organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(6-Phenyl-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-3-yl)-1,3-benzo­thia­zole

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 7 September 2011; accepted 7 September 2011; online 14 September 2011)

In the title compound, C17H11N5S2, the dihedral angles formed between the triazole ring and the benzene ring and the 1,3-benzothia­zole ring system are 8.67 (8) and 13.90 (9)°, respectively. The conformation of the triazolo-thia­diazin-3-yl fused ring system is a twisted half-chair. Overall, the mol­ecule adopts a flattened shape. Supra­molecular helical chains along the a axis sustained by C—H⋯N inter­actions are found in the crystal structure. These are linked via C—H⋯π contacts as well as ππ [centroid–centroid distance = 3.5911 (12) Å] inter­actions between the triazole and thia­zole rings.

Related literature

For background to the synthesis and biological activity of benzothia­zoles and [1,2,4]triazolo[3,4-b][1,3,4]thia­diazines, see: Abdel-Aziz et al. (2007[Abdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573-1582.], 2010[Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152-159.]); Dawood et al. (2005[Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem, 16, 621-627.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11N5S2

  • Mr = 349.43

  • Orthorhombic, P 21 21 2

  • a = 12.1437 (3) Å

  • b = 21.2950 (5) Å

  • c = 5.7946 (1) Å

  • V = 1498.48 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.29 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.715, Tmax = 1.000

  • 5754 measured reflections

  • 2902 independent reflections

  • 2751 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.06

  • 2902 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1150 Friedel pairs

  • Flack parameter: −0.006 (16)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10a⋯N3i 0.99 2.45 3.333 (3) 148
C3—H3⋯Cg1ii 0.95 2.65 3.377 (2) 134
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+3]; (ii) -x+1, -y+1, z-1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was investigated in relation to the established biological activities exhibited by benzothiazoles and [1,2,4]triazolo[3,4-b][1,3,4]thiadiazines (Abdel-Aziz et al. 2007; Abdel-Aziz et al. 2010; Dawood et al. 2005).

In (I), Fig. 1, the 1,3-benzothiazole ring is planar with r.m.s. deviations of 0.034 Å. By contrast, the triazolo-thiadiazin-3-yl fused ring system has a twisted half-chair form owing to the presence of the methylene-C10 group with the C10 atom lying 0.702 (3) Å out of the least-squares plane defined by the S2,N4,N5,C9,C11 atoms (r.m.s. deviation = 0.109 Å). The 1,3-benzothiazole ring forms dihedral angles of 13.90 (9) and 8.67 (8) °, respectively, with the triazole and benzene rings so that the entire molecule has a flattened shape.

In the crystal packing, C—H···N interactions, Table 1, lead to the formation of supramolecular chains along the a axis with an helical topology, Fig. 2. These assemble into zigzag layers in the ac plane with connections between them of the type C—H···π involving a methylene-H and the benzene ring, and π···π. The shortest interaction of the latter type of 3.5911 (12) Å occurs between the S1,N1,C1,C6,C7 and N2–N4,C8,C9 five-membered rings, Fig. 3.

Related literature top

For background to the synthesis and biological activity of benzothiazoles and [1,2,4]triazolo[3,4-b][1,3,4]thiadiazines, see: Abdel-Aziz et al. (2007, 2010); Dawood et al. (2005).

Experimental top

The title compound was prepared according to the reported method (Abdel-Aziz et al., 2007). Colourless crystals were obtained from an EtOH/DMF (v/v = 2/1) solution by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

The title compound, (I), was investigated in relation to the established biological activities exhibited by benzothiazoles and [1,2,4]triazolo[3,4-b][1,3,4]thiadiazines (Abdel-Aziz et al. 2007; Abdel-Aziz et al. 2010; Dawood et al. 2005).

In (I), Fig. 1, the 1,3-benzothiazole ring is planar with r.m.s. deviations of 0.034 Å. By contrast, the triazolo-thiadiazin-3-yl fused ring system has a twisted half-chair form owing to the presence of the methylene-C10 group with the C10 atom lying 0.702 (3) Å out of the least-squares plane defined by the S2,N4,N5,C9,C11 atoms (r.m.s. deviation = 0.109 Å). The 1,3-benzothiazole ring forms dihedral angles of 13.90 (9) and 8.67 (8) °, respectively, with the triazole and benzene rings so that the entire molecule has a flattened shape.

In the crystal packing, C—H···N interactions, Table 1, lead to the formation of supramolecular chains along the a axis with an helical topology, Fig. 2. These assemble into zigzag layers in the ac plane with connections between them of the type C—H···π involving a methylene-H and the benzene ring, and π···π. The shortest interaction of the latter type of 3.5911 (12) Å occurs between the S1,N1,C1,C6,C7 and N2–N4,C8,C9 five-membered rings, Fig. 3.

For background to the synthesis and biological activity of benzothiazoles and [1,2,4]triazolo[3,4-b][1,3,4]thiadiazines, see: Abdel-Aziz et al. (2007, 2010); Dawood et al. (2005).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chains in (I) mediated by C—H···N interactions (blue dashed lines).
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The C—H···N, C—H···π and π···π interactions are shown as blue, purple and orange dashed lines, respectively.
2-(6-Phenyl-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-1,3- benzothiazole top
Crystal data top
C17H11N5S2F(000) = 720
Mr = 349.43Dx = 1.549 Mg m3
Orthorhombic, P21212Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2 2abCell parameters from 3513 reflections
a = 12.1437 (3) Åθ = 3.6–74.3°
b = 21.2950 (5) ŵ = 3.29 mm1
c = 5.7946 (1) ÅT = 100 K
V = 1498.48 (6) Å3Plate, light-brown
Z = 40.25 × 0.25 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2902 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2751 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 74.5°, θmin = 4.2°
ω scanh = 1513
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1326
Tmin = 0.715, Tmax = 1.000l = 66
5754 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.021P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2902 reflectionsΔρmax = 0.21 e Å3
217 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 1150 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (16)
Crystal data top
C17H11N5S2V = 1498.48 (6) Å3
Mr = 349.43Z = 4
Orthorhombic, P21212Cu Kα radiation
a = 12.1437 (3) ŵ = 3.29 mm1
b = 21.2950 (5) ÅT = 100 K
c = 5.7946 (1) Å0.25 × 0.25 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2902 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2751 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 1.000Rint = 0.029
5754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.21 e Å3
S = 1.06Δρmin = 0.30 e Å3
2902 reflectionsAbsolute structure: Flack (1983), 1150 Friedel pairs
217 parametersAbsolute structure parameter: 0.006 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41692 (4)0.42415 (2)0.72377 (10)0.01863 (14)
S20.51497 (4)0.25815 (2)1.48903 (10)0.01803 (13)
N10.21298 (15)0.38633 (8)0.7555 (3)0.0165 (4)
N20.24914 (15)0.31575 (9)1.1796 (3)0.0170 (4)
N30.30068 (16)0.28150 (8)1.3539 (3)0.0177 (4)
N40.42913 (15)0.32303 (8)1.1339 (3)0.0142 (4)
N50.52940 (15)0.34569 (8)1.0531 (3)0.0155 (4)
C10.32276 (18)0.45294 (9)0.5251 (4)0.0173 (4)
C20.34046 (19)0.49351 (11)0.3396 (4)0.0214 (5)
H20.41050.51210.31380.026*
C30.25298 (18)0.50565 (10)0.1955 (4)0.0204 (5)
H30.26350.53250.06640.024*
C40.14936 (18)0.47958 (9)0.2342 (4)0.0202 (5)
H40.09080.48870.13090.024*
C50.13077 (18)0.44076 (10)0.4203 (4)0.0191 (5)
H50.05970.42370.44780.023*
C60.21838 (18)0.42704 (9)0.5676 (4)0.0149 (4)
C70.30956 (18)0.38046 (9)0.8490 (4)0.0139 (4)
C80.32714 (17)0.34057 (9)1.0515 (4)0.0149 (4)
C90.40792 (19)0.28660 (9)1.3227 (4)0.0153 (4)
C100.61131 (16)0.25386 (9)1.2505 (4)0.0175 (4)
H10A0.68590.24511.31180.021*
H10B0.59040.21841.14890.021*
C110.61482 (18)0.31330 (9)1.1098 (4)0.0143 (4)
C120.72157 (16)0.33574 (8)1.0201 (4)0.0140 (4)
C130.72667 (19)0.36733 (9)0.8082 (4)0.0171 (4)
H130.66170.37280.71930.021*
C140.82592 (18)0.39051 (9)0.7279 (4)0.0180 (4)
H140.82880.41220.58460.022*
C150.92123 (19)0.38220 (10)0.8562 (4)0.0186 (4)
H150.98910.39850.80100.022*
C160.91816 (19)0.35013 (10)1.0651 (4)0.0184 (4)
H160.98380.34431.15180.022*
C170.81865 (18)0.32671 (9)1.1466 (4)0.0159 (4)
H170.81640.30451.28860.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0133 (2)0.0176 (2)0.0250 (3)0.00121 (19)0.0008 (2)0.0079 (2)
S20.0186 (3)0.0185 (3)0.0170 (3)0.00037 (19)0.0012 (2)0.00396 (19)
N10.0172 (9)0.0139 (8)0.0184 (9)0.0010 (7)0.0006 (8)0.0007 (8)
N20.0168 (9)0.0155 (8)0.0186 (9)0.0002 (7)0.0009 (8)0.0010 (7)
N30.0185 (9)0.0171 (9)0.0175 (10)0.0008 (7)0.0015 (7)0.0035 (7)
N40.0129 (9)0.0131 (8)0.0167 (9)0.0003 (7)0.0003 (7)0.0014 (7)
N50.0134 (9)0.0136 (8)0.0195 (10)0.0017 (7)0.0019 (7)0.0015 (7)
C10.0158 (10)0.0138 (9)0.0224 (11)0.0024 (8)0.0009 (9)0.0014 (9)
C20.0168 (11)0.0181 (10)0.0295 (13)0.0004 (9)0.0018 (10)0.0066 (9)
C30.0231 (12)0.0158 (10)0.0223 (11)0.0039 (9)0.0017 (10)0.0065 (9)
C40.0201 (11)0.0195 (10)0.0211 (12)0.0042 (8)0.0038 (10)0.0012 (9)
C50.0139 (11)0.0198 (10)0.0237 (12)0.0009 (8)0.0021 (9)0.0014 (9)
C60.0173 (11)0.0118 (8)0.0157 (10)0.0011 (8)0.0013 (8)0.0008 (8)
C70.0137 (9)0.0105 (9)0.0175 (11)0.0002 (8)0.0008 (8)0.0011 (8)
C80.0127 (10)0.0138 (9)0.0183 (11)0.0017 (8)0.0010 (8)0.0012 (8)
C90.0176 (10)0.0121 (9)0.0161 (10)0.0003 (8)0.0001 (8)0.0004 (7)
C100.0139 (9)0.0134 (9)0.0252 (11)0.0001 (8)0.0016 (9)0.0024 (9)
C110.0145 (10)0.0122 (9)0.0161 (10)0.0022 (8)0.0012 (8)0.0024 (8)
C120.0143 (10)0.0093 (8)0.0184 (10)0.0001 (7)0.0001 (8)0.0015 (8)
C130.0199 (11)0.0124 (9)0.0191 (11)0.0002 (8)0.0015 (9)0.0005 (8)
C140.0218 (11)0.0159 (9)0.0161 (11)0.0000 (8)0.0033 (9)0.0007 (9)
C150.0160 (10)0.0180 (10)0.0219 (11)0.0031 (9)0.0039 (9)0.0027 (9)
C160.0161 (10)0.0169 (9)0.0221 (12)0.0003 (8)0.0015 (9)0.0010 (8)
C170.0175 (11)0.0123 (9)0.0177 (11)0.0013 (8)0.0017 (9)0.0002 (8)
Geometric parameters (Å, º) top
S1—C11.734 (2)C4—H40.9500
S1—C71.758 (2)C5—C61.395 (3)
S2—C91.728 (2)C5—H50.9500
S2—C101.813 (2)C7—C81.464 (3)
N1—C71.298 (3)C10—C111.507 (3)
N1—C61.393 (3)C10—H10A0.9900
N2—C81.314 (3)C10—H10B0.9900
N2—N31.394 (3)C11—C121.476 (3)
N3—C91.319 (3)C12—C131.402 (3)
N4—C91.366 (3)C12—C171.401 (3)
N4—C81.379 (3)C13—C141.383 (3)
N4—N51.391 (2)C13—H130.9500
N5—C111.288 (3)C14—C151.387 (3)
C1—C21.396 (3)C14—H140.9500
C1—C61.404 (3)C15—C161.391 (3)
C2—C31.376 (3)C15—H150.9500
C2—H20.9500C16—C171.390 (3)
C3—C41.394 (3)C16—H160.9500
C3—H30.9500C17—H170.9500
C4—C51.377 (3)
C1—S1—C788.40 (10)N4—C8—C7124.43 (19)
C9—S2—C1094.47 (10)N3—C9—N4110.04 (19)
C7—N1—C6110.09 (18)N3—C9—S2129.60 (17)
C8—N2—N3107.21 (18)N4—C9—S2120.26 (17)
C9—N3—N2107.51 (17)C11—C10—S2112.86 (14)
C9—N4—C8105.17 (18)C11—C10—H10A109.0
C9—N4—N5129.18 (19)S2—C10—H10A109.0
C8—N4—N5125.17 (17)C11—C10—H10B109.0
C11—N5—N4115.69 (17)S2—C10—H10B109.0
C2—C1—C6121.1 (2)H10A—C10—H10B107.8
C2—C1—S1128.93 (17)N5—C11—C12116.37 (18)
C6—C1—S1109.87 (16)N5—C11—C10124.40 (19)
C3—C2—C1117.7 (2)C12—C11—C10119.17 (18)
C3—C2—H2121.1C13—C12—C17119.1 (2)
C1—C2—H2121.1C13—C12—C11120.2 (2)
C2—C3—C4121.6 (2)C17—C12—C11120.7 (2)
C2—C3—H3119.2C14—C13—C12120.3 (2)
C4—C3—H3119.2C14—C13—H13119.8
C5—C4—C3120.9 (2)C12—C13—H13119.8
C5—C4—H4119.6C13—C14—C15120.1 (2)
C3—C4—H4119.6C13—C14—H14120.0
C4—C5—C6118.7 (2)C15—C14—H14120.0
C4—C5—H5120.7C14—C15—C16120.5 (2)
C6—C5—H5120.7C14—C15—H15119.8
C5—C6—N1124.9 (2)C16—C15—H15119.8
C5—C6—C1119.93 (19)C17—C16—C15119.7 (2)
N1—C6—C1115.08 (19)C17—C16—H16120.2
N1—C7—C8121.47 (19)C15—C16—H16120.2
N1—C7—S1116.54 (16)C16—C17—C12120.3 (2)
C8—C7—S1121.97 (16)C16—C17—H17119.8
N2—C8—N4110.06 (18)C12—C17—H17119.8
N2—C8—C7125.50 (19)
C8—N2—N3—C90.5 (2)S1—C7—C8—N2166.92 (17)
C9—N4—N5—C1125.6 (3)N1—C7—C8—N4167.6 (2)
C8—N4—N5—C11163.6 (2)S1—C7—C8—N413.8 (3)
C7—S1—C1—C2177.9 (2)N2—N3—C9—N40.0 (2)
C7—S1—C1—C60.48 (16)N2—N3—C9—S2176.46 (16)
C6—C1—C2—C32.0 (3)C8—N4—C9—N30.5 (2)
S1—C1—C2—C3175.07 (18)N5—N4—C9—N3172.72 (19)
C1—C2—C3—C41.2 (4)C8—N4—C9—S2176.35 (15)
C2—C3—C4—C50.4 (4)N5—N4—C9—S24.1 (3)
C3—C4—C5—C61.2 (3)C10—S2—C9—N3153.5 (2)
C4—C5—C6—N1176.8 (2)C10—S2—C9—N430.35 (18)
C4—C5—C6—C10.3 (3)C9—S2—C10—C1148.76 (17)
C7—N1—C6—C5176.0 (2)N4—N5—C11—C12178.39 (18)
C7—N1—C6—C11.3 (3)N4—N5—C11—C101.0 (3)
C2—C1—C6—C51.3 (3)S2—C10—C11—N541.2 (3)
S1—C1—C6—C5176.30 (16)S2—C10—C11—C12141.45 (17)
C2—C1—C6—N1178.7 (2)N5—C11—C12—C1330.4 (3)
S1—C1—C6—N11.1 (2)C10—C11—C12—C13147.11 (19)
C6—N1—C7—C8179.56 (17)N5—C11—C12—C17148.6 (2)
C6—N1—C7—S10.9 (2)C10—C11—C12—C1733.9 (3)
C1—S1—C7—N10.26 (18)C17—C12—C13—C141.5 (3)
C1—S1—C7—C8178.90 (18)C11—C12—C13—C14177.53 (19)
N3—N2—C8—N40.9 (2)C12—C13—C14—C150.5 (3)
N3—N2—C8—C7179.81 (18)C13—C14—C15—C160.6 (3)
C9—N4—C8—N20.8 (2)C14—C15—C16—C170.5 (3)
N5—N4—C8—N2173.48 (19)C15—C16—C17—C120.5 (3)
C9—N4—C8—C7179.81 (18)C13—C12—C17—C161.5 (3)
N5—N4—C8—C77.2 (3)C11—C12—C17—C16177.49 (19)
N1—C7—C8—N211.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10a···N3i0.992.453.333 (3)148
C3—H3···Cg1ii0.952.653.377 (2)134
Symmetry codes: (i) x+1/2, y+1/2, z+3; (ii) x+1, y+1, z1.

Experimental details

Crystal data
Chemical formulaC17H11N5S2
Mr349.43
Crystal system, space groupOrthorhombic, P21212
Temperature (K)100
a, b, c (Å)12.1437 (3), 21.2950 (5), 5.7946 (1)
V3)1498.48 (6)
Z4
Radiation typeCu Kα
µ (mm1)3.29
Crystal size (mm)0.25 × 0.25 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.715, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5754, 2902, 2751
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.06
No. of reflections2902
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.30
Absolute structureFlack (1983), 1150 Friedel pairs
Absolute structure parameter0.006 (16)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10a···N3i0.992.453.333 (3)148
C3—H3···Cg1ii0.952.653.377 (2)134
Symmetry codes: (i) x+1/2, y+1/2, z+3; (ii) x+1, y+1, z1.
 

Footnotes

Additional correspondence author: hatem_741@yahoo.com.

Acknowledgements

The authors thank King Saud University and the University of Malaya for supporting this study.

References

First citationAbdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159.  Google Scholar
First citationAbdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573–1582.  CAS Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem, 16, 621–627.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds