organic compounds
[(2R,3S,6S)-3-Acetyloxy-6-(1-phenyl-1H-1,2,3-triazol-4-yl)-3,6-dihydro-2H-pyran-2-yl]methyl acetate
aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: julio@power.ufscar.br
In the title compound, C18H19N3O5, the 3,6-dihydro-2H-pyran ring adopts a half-chair, distorted towards a half-boat, conformation with QT = 0.5276(14) Å. The benzene ring is twisted out of the place of the triazole ring [dihedral angle = 23.54 (8)°]. In the crystal, supramolecular layers in the ac plane are formed through C—H⋯O and C—H⋯π(triazole) interactions. These stack along the b axis being connected by C—H⋯N contacts.
Related literature
For background to the chemical attributes of C-glycosides, see: Ritchie et al. (2002); Hanessian & Lou (2000); Hultin (2005); Zou (2005). For chiral properties of C-glycosides, see: Nakata (2005); Nicolaou et al. (2008); Somsak (2001). For additional conformation analysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536811037305/hg5093sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811037305/hg5093Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811037305/hg5093Isup3.cml
The reaction was carried out in a two neck 25 ml flask under a nitrogen atmosphere. To copper iodide (96 mg, 0.5 mmol) was added a solution of ((2R,3S,6S)-3-acetoxy-6-((trimethylsilyl)ethynyl)- 3,6-dihydro-2H-pyran-2-yl)methyl acetate (155 mg, 0.5 mmol) in 2 ml of THF, a solution of phenyl azide (71.4 mg, 0.6 mmol) in 3.5 ml of THF, and finally, drop wise, tetra-n-butyl ammonium fluoride (TBAF) (0.6 ml, 0.6 mmol) was added. The mixture was sonicated in an ultrasound bath for 90 minutes. The reaction mixture was then quenched with 20 ml of ammonium chloride and extracted with 3 x 15 ml of ethyl acetate. The organic phase was washed with 3 x 15 ml of water, dried with MgSO4 and then the solvent evaporated in a rota-vapor. The product was purified through a chromatographic column using ethyl acetate/hexane (1:3) as the δ 7.99 (s, 1H); 7.74 (d, 2H, J = 7.8 Hz); 7.51 (m, 3H), 6.29 (m, 1H); 6.01 (d, 1H, J = 10.3 Hz); 5.61 (s, 1H); 5.35 (dd, 1H, J = 2.0 Hz, J = 7.8 Hz); 4.26 (d, 1H, J = 5.6 Hz); d, 1H, J = 2.9 Hz); 4.00 (ddd, 1H, J = 3.0 Hz, J = 5.6 Hz, J = 8.3 Hz); 2.08 (s, 6H); 13C (CDCl3, 75 MHz) δ (p.p.m.) 170.81; 170.38; 146.97; 137.05; 129.88; 129,58; 129,01; 125,96; 120,66; 120,39; 69,78; 67.67; 65.02; 63.08; 21.08; 20.87. HRMS calcd for C18H19N3O5 357.1325. Found: 357.1328.
Crystals were grown by slow evaporation from a solution of 15% of acetyl acetate in hexane at 293 K; M.pt: 379–382 K. 1H-NMR (CDCl3, p.p.m., 300 MHz):The H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl-C).
The chemistry and biological activity of C-glycosides has experienced increased attention due to their structural similarity to
but also due to their resistance to metabolic processes. Such attributes may lead to improved biological profiles as compared to their O-analogues (Ritchie et al. 2002; Hanessian & Lou, 2000; Hultin, 2005; Zou, 2005). In addition, C-glycosides have also been found embedded in the structure of several bioactive natural products (Nakata, 2005; Nicolaou et al. 2008), and served as chiral building blocks for the of optically active compounds (Somsak, 2001).The title compound, (I), Fig. 1, was prepared in connection with on-going research into the synthesis of C-glycosides. The φ2 = 321.1 (2) ° (Cremer & Pople, 1975).
was confirmed experimentally and shows the at the C9, C12 and C13 atoms to be S, S, and R, respectively. The dihedral angle between the phenyl and the triazole ring is 23.54 (8) °. The 3,6-dihydro-2H-pyran ring has a distorted half-chair conformation with the O1 atom lying 0.6127 (16) Å above the plane defined by the C9–C13 atoms (r.m.s. deviation = 0.1231 Å). The ring puckering parameters are: q2 = 0.4198 (15) Å, q3 = 0.3195 (15) Å, QT = 0.5276 (14) Å andIn the crystal packing, the molecules are linked through C–H···O, C–H···N and C–H···π interactions, Table 1. The short C—H···O contact, involving the trizaole-C—H and the carbonyl-O4 atoms, leads to chains along the b axis. These are linked along the a direction into a 2-D array via C—H···π interactions that occur between the methine-C—H and the ring centroid of the trizole ring. Fig. 2. The zigzag layers are stabilized by a number of weaker C–H···O interactions (Table 1) and stack along the b axis with the most significant interaction between them being of the type C—H···N, Fig. 3.
For background to the chemical attributes of C-glycosides, see: Ritchie et al. (2002); Hanessian & Lou (2000); Hultin (2005); Zou (2005). For chiral properties of C-glycosides, see: Nakata (2005); Nicolaou et al. (2008); Somsak (2001). For additional conformation analysis, see: Cremer & Pople (1975).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of compound (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms). | |
Fig. 2. A view in projection down the c axis showing the supramolecular array sustained by relatviely strong C—H···O contacts (orange dashed lines) formed along the b direction and C—H···π contacts (purple dashed lines) formed along the a direction. | |
Fig. 3. A view in projection down the a axis highlighting the stacking of zigzag layers along the b direction. The C—H···O, C—H···π and C—H···N interactions are shown as orange, purple and blue dashed lines, respectively. |
C18H19N3O5 | F(000) = 376 |
Mr = 357.36 | Dx = 1.384 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2yb | Cell parameters from 4088 reflections |
a = 4.79932 (7) Å | θ = 2.7–74.0° |
b = 16.6308 (2) Å | µ = 0.86 mm−1 |
c = 10.76331 (14) Å | T = 100 K |
β = 93.225 (1)° | Prism, colourless |
V = 857.73 (2) Å3 | 0.20 × 0.10 × 0.05 mm |
Z = 2 |
Agilent SuperNova Dual Cu at zero diffractometer with an Atlas detector | 3369 independent reflections |
Radiation source: fine-focus sealed tube | 3304 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 74.2°, θmin = 4.1° |
ω scans | h = −5→5 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −20→20 |
Tmin = 0.848, Tmax = 0.959 | l = −13→8 |
5784 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1259P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3369 reflections | Δρmax = 0.14 e Å−3 |
237 parameters | Δρmin = −0.19 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1591 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.09 (15) |
C18H19N3O5 | V = 857.73 (2) Å3 |
Mr = 357.36 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 4.79932 (7) Å | µ = 0.86 mm−1 |
b = 16.6308 (2) Å | T = 100 K |
c = 10.76331 (14) Å | 0.20 × 0.10 × 0.05 mm |
β = 93.225 (1)° |
Agilent SuperNova Dual Cu at zero diffractometer with an Atlas detector | 3369 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 3304 reflections with I > 2σ(I) |
Tmin = 0.848, Tmax = 0.959 | Rint = 0.019 |
5784 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.084 | Δρmax = 0.14 e Å−3 |
S = 1.04 | Δρmin = −0.19 e Å−3 |
3369 reflections | Absolute structure: Flack (1983), 1591 Friedel pairs |
237 parameters | Absolute structure parameter: −0.09 (15) |
1 restraint |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.1199 (2) | 0.49978 (6) | 0.39298 (9) | 0.0183 (2) | |
O2 | 0.1131 (3) | 0.41952 (8) | 0.69075 (13) | 0.0374 (3) | |
O3 | 0.0424 (2) | 0.54932 (7) | 0.63709 (10) | 0.0230 (2) | |
O4 | 0.0156 (3) | 0.75452 (8) | 0.58495 (11) | 0.0298 (3) | |
O5 | 0.1489 (2) | 0.70479 (7) | 0.40355 (11) | 0.0226 (2) | |
N1 | 0.2553 (3) | 0.37406 (8) | 0.10112 (11) | 0.0163 (2) | |
N2 | 0.2724 (3) | 0.44506 (8) | 0.03950 (12) | 0.0205 (3) | |
N3 | 0.1016 (3) | 0.49499 (8) | 0.09098 (12) | 0.0202 (3) | |
C1 | 0.4329 (3) | 0.30870 (9) | 0.07023 (15) | 0.0174 (3) | |
C2 | 0.5395 (4) | 0.30667 (10) | −0.04686 (15) | 0.0231 (3) | |
H2 | 0.4855 | 0.3461 | −0.1074 | 0.028* | |
C3 | 0.7260 (4) | 0.24640 (11) | −0.07433 (16) | 0.0274 (3) | |
H3 | 0.8035 | 0.2451 | −0.1536 | 0.033* | |
C4 | 0.7999 (4) | 0.18788 (10) | 0.01356 (17) | 0.0265 (3) | |
H4 | 0.9275 | 0.1466 | −0.0056 | 0.032* | |
C5 | 0.6871 (4) | 0.18983 (10) | 0.12911 (17) | 0.0278 (4) | |
H5 | 0.7362 | 0.1494 | 0.1888 | 0.033* | |
C6 | 0.5023 (3) | 0.25052 (10) | 0.15854 (15) | 0.0232 (3) | |
H6 | 0.4251 | 0.2520 | 0.2379 | 0.028* | |
C7 | 0.0740 (3) | 0.37932 (9) | 0.19199 (13) | 0.0177 (3) | |
H7 | 0.0251 | 0.3385 | 0.2485 | 0.021* | |
C8 | −0.0244 (3) | 0.45681 (9) | 0.18467 (13) | 0.0160 (3) | |
C9 | −0.2265 (3) | 0.49831 (9) | 0.26498 (13) | 0.0176 (3) | |
H9 | −0.4020 | 0.4658 | 0.2614 | 0.021* | |
C10 | −0.3016 (3) | 0.58149 (9) | 0.21885 (15) | 0.0192 (3) | |
H10 | −0.4012 | 0.5874 | 0.1406 | 0.023* | |
C11 | −0.2323 (3) | 0.64660 (9) | 0.28465 (14) | 0.0200 (3) | |
H11 | −0.2926 | 0.6977 | 0.2543 | 0.024* | |
C12 | −0.0613 (3) | 0.64194 (9) | 0.40561 (14) | 0.0193 (3) | |
H12 | −0.1821 | 0.6498 | 0.4774 | 0.023* | |
C13 | 0.0863 (3) | 0.56087 (9) | 0.41504 (14) | 0.0181 (3) | |
H13 | 0.2238 | 0.5577 | 0.3488 | 0.022* | |
C14 | 0.2357 (3) | 0.54349 (10) | 0.53946 (14) | 0.0225 (3) | |
H14A | 0.3170 | 0.4888 | 0.5388 | 0.027* | |
H14B | 0.3896 | 0.5825 | 0.5550 | 0.027* | |
C15 | −0.0055 (3) | 0.48239 (10) | 0.70412 (15) | 0.0247 (3) | |
C16 | −0.2217 (4) | 0.49774 (14) | 0.79520 (16) | 0.0342 (4) | |
H16A | −0.1650 | 0.4725 | 0.8749 | 0.051* | |
H16B | −0.4003 | 0.4750 | 0.7636 | 0.051* | |
H16C | −0.2422 | 0.5558 | 0.8070 | 0.051* | |
C17 | 0.1610 (3) | 0.75859 (9) | 0.49755 (14) | 0.0201 (3) | |
C18 | 0.3763 (4) | 0.82174 (10) | 0.47939 (18) | 0.0270 (4) | |
H18A | 0.3102 | 0.8734 | 0.5100 | 0.041* | |
H18B | 0.4096 | 0.8263 | 0.3907 | 0.041* | |
H18C | 0.5505 | 0.8069 | 0.5256 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0217 (5) | 0.0174 (5) | 0.0160 (5) | −0.0037 (4) | 0.0037 (4) | −0.0012 (4) |
O2 | 0.0421 (8) | 0.0277 (7) | 0.0423 (8) | −0.0015 (6) | 0.0020 (6) | 0.0073 (6) |
O3 | 0.0284 (6) | 0.0250 (6) | 0.0162 (5) | −0.0015 (5) | 0.0055 (4) | −0.0001 (4) |
O4 | 0.0357 (7) | 0.0314 (7) | 0.0232 (6) | −0.0047 (5) | 0.0090 (5) | −0.0096 (5) |
O5 | 0.0253 (6) | 0.0199 (5) | 0.0236 (6) | −0.0061 (4) | 0.0104 (5) | −0.0069 (4) |
N1 | 0.0186 (6) | 0.0138 (6) | 0.0165 (6) | −0.0001 (5) | 0.0014 (5) | 0.0012 (5) |
N2 | 0.0269 (7) | 0.0157 (6) | 0.0193 (6) | 0.0015 (5) | 0.0053 (5) | 0.0025 (5) |
N3 | 0.0234 (6) | 0.0184 (6) | 0.0194 (6) | 0.0005 (5) | 0.0055 (5) | 0.0002 (5) |
C1 | 0.0170 (7) | 0.0150 (6) | 0.0203 (7) | −0.0005 (6) | 0.0013 (5) | −0.0042 (6) |
C2 | 0.0259 (8) | 0.0236 (7) | 0.0201 (8) | 0.0013 (6) | 0.0037 (6) | −0.0024 (6) |
C3 | 0.0283 (8) | 0.0291 (9) | 0.0253 (8) | 0.0004 (7) | 0.0064 (6) | −0.0080 (7) |
C4 | 0.0239 (8) | 0.0201 (8) | 0.0355 (9) | 0.0033 (6) | 0.0016 (7) | −0.0088 (7) |
C5 | 0.0312 (9) | 0.0201 (8) | 0.0319 (9) | 0.0042 (7) | −0.0014 (7) | 0.0011 (7) |
C6 | 0.0266 (8) | 0.0203 (7) | 0.0228 (7) | 0.0027 (7) | 0.0027 (6) | 0.0007 (6) |
C7 | 0.0182 (7) | 0.0176 (7) | 0.0174 (7) | −0.0019 (6) | 0.0029 (5) | 0.0005 (6) |
C8 | 0.0162 (7) | 0.0162 (7) | 0.0156 (7) | −0.0027 (5) | 0.0010 (5) | −0.0019 (5) |
C9 | 0.0172 (7) | 0.0180 (7) | 0.0177 (7) | −0.0022 (6) | 0.0025 (5) | −0.0017 (6) |
C10 | 0.0161 (7) | 0.0209 (8) | 0.0210 (7) | 0.0008 (5) | 0.0033 (5) | 0.0009 (6) |
C11 | 0.0189 (7) | 0.0186 (7) | 0.0233 (8) | 0.0015 (6) | 0.0074 (6) | 0.0012 (6) |
C12 | 0.0195 (7) | 0.0173 (7) | 0.0219 (8) | −0.0037 (6) | 0.0078 (6) | −0.0030 (6) |
C13 | 0.0180 (7) | 0.0190 (7) | 0.0178 (7) | −0.0037 (6) | 0.0057 (5) | −0.0021 (5) |
C14 | 0.0210 (7) | 0.0280 (8) | 0.0188 (7) | −0.0011 (6) | 0.0045 (6) | −0.0012 (6) |
C15 | 0.0238 (8) | 0.0304 (9) | 0.0195 (7) | −0.0080 (7) | −0.0032 (6) | 0.0028 (6) |
C16 | 0.0289 (9) | 0.0513 (12) | 0.0226 (8) | −0.0084 (9) | 0.0036 (7) | 0.0073 (8) |
C17 | 0.0205 (7) | 0.0174 (7) | 0.0221 (7) | 0.0028 (6) | −0.0005 (6) | −0.0031 (6) |
C18 | 0.0266 (8) | 0.0196 (8) | 0.0349 (9) | −0.0029 (6) | 0.0016 (7) | −0.0030 (6) |
O1—C13 | 1.4289 (17) | C7—C8 | 1.373 (2) |
O1—C9 | 1.4425 (17) | C7—H7 | 0.9500 |
O2—C15 | 1.203 (2) | C8—C9 | 1.503 (2) |
O3—C15 | 1.353 (2) | C9—C10 | 1.507 (2) |
O3—C14 | 1.4435 (18) | C9—H9 | 1.0000 |
O4—C17 | 1.204 (2) | C10—C11 | 1.326 (2) |
O5—C17 | 1.3494 (19) | C10—H10 | 0.9500 |
O5—C12 | 1.4537 (18) | C11—C12 | 1.501 (2) |
N1—C7 | 1.3482 (19) | C11—H11 | 0.9500 |
N1—N2 | 1.3591 (18) | C12—C13 | 1.524 (2) |
N1—C1 | 1.4320 (19) | C12—H12 | 1.0000 |
N2—N3 | 1.3113 (19) | C13—C14 | 1.511 (2) |
N3—C8 | 1.3617 (19) | C13—H13 | 1.0000 |
C1—C6 | 1.384 (2) | C14—H14A | 0.9900 |
C1—C2 | 1.387 (2) | C14—H14B | 0.9900 |
C2—C3 | 1.387 (2) | C15—C16 | 1.489 (2) |
C2—H2 | 0.9500 | C16—H16A | 0.9800 |
C3—C4 | 1.389 (3) | C16—H16B | 0.9800 |
C3—H3 | 0.9500 | C16—H16C | 0.9800 |
C4—C5 | 1.384 (3) | C17—C18 | 1.494 (2) |
C4—H4 | 0.9500 | C18—H18A | 0.9800 |
C5—C6 | 1.392 (2) | C18—H18B | 0.9800 |
C5—H5 | 0.9500 | C18—H18C | 0.9800 |
C6—H6 | 0.9500 | ||
C13—O1—C9 | 112.08 (11) | C9—C10—H10 | 119.1 |
C15—O3—C14 | 117.93 (13) | C10—C11—C12 | 121.97 (14) |
C17—O5—C12 | 117.77 (12) | C10—C11—H11 | 119.0 |
C7—N1—N2 | 110.90 (12) | C12—C11—H11 | 119.0 |
C7—N1—C1 | 129.40 (13) | O5—C12—C11 | 107.19 (12) |
N2—N1—C1 | 119.55 (12) | O5—C12—C13 | 108.46 (12) |
N3—N2—N1 | 106.72 (12) | C11—C12—C13 | 109.44 (12) |
N2—N3—C8 | 109.38 (13) | O5—C12—H12 | 110.6 |
C6—C1—C2 | 121.36 (14) | C11—C12—H12 | 110.6 |
C6—C1—N1 | 119.64 (14) | C13—C12—H12 | 110.6 |
C2—C1—N1 | 118.96 (14) | O1—C13—C14 | 107.51 (12) |
C3—C2—C1 | 119.13 (15) | O1—C13—C12 | 107.63 (12) |
C3—C2—H2 | 120.4 | C14—C13—C12 | 115.09 (13) |
C1—C2—H2 | 120.4 | O1—C13—H13 | 108.8 |
C2—C3—C4 | 120.28 (15) | C14—C13—H13 | 108.8 |
C2—C3—H3 | 119.9 | C12—C13—H13 | 108.8 |
C4—C3—H3 | 119.9 | O3—C14—C13 | 109.89 (12) |
C5—C4—C3 | 119.84 (15) | O3—C14—H14A | 109.7 |
C5—C4—H4 | 120.1 | C13—C14—H14A | 109.7 |
C3—C4—H4 | 120.1 | O3—C14—H14B | 109.7 |
C4—C5—C6 | 120.51 (16) | C13—C14—H14B | 109.7 |
C4—C5—H5 | 119.7 | H14A—C14—H14B | 108.2 |
C6—C5—H5 | 119.7 | O2—C15—O3 | 123.73 (16) |
C1—C6—C5 | 118.85 (15) | O2—C15—C16 | 125.44 (17) |
C1—C6—H6 | 120.6 | O3—C15—C16 | 110.83 (16) |
C5—C6—H6 | 120.6 | C15—C16—H16A | 109.5 |
N1—C7—C8 | 104.66 (13) | C15—C16—H16B | 109.5 |
N1—C7—H7 | 127.7 | H16A—C16—H16B | 109.5 |
C8—C7—H7 | 127.7 | C15—C16—H16C | 109.5 |
N3—C8—C7 | 108.34 (13) | H16A—C16—H16C | 109.5 |
N3—C8—C9 | 122.66 (13) | H16B—C16—H16C | 109.5 |
C7—C8—C9 | 128.96 (14) | O4—C17—O5 | 123.09 (14) |
O1—C9—C8 | 110.58 (12) | O4—C17—C18 | 125.26 (14) |
O1—C9—C10 | 111.38 (12) | O5—C17—C18 | 111.64 (14) |
C8—C9—C10 | 112.47 (12) | C17—C18—H18A | 109.5 |
O1—C9—H9 | 107.4 | C17—C18—H18B | 109.5 |
C8—C9—H9 | 107.4 | H18A—C18—H18B | 109.5 |
C10—C9—H9 | 107.4 | C17—C18—H18C | 109.5 |
C11—C10—C9 | 121.71 (14) | H18A—C18—H18C | 109.5 |
C11—C10—H10 | 119.1 | H18B—C18—H18C | 109.5 |
C7—N1—N2—N3 | −0.21 (17) | C7—C8—C9—O1 | 60.2 (2) |
C1—N1—N2—N3 | −176.19 (13) | N3—C8—C9—C10 | 7.9 (2) |
N1—N2—N3—C8 | −0.02 (16) | C7—C8—C9—C10 | −174.61 (14) |
C7—N1—C1—C6 | −21.1 (2) | O1—C9—C10—C11 | 9.9 (2) |
N2—N1—C1—C6 | 154.08 (15) | C8—C9—C10—C11 | −114.87 (16) |
C7—N1—C1—C2 | 161.09 (15) | C9—C10—C11—C12 | 3.5 (2) |
N2—N1—C1—C2 | −23.8 (2) | C17—O5—C12—C11 | 124.32 (14) |
C6—C1—C2—C3 | −2.0 (2) | C17—O5—C12—C13 | −117.60 (14) |
N1—C1—C2—C3 | 175.82 (14) | C10—C11—C12—O5 | 135.30 (15) |
C1—C2—C3—C4 | 1.4 (2) | C10—C11—C12—C13 | 17.9 (2) |
C2—C3—C4—C5 | −0.1 (3) | C9—O1—C13—C14 | −165.40 (12) |
C3—C4—C5—C6 | −0.7 (3) | C9—O1—C13—C12 | 70.07 (14) |
C2—C1—C6—C5 | 1.2 (2) | O5—C12—C13—O1 | −169.07 (11) |
N1—C1—C6—C5 | −176.58 (15) | C11—C12—C13—O1 | −52.44 (15) |
C4—C5—C6—C1 | 0.2 (3) | O5—C12—C13—C14 | 71.10 (15) |
N2—N1—C7—C8 | 0.34 (16) | C11—C12—C13—C14 | −172.27 (13) |
C1—N1—C7—C8 | 175.81 (14) | C15—O3—C14—C13 | 117.54 (15) |
N2—N3—C8—C7 | 0.23 (17) | O1—C13—C14—O3 | −63.44 (16) |
N2—N3—C8—C9 | 178.14 (13) | C12—C13—C14—O3 | 56.45 (17) |
N1—C7—C8—N3 | −0.34 (16) | C14—O3—C15—O2 | 3.6 (2) |
N1—C7—C8—C9 | −178.08 (14) | C14—O3—C15—C16 | −176.58 (13) |
C13—O1—C9—C8 | 78.46 (14) | C12—O5—C17—O4 | 3.6 (2) |
C13—O1—C9—C10 | −47.37 (15) | C12—O5—C17—C18 | −177.05 (14) |
N3—C8—C9—O1 | −117.28 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O4i | 0.95 | 2.29 | 3.2207 (19) | 167 |
C9—H9···Cg1ii | 1.00 | 2.68 | 3.5362 (16) | 144 |
C16—H16a···N3iii | 0.98 | 2.62 | 3.463 (2) | 145 |
C16—H16b···O2ii | 0.98 | 2.59 | 3.570 (2) | 177 |
C18—H18a···O1iv | 0.98 | 2.54 | 3.516 (2) | 174 |
C18—H18c···O4v | 0.98 | 2.45 | 3.400 (2) | 164 |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x−1, y, z; (iii) x, y, z+1; (iv) −x, y+1/2, −z+1; (v) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C18H19N3O5 |
Mr | 357.36 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 4.79932 (7), 16.6308 (2), 10.76331 (14) |
β (°) | 93.225 (1) |
V (Å3) | 857.73 (2) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.86 |
Crystal size (mm) | 0.20 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Agilent SuperNova Dual Cu at zero diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.848, 0.959 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5784, 3369, 3304 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.084, 1.04 |
No. of reflections | 3369 |
No. of parameters | 237 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.19 |
Absolute structure | Flack (1983), 1591 Friedel pairs |
Absolute structure parameter | −0.09 (15) |
Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O4i | 0.95 | 2.29 | 3.2207 (19) | 167 |
C9—H9···Cg1ii | 1.00 | 2.68 | 3.5362 (16) | 144 |
C16—H16a···N3iii | 0.98 | 2.62 | 3.463 (2) | 145 |
C16—H16b···O2ii | 0.98 | 2.59 | 3.570 (2) | 177 |
C18—H18a···O1iv | 0.98 | 2.54 | 3.516 (2) | 174 |
C18—H18c···O4v | 0.98 | 2.45 | 3.400 (2) | 164 |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x−1, y, z; (iii) x, y, z+1; (iv) −x, y+1/2, −z+1; (v) x+1, y, z. |
Acknowledgements
We thank FAPESP (07/59404-2 to HAS), CNPq (300613/2007 to HAS, and 306532/2009-3 to JZ-S) and CAPES (808/2009 to JZ-S) for financial support. We also thank the University of Malaya for support of the crystallographic facility.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
ChemAxon (2009). MarvinSketch. URL: www.chemaxon.com. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hanessian, S. & Lou, B. (2000). Chem. Rev. 100, 4443–4463. Web of Science CrossRef PubMed CAS Google Scholar
Hultin, P. G. (2005). Curr. Top. Med. Chem. 5, 1299–1331. Web of Science CrossRef PubMed CAS Google Scholar
Nakata, T. (2005). Chem. Rev. 105, 4314–4347. Web of Science CrossRef PubMed CAS Google Scholar
Nicolaou, K. C., Frederick, M. O. & Aversa, R. J. (2008). Angew. Chem. Int. Ed. 47, 7182–7225. Web of Science CrossRef CAS Google Scholar
Ritchie, G. E., Moffatt, B. E., Sim, R. B., Morgan, B. P., Dwek, R. A. & Rudd, P. M. (2002). Chem. Rev. 102, 305–320. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Somsak, L. (2001). Chem. Rev. 101, 81–135. PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zou, W. (2005). Curr. Top. Med. Chem. 5, 1363–1391. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry and biological activity of C-glycosides has experienced increased attention due to their structural similarity to carbohydrates but also due to their resistance to metabolic processes. Such attributes may lead to improved biological profiles as compared to their O-analogues (Ritchie et al. 2002; Hanessian & Lou, 2000; Hultin, 2005; Zou, 2005). In addition, C-glycosides have also been found embedded in the structure of several bioactive natural products (Nakata, 2005; Nicolaou et al. 2008), and served as chiral building blocks for the stereoselective synthesis of optically active compounds (Somsak, 2001).
The title compound, (I), Fig. 1, was prepared in connection with on-going research into the synthesis of C-glycosides. The absolute structure was confirmed experimentally and shows the chirality at the C9, C12 and C13 atoms to be S, S, and R, respectively. The dihedral angle between the phenyl and the triazole ring is 23.54 (8) °. The 3,6-dihydro-2H-pyran ring has a distorted half-chair conformation with the O1 atom lying 0.6127 (16) Å above the plane defined by the C9–C13 atoms (r.m.s. deviation = 0.1231 Å). The ring puckering parameters are: q2 = 0.4198 (15) Å, q3 = 0.3195 (15) Å, QT = 0.5276 (14) Å and φ2 = 321.1 (2) ° (Cremer & Pople, 1975).
In the crystal packing, the molecules are linked through C–H···O, C–H···N and C–H···π interactions, Table 1. The short C—H···O contact, involving the trizaole-C—H and the carbonyl-O4 atoms, leads to chains along the b axis. These are linked along the a direction into a 2-D array via C—H···π interactions that occur between the methine-C—H and the ring centroid of the trizole ring. Fig. 2. The zigzag layers are stabilized by a number of weaker C–H···O interactions (Table 1) and stack along the b axis with the most significant interaction between them being of the type C—H···N, Fig. 3.