073 (14)0.4805 (7)0.036 (4)*
H7220.7972 (18)0.5235 (14)0.4633 (7)0.035 (4)*
C10.41152 (13)0.49894 (9)0.28976 (5)0.0243 (2)
H10.40300.58240.29520.029*
C20.49947 (13)0.48107 (10)0.39896 (5)0.0256 (2)
H2A0.39140.45930.39720.031*
H2B0.51040.56350.40640.031*
C30.61166 (12)0.41795 (10)0.44964 (5)0.0252 (2)
H3A0.59020.43700.48840.030*
H3B0.59700.33550.44310.030*
C40.80775 (12)0.43290 (10)0.39261 (5)0.0259 (2)
H4A0.80470.35140.38260.031*
H4B0.91290.46180.39450.031*
C50.68813 (12)0.49562 (10)0.34431 (5)0.0254 (2)
H5A0.69420.57760.35340.030*
H5B0.70980.48440.30490.030*
C110.45589 (13)0.47782 (10)0.23136 (5)0.0255 (2)
C120.48205 (16)0.56737 (11)0.19670 (6)0.0357 (3)
H120.46810.64260.20870.043*
C130.52840 (18)0.54931 (12)0.14453 (6)0.0423 (3)
H130.54650.61110.12100.051*
C140.54715 (16)0.44020 (13)0.12803 (5)0.0369 (3)
C150.51902 (18)0.34899 (12)0.16014 (6)0.0417 (3)
H150.53130.27410.14730.050*
C160.47223 (17)0.36882 (11)0.21181 (6)0.0372 (3)
H160.45090.30650.23430.045*
C210.25510 (12)0.44523 (9)0.28664 (5)0.0241 (2)
C220.24318 (14)0.33552 (10)0.30656 (6)0.0303 (2)
H220.33510.29360.32380.036*
C230.09940 (14)0.28616 (11)0.30173 (6)0.0321 (3)
H230.09170.21150.31580.039*
C240.03126 (13)0.34853 (11)0.27601 (5)0.0304 (2)
C250.02518 (14)0.45697 (12)0.25579 (6)0.0335 (3)
H250.11780.49780.23810.040*
C260.11954 (14)0.50573 (11)0.26174 (5)0.0298 (2)
H260.12600.58130.24870.036*
O10.04838 (9)0.14124 (7)0.02412 (4)0.02909 (18)
O310.31391 (13)0.16472 (9)0.00959 (5)0.0496 (3)
O320.30392 (17)0.32242 (10)0.05643 (6)0.0588 (3)
O410.22278 (14)0.65139 (8)0.05559 (5)0.0485 (3)
O420.08126 (16)0.63785 (9)0.11771 (6)0.0578 (3)
O510.12687 (16)0.26580 (12)0.15001 (5)0.0641 (4)
O520.20063 (15)0.17435 (12)0.06807 (5)0.0598 (4)
N30.27271 (13)0.26325 (9)0.01814 (5)0.0323 (2)
N40.14537 (14)0.59644 (9)0.08192 (5)0.0380 (3)
N50.11622 (13)0.24272 (10)0.10035 (5)0.0349 (2)
C310.07480 (12)0.24316 (9)0.03909 (5)0.0233 (2)
C320.18288 (13)0.31337 (10)0.01940 (5)0.0258 (2)
C330.20463 (14)0.42683 (10)0.03198 (5)0.0284 (2)
H330.27230.47020.01540.034*
C340.12583 (14)0.47641 (10)0.06937 (5)0.0299 (2)
C350.02432 (14)0.41477 (10)0.09322 (5)0.0307 (2)
H350.02600.44910.12010.037*
C360.00186 (13)0.30330 (10)0.07723 (5)0.0270 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0726 (6)0.0721 (7)0.0364 (4)0.0016 (5)0.0315 (4)0.0020 (4)
F20.0245 (4)0.0574 (5)0.0434 (4)0.0087 (3)0.0112 (3)0.0072 (4)
N10.0199 (4)0.0306 (5)0.0207 (4)0.0002 (3)0.0064 (3)0.0021 (3)
N20.0215 (4)0.0250 (5)0.0227 (4)0.0005 (3)0.0052 (3)0.0024 (3)
C10.0248 (5)0.0242 (5)0.0238 (5)0.0009 (4)0.0064 (4)0.0029 (4)
C20.0218 (5)0.0334 (6)0.0230 (5)0.0022 (4)0.0081 (4)0.0020 (4)
C30.0226 (5)0.0306 (5)0.0238 (5)0.0013 (4)0.0086 (4)0.0034 (4)
C40.0219 (5)0.0315 (6)0.0258 (5)0.0015 (4)0.0090 (4)0.0003 (4)
C50.0224 (5)0.0311 (6)0.0241 (5)0.0019 (4)0.0089 (4)0.0024 (4)
C110.0241 (5)0.0297 (5)0.0219 (5)0.0011 (4)0.0045 (4)0.0023 (4)
C120.0472 (7)0.0301 (6)0.0318 (6)0.0115 (5)0.0144 (5)0.0011 (5)
C130.0555 (8)0.0427 (7)0.0331 (6)0.0150 (6)0.0195 (6)0.0033 (5)
C140.0366 (6)0.0519 (8)0.0244 (5)0.0009 (6)0.0118 (5)0.0008 (5)
C150.0556 (8)0.0374 (7)0.0349 (7)0.0105 (6)0.0171 (6)0.0008 (5)
C160.0530 (8)0.0298 (6)0.0321 (6)0.0081 (6)0.0173 (6)0.0077 (5)
C210.0227 (5)0.0270 (5)0.0222 (5)0.0013 (4)0.0054 (4)0.0008 (4)
C220.0242 (5)0.0278 (6)0.0371 (6)0.0017 (4)0.0053 (4)0.0045 (5)
C230.0303 (6)0.0304 (6)0.0359 (6)0.0034 (5)0.0091 (5)0.0006 (5)
C240.0230 (5)0.0428 (7)0.0267 (5)0.0046 (5)0.0091 (4)0.0067 (5)
C250.0243 (5)0.0453 (7)0.0308 (6)0.0085 (5)0.0076 (4)0.0042 (5)
C260.0292 (6)0.0319 (6)0.0292 (5)0.0064 (5)0.0094 (4)0.0058 (4)
O10.0264 (4)0.0238 (4)0.0361 (4)0.0003 (3)0.0067 (3)0.0050 (3)
O310.0572 (7)0.0395 (5)0.0658 (7)0.0152 (5)0.0400 (6)0.0056 (5)
O320.0885 (9)0.0463 (6)0.0618 (7)0.0101 (6)0.0547 (7)0.0002 (5)
O410.0624 (7)0.0266 (5)0.0541 (6)0.0054 (4)0.0115 (5)0.0024 (4)
O420.0807 (9)0.0339 (5)0.0635 (7)0.0032 (5)0.0279 (6)0.0179 (5)
O510.0808 (9)0.0832 (9)0.0408 (6)0.0316 (7)0.0379 (6)0.0244 (6)
O520.0595 (7)0.0789 (8)0.0511 (6)0.0385 (6)0.0324 (5)0.0295 (6)
N30.0350 (5)0.0328 (5)0.0340 (5)0.0041 (4)0.0176 (4)0.0032 (4)
N40.0454 (6)0.0256 (5)0.0375 (6)0.0030 (4)0.0016 (5)0.0041 (4)
N50.0383 (6)0.0413 (6)0.0293 (5)0.0061 (5)0.0162 (4)0.0088 (4)
C310.0234 (5)0.0244 (5)0.0208 (5)0.0014 (4)0.0038 (4)0.0010 (4)
C320.0263 (5)0.0277 (5)0.0239 (5)0.0007 (4)0.0078 (4)0.0014 (4)
C330.0295 (5)0.0268 (5)0.0272 (5)0.0020 (4)0.0045 (4)0.0011 (4)
C340.0345 (6)0.0227 (5)0.0287 (5)0.0015 (4)0.0019 (4)0.0036 (4)
C350.0335 (6)0.0321 (6)0.0255 (5)0.0033 (5)0.0064 (4)0.0067 (4)
C360.0277 (5)0.0315 (6)0.0223 (5)0.0015 (4)0.0078 (4)0.0036 (4)
Geometric parameters (Å, º) top
F1—C141.3610 (14)C15—H150.9500
F2—C241.3597 (13)C16—H160.9500
N1—C51.4636 (13)C21—C221.3905 (16)
N1—C21.4686 (13)C21—C261.3909 (15)
N1—C11.4770 (14)C22—C231.3888 (17)
N2—C31.4906 (14)C22—H220.9500
N2—C41.4947 (14)C23—C241.3734 (18)
N2—H7210.909 (17)C23—H230.9500
N2—H7220.926 (16)C24—C251.3711 (19)
C1—C211.5202 (15)C25—C261.3893 (18)
C1—C111.5258 (15)C25—H250.9500
C1—H11.0000C26—H260.9500
C2—C31.5158 (15)O1—C311.2587 (13)
C2—H2A0.9900O31—N31.2221 (15)
C2—H2B0.9900O32—N31.2179 (14)
C3—H3A0.9900O41—N41.2245 (16)
C3—H3B0.9900O42—N41.2282 (16)
C4—C51.5140 (15)O51—N51.2073 (14)
C4—H4A0.9900O52—N51.2143 (15)
C4—H4B0.9900N3—C321.4580 (14)
C5—H5A0.9900N4—C341.4501 (15)
C5—H5B0.9900N5—C361.4630 (15)
C11—C121.3854 (16)C31—C321.4383 (15)
C11—C161.3869 (17)C31—C361.4418 (15)
C12—C131.3926 (18)C32—C331.3757 (16)
C12—H120.9500C33—C341.3841 (17)
C13—C141.369 (2)C33—H330.9500
C13—H130.9500C34—C351.3891 (18)
C14—C151.370 (2)C35—C361.3721 (17)
C15—C161.3870 (18)C35—H350.9500
C5—N1—C2107.93 (8)C14—C15—C16118.33 (13)
C5—N1—C1113.08 (8)C14—C15—H15120.8
C2—N1—C1111.77 (8)C16—C15—H15120.8
C3—N2—C4111.54 (8)C11—C16—C15121.35 (12)
C3—N2—H721111.0 (10)C11—C16—H16119.3
C4—N2—H721109.4 (10)C15—C16—H16119.3
C3—N2—H722112.3 (10)C22—C21—C26118.73 (11)
C4—N2—H722107.0 (10)C22—C21—C1121.76 (10)
H721—N2—H722105.3 (14)C26—C21—C1119.49 (10)
N1—C1—C21110.43 (8)C23—C22—C21121.20 (11)
N1—C1—C11110.40 (9)C23—C22—H22119.4
C21—C1—C11110.24 (9)C21—C22—H22119.4
N1—C1—H1108.6C24—C23—C22118.01 (12)
C21—C1—H1108.6C24—C23—H23121.0
C11—C1—H1108.6C22—C23—H23121.0
N1—C2—C3109.67 (9)F2—C24—C25118.85 (11)
N1—C2—H2A109.7F2—C24—C23118.32 (12)
C3—C2—H2A109.7C25—C24—C23122.84 (11)
N1—C2—H2B109.7C24—C25—C26118.46 (11)
C3—C2—H2B109.7C24—C25—H25120.8
H2A—C2—H2B108.2C26—C25—H25120.8
N2—C3—C2110.27 (9)C25—C26—C21120.76 (11)
N2—C3—H3A109.6C25—C26—H26119.6
C2—C3—H3A109.6C21—C26—H26119.6
N2—C3—H3B109.6O32—N3—O31123.16 (11)
C2—C3—H3B109.6O32—N3—C32118.00 (11)
H3A—C3—H3B108.1O31—N3—C32118.83 (10)
N2—C4—C5109.93 (9)O41—N4—O42123.52 (12)
N2—C4—H4A109.7O41—N4—C34118.30 (11)
C5—C4—H4A109.7O42—N4—C34118.16 (12)
N2—C4—H4B109.7O51—N5—O52122.53 (12)
C5—C4—H4B109.7O51—N5—C36118.60 (11)
H4A—C4—H4B108.2O52—N5—C36118.81 (10)
N1—C5—C4109.94 (9)O1—C31—C32123.95 (10)
N1—C5—H5A109.7O1—C31—C36123.74 (10)
C4—C5—H5A109.7C32—C31—C36112.31 (10)
N1—C5—H5B109.7C33—C32—C31124.42 (10)
C4—C5—H5B109.7C33—C32—N3116.94 (10)
H5A—C5—H5B108.2C31—C32—N3118.60 (10)
C12—C11—C16118.26 (11)C32—C33—C34118.57 (11)
C12—C11—C1120.70 (11)C32—C33—H33120.7
C16—C11—C1121.04 (10)C34—C33—H33120.7
C11—C12—C13121.27 (12)C33—C34—C35121.51 (11)
C11—C12—H12119.4C33—C34—N4119.03 (11)
C13—C12—H12119.4C35—C34—N4119.41 (11)
C14—C13—C12118.23 (12)C36—C35—C34118.68 (11)
C14—C13—H13120.9C36—C35—H35120.7
C12—C13—H13120.9C34—C35—H35120.7
F1—C14—C13119.08 (12)C35—C36—C31124.32 (11)
F1—C14—C15118.38 (13)C35—C36—N5117.23 (10)
C13—C14—C15122.51 (12)C31—C36—N5118.45 (10)
C5—N1—C1—C21175.43 (9)C22—C23—C24—C250.79 (19)
C2—N1—C1—C2162.52 (11)F2—C24—C25—C26179.53 (11)
C5—N1—C1—C1153.26 (12)C23—C24—C25—C260.13 (18)
C2—N1—C1—C11175.31 (9)C24—C25—C26—C211.15 (18)
C5—N1—C2—C363.90 (11)C22—C21—C26—C251.20 (17)
C1—N1—C2—C3171.15 (9)C1—C21—C26—C25177.04 (11)
C4—N2—C3—C253.24 (12)O1—C31—C32—C33175.18 (11)
N1—C2—C3—N258.60 (12)C36—C31—C32—C333.91 (16)
C3—N2—C4—C553.23 (12)O1—C31—C32—N32.65 (17)
C2—N1—C5—C464.26 (11)C36—C31—C32—N3178.26 (10)
C1—N1—C5—C4171.57 (9)O32—N3—C32—C3332.04 (17)
N2—C4—C5—N158.93 (12)O31—N3—C32—C33147.48 (12)
N1—C1—C11—C12116.94 (12)O32—N3—C32—C31145.96 (12)
C21—C1—C11—C12120.78 (12)O31—N3—C32—C3134.53 (17)
N1—C1—C11—C1662.58 (14)C31—C32—C33—C344.57 (18)
C21—C1—C11—C1659.70 (14)N3—C32—C33—C34177.56 (10)
C16—C11—C12—C132.0 (2)C32—C33—C34—C351.18 (18)
C1—C11—C12—C13177.51 (12)C32—C33—C34—N4178.72 (11)
C11—C12—C13—C140.2 (2)O41—N4—C34—C334.97 (17)
C12—C13—C14—F1179.46 (13)O42—N4—C34—C33176.16 (12)
C12—C13—C14—C151.4 (2)O41—N4—C34—C35172.63 (12)
F1—C14—C15—C16179.17 (13)O42—N4—C34—C356.24 (18)
C13—C14—C15—C161.1 (2)C33—C34—C35—C362.44 (18)
C12—C11—C16—C152.3 (2)N4—C34—C35—C36175.09 (11)
C1—C11—C16—C15177.19 (12)C34—C35—C36—C313.01 (18)
C14—C15—C16—C110.8 (2)C34—C35—C36—N5176.52 (11)
N1—C1—C21—C2230.91 (14)O1—C31—C36—C35179.08 (11)
C11—C1—C21—C2291.36 (12)C32—C31—C36—C350.01 (16)
N1—C1—C21—C26150.90 (10)O1—C31—C36—N50.44 (17)
C11—C1—C21—C2686.83 (12)C32—C31—C36—N5179.53 (10)
C26—C21—C22—C230.24 (18)O51—N5—C36—C3534.90 (18)
C1—C21—C22—C23177.96 (11)O52—N5—C36—C35142.36 (14)
C21—C22—C23—C240.73 (19)O51—N5—C36—C31145.55 (14)
C22—C23—C24—F2179.55 (11)O52—N5—C36—C3137.19 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H721···O1i0.909 (17)1.924 (17)2.7696 (12)154.0 (14)
N2—H721···O52i0.909 (17)2.369 (16)3.0018 (14)126.7 (12)
N2—H722···O1ii0.926 (16)1.927 (16)2.7402 (13)145.4 (14)
N2—H722···O31ii0.926 (16)2.345 (16)3.0791 (15)136.0 (13)
C3—H3A···O52i0.992.603.0002 (16)104
C13—H13···O32iii0.952.393.2159 (16)145
C23—H23···O42iv0.952.613.2827 (17)129
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H19F2N2+·C6H2N3O7
Mr517.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)8.9425 (2), 11.8286 (2), 23.0922 (4)
β (°) 105.720 (1)
V3)2351.27 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.52 × 0.49 × 0.41
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS: Bruker, 2008)
Tmin, Tmax0.928, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20823, 5842, 5041
Rint0.013
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.03
No. of reflections5842
No. of parameters342
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H721···O1i0.909 (17)1.924 (17)2.7696 (12)154.0 (14)
N2—H721···O52i0.909 (17)2.369 (16)3.0018 (14)126.7 (12)
N2—H722···O1ii0.926 (16)1.927 (16)2.7402 (13)145.4 (14)
N2—H722···O31ii0.926 (16)2.345 (16)3.0791 (15)136.0 (13)
C3—H3A···O52i0.992.603.0002 (16)104.2
C13—H13···O32iii0.952.393.2159 (16)145.2
C23—H23···O42iv0.952.613.2827 (17)128.5
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y1/2, z+1/2.
 

Acknowledgements

ASD thanks the University of Mysore for research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o390–o391.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500–o501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Ramesha, A. R. (2010). Acta Cryst. E66, o3167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds