organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(2R,3S,6S)-3-Acet­yl­oxy-6-(1-phenyl-1H-1,2,3-triazol-4-yl)-3,6-di­hydro-2H-pyran-2-yl]methyl acetate

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: julio@power.ufscar.br

(Received 11 September 2011; accepted 13 September 2011; online 30 September 2011)

In the title compound, C18H19N3O5, the 3,6-dihydro-2H-pyran ring adopts a half-chair, distorted towards a half-boat, conformation with QT = 0.5276(14) Å. The benzene ring is twisted out of the place of the triazole ring [dihedral angle = 23.54 (8)°]. In the crystal, supra­molecular layers in the ac plane are formed through C—H⋯O and C—H⋯π(triazole) inter­actions. These stack along the b axis being connected by C—H⋯N contacts.

Related literature

For background to the chemical attributes of C-glycosides, see: Ritchie et al. (2002[Ritchie, G. E., Moffatt, B. E., Sim, R. B., Morgan, B. P., Dwek, R. A. & Rudd, P. M. (2002). Chem. Rev. 102, 305-320.]); Hanessian & Lou (2000[Hanessian, S. & Lou, B. (2000). Chem. Rev. 100, 4443-4463.]); Hultin (2005[Hultin, P. G. (2005). Curr. Top. Med. Chem. 5, 1299-1331.]); Zou (2005[Zou, W. (2005). Curr. Top. Med. Chem. 5, 1363-1391.]). For chiral properties of C-glycosides, see: Nakata (2005[Nakata, T. (2005). Chem. Rev. 105, 4314-4347.]); Nicolaou et al. (2008[Nicolaou, K. C., Frederick, M. O. & Aversa, R. J. (2008). Angew. Chem. Int. Ed. 47, 7182-7225.]); Somsak (2001[Somsak, L. (2001). Chem. Rev. 101, 81-135.]). For additional conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O5

  • Mr = 357.36

  • Monoclinic, P 21

  • a = 4.79932 (7) Å

  • b = 16.6308 (2) Å

  • c = 10.76331 (14) Å

  • β = 93.225 (1)°

  • V = 857.73 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.86 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual Cu at zero diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.848, Tmax = 0.959

  • 5784 measured reflections

  • 3369 independent reflections

  • 3304 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.04

  • 3369 reflections

  • 237 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1591 Friedel pairs

  • Flack parameter: −0.09 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.95 2.29 3.2207 (19) 167
C9—H9⋯Cg1ii 1.00 2.68 3.5362 (16) 144
C16—H16a⋯N3iii 0.98 2.62 3.463 (2) 145
C16—H16b⋯O2ii 0.98 2.59 3.570 (2) 177
C18—H18a⋯O1iv 0.98 2.54 3.516 (2) 174
C18—H18c⋯O4v 0.98 2.45 3.400 (2) 164
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y, z; (iii) x, y, z+1; (iv) [-x, y+{\script{1\over 2}}, -z+1]; (v) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and MarvinSketch (ChemAxon, 2009[ChemAxon (2009). MarvinSketch. URL: www.chemaxon.com.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chemistry and biological activity of C-glycosides has experienced increased attention due to their structural similarity to carbohydrates but also due to their resistance to metabolic processes. Such attributes may lead to improved biological profiles as compared to their O-analogues (Ritchie et al. 2002; Hanessian & Lou, 2000; Hultin, 2005; Zou, 2005). In addition, C-glycosides have also been found embedded in the structure of several bioactive natural products (Nakata, 2005; Nicolaou et al. 2008), and served as chiral building blocks for the stereoselective synthesis of optically active compounds (Somsak, 2001).

The title compound, (I), Fig. 1, was prepared in connection with on-going research into the synthesis of C-glycosides. The absolute structure was confirmed experimentally and shows the chirality at the C9, C12 and C13 atoms to be S, S, and R, respectively. The dihedral angle between the phenyl and the triazole ring is 23.54 (8) °. The 3,6-dihydro-2H-pyran ring has a distorted half-chair conformation with the O1 atom lying 0.6127 (16) Å above the plane defined by the C9–C13 atoms (r.m.s. deviation = 0.1231 Å). The ring puckering parameters are: q2 = 0.4198 (15) Å, q3 = 0.3195 (15) Å, QT = 0.5276 (14) Å and φ2 = 321.1 (2) ° (Cremer & Pople, 1975).

In the crystal packing, the molecules are linked through C–H···O, C–H···N and C–H···π interactions, Table 1. The short C—H···O contact, involving the trizaole-C—H and the carbonyl-O4 atoms, leads to chains along the b axis. These are linked along the a direction into a 2-D array via C—H···π interactions that occur between the methine-C—H and the ring centroid of the trizole ring. Fig. 2. The zigzag layers are stabilized by a number of weaker C–H···O interactions (Table 1) and stack along the b axis with the most significant interaction between them being of the type C—H···N, Fig. 3.

Related literature top

For background to the chemical attributes of C-glycosides, see: Ritchie et al. (2002); Hanessian & Lou (2000); Hultin (2005); Zou (2005). For chiral properties of C-glycosides, see: Nakata (2005); Nicolaou et al. (2008); Somsak (2001). For additional conformation analysis, see: Cremer & Pople (1975).

Experimental top

The reaction was carried out in a two neck 25 ml flask under a nitrogen atmosphere. To copper iodide (96 mg, 0.5 mmol) was added a solution of ((2R,3S,6S)-3-acetoxy-6-((trimethylsilyl)ethynyl)- 3,6-dihydro-2H-pyran-2-yl)methyl acetate (155 mg, 0.5 mmol) in 2 ml of THF, a solution of phenyl azide (71.4 mg, 0.6 mmol) in 3.5 ml of THF, and finally, drop wise, tetra-n-butyl ammonium fluoride (TBAF) (0.6 ml, 0.6 mmol) was added. The mixture was sonicated in an ultrasound bath for 90 minutes. The reaction mixture was then quenched with 20 ml of ammonium chloride and extracted with 3 x 15 ml of ethyl acetate. The organic phase was washed with 3 x 15 ml of water, dried with MgSO4 and then the solvent evaporated in a rota-vapor. The product was purified through a chromatographic column using ethyl acetate/hexane (1:3) as the eluent. Crystals were grown by slow evaporation from a solution of 15% of acetyl acetate in hexane at 293 K; M.pt: 379–382 K. 1H-NMR (CDCl3, p.p.m., 300 MHz): δ 7.99 (s, 1H); 7.74 (d, 2H, J = 7.8 Hz); 7.51 (m, 3H), 6.29 (m, 1H); 6.01 (d, 1H, J = 10.3 Hz); 5.61 (s, 1H); 5.35 (dd, 1H, J = 2.0 Hz, J = 7.8 Hz); 4.26 (d, 1H, J = 5.6 Hz); d, 1H, J = 2.9 Hz); 4.00 (ddd, 1H, J = 3.0 Hz, J = 5.6 Hz, J = 8.3 Hz); 2.08 (s, 6H); 13C (CDCl3, 75 MHz) δ (p.p.m.) 170.81; 170.38; 146.97; 137.05; 129.88; 129,58; 129,01; 125,96; 120,66; 120,39; 69,78; 67.67; 65.02; 63.08; 21.08; 20.87. HRMS calcd for C18H19N3O5 357.1325. Found: 357.1328.

Refinement top

The H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl-C).

Structure description top

The chemistry and biological activity of C-glycosides has experienced increased attention due to their structural similarity to carbohydrates but also due to their resistance to metabolic processes. Such attributes may lead to improved biological profiles as compared to their O-analogues (Ritchie et al. 2002; Hanessian & Lou, 2000; Hultin, 2005; Zou, 2005). In addition, C-glycosides have also been found embedded in the structure of several bioactive natural products (Nakata, 2005; Nicolaou et al. 2008), and served as chiral building blocks for the stereoselective synthesis of optically active compounds (Somsak, 2001).

The title compound, (I), Fig. 1, was prepared in connection with on-going research into the synthesis of C-glycosides. The absolute structure was confirmed experimentally and shows the chirality at the C9, C12 and C13 atoms to be S, S, and R, respectively. The dihedral angle between the phenyl and the triazole ring is 23.54 (8) °. The 3,6-dihydro-2H-pyran ring has a distorted half-chair conformation with the O1 atom lying 0.6127 (16) Å above the plane defined by the C9–C13 atoms (r.m.s. deviation = 0.1231 Å). The ring puckering parameters are: q2 = 0.4198 (15) Å, q3 = 0.3195 (15) Å, QT = 0.5276 (14) Å and φ2 = 321.1 (2) ° (Cremer & Pople, 1975).

In the crystal packing, the molecules are linked through C–H···O, C–H···N and C–H···π interactions, Table 1. The short C—H···O contact, involving the trizaole-C—H and the carbonyl-O4 atoms, leads to chains along the b axis. These are linked along the a direction into a 2-D array via C—H···π interactions that occur between the methine-C—H and the ring centroid of the trizole ring. Fig. 2. The zigzag layers are stabilized by a number of weaker C–H···O interactions (Table 1) and stack along the b axis with the most significant interaction between them being of the type C—H···N, Fig. 3.

For background to the chemical attributes of C-glycosides, see: Ritchie et al. (2002); Hanessian & Lou (2000); Hultin (2005); Zou (2005). For chiral properties of C-glycosides, see: Nakata (2005); Nicolaou et al. (2008); Somsak (2001). For additional conformation analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view in projection down the c axis showing the supramolecular array sustained by relatviely strong C—H···O contacts (orange dashed lines) formed along the b direction and C—H···π contacts (purple dashed lines) formed along the a direction.
[Figure 3] Fig. 3. A view in projection down the a axis highlighting the stacking of zigzag layers along the b direction. The C—H···O, C—H···π and C—H···N interactions are shown as orange, purple and blue dashed lines, respectively.
[(2R,3S,6S)-3-Acetyloxy-6-(1-phenyl-1H-1,2,3- triazol-4-yl)-3,6-dihydro-2H-pyran-2-yl]methyl acetate top
Crystal data top
C18H19N3O5F(000) = 376
Mr = 357.36Dx = 1.384 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 4088 reflections
a = 4.79932 (7) Åθ = 2.7–74.0°
b = 16.6308 (2) ŵ = 0.86 mm1
c = 10.76331 (14) ÅT = 100 K
β = 93.225 (1)°Prism, colourless
V = 857.73 (2) Å30.20 × 0.10 × 0.05 mm
Z = 2
Data collection top
Agilent SuperNova Dual Cu at zero
diffractometer with an Atlas detector
3369 independent reflections
Radiation source: fine-focus sealed tube3304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.4041 pixels mm-1θmax = 74.2°, θmin = 4.1°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2020
Tmin = 0.848, Tmax = 0.959l = 138
5784 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1259P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3369 reflectionsΔρmax = 0.14 e Å3
237 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 1591 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (15)
Crystal data top
C18H19N3O5V = 857.73 (2) Å3
Mr = 357.36Z = 2
Monoclinic, P21Cu Kα radiation
a = 4.79932 (7) ŵ = 0.86 mm1
b = 16.6308 (2) ÅT = 100 K
c = 10.76331 (14) Å0.20 × 0.10 × 0.05 mm
β = 93.225 (1)°
Data collection top
Agilent SuperNova Dual Cu at zero
diffractometer with an Atlas detector
3369 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3304 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.959Rint = 0.019
5784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.14 e Å3
S = 1.04Δρmin = 0.19 e Å3
3369 reflectionsAbsolute structure: Flack (1983), 1591 Friedel pairs
237 parametersAbsolute structure parameter: 0.09 (15)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1199 (2)0.49978 (6)0.39298 (9)0.0183 (2)
O20.1131 (3)0.41952 (8)0.69075 (13)0.0374 (3)
O30.0424 (2)0.54932 (7)0.63709 (10)0.0230 (2)
O40.0156 (3)0.75452 (8)0.58495 (11)0.0298 (3)
O50.1489 (2)0.70479 (7)0.40355 (11)0.0226 (2)
N10.2553 (3)0.37406 (8)0.10112 (11)0.0163 (2)
N20.2724 (3)0.44506 (8)0.03950 (12)0.0205 (3)
N30.1016 (3)0.49499 (8)0.09098 (12)0.0202 (3)
C10.4329 (3)0.30870 (9)0.07023 (15)0.0174 (3)
C20.5395 (4)0.30667 (10)0.04686 (15)0.0231 (3)
H20.48550.34610.10740.028*
C30.7260 (4)0.24640 (11)0.07433 (16)0.0274 (3)
H30.80350.24510.15360.033*
C40.7999 (4)0.18788 (10)0.01356 (17)0.0265 (3)
H40.92750.14660.00560.032*
C50.6871 (4)0.18983 (10)0.12911 (17)0.0278 (4)
H50.73620.14940.18880.033*
C60.5023 (3)0.25052 (10)0.15854 (15)0.0232 (3)
H60.42510.25200.23790.028*
C70.0740 (3)0.37932 (9)0.19199 (13)0.0177 (3)
H70.02510.33850.24850.021*
C80.0244 (3)0.45681 (9)0.18467 (13)0.0160 (3)
C90.2265 (3)0.49831 (9)0.26498 (13)0.0176 (3)
H90.40200.46580.26140.021*
C100.3016 (3)0.58149 (9)0.21885 (15)0.0192 (3)
H100.40120.58740.14060.023*
C110.2323 (3)0.64660 (9)0.28465 (14)0.0200 (3)
H110.29260.69770.25430.024*
C120.0613 (3)0.64194 (9)0.40561 (14)0.0193 (3)
H120.18210.64980.47740.023*
C130.0863 (3)0.56087 (9)0.41504 (14)0.0181 (3)
H130.22380.55770.34880.022*
C140.2357 (3)0.54349 (10)0.53946 (14)0.0225 (3)
H14A0.31700.48880.53880.027*
H14B0.38960.58250.55500.027*
C150.0055 (3)0.48239 (10)0.70412 (15)0.0247 (3)
C160.2217 (4)0.49774 (14)0.79520 (16)0.0342 (4)
H16A0.16500.47250.87490.051*
H16B0.40030.47500.76360.051*
H16C0.24220.55580.80700.051*
C170.1610 (3)0.75859 (9)0.49755 (14)0.0201 (3)
C180.3763 (4)0.82174 (10)0.47939 (18)0.0270 (4)
H18A0.31020.87340.51000.041*
H18B0.40960.82630.39070.041*
H18C0.55050.80690.52560.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0217 (5)0.0174 (5)0.0160 (5)0.0037 (4)0.0037 (4)0.0012 (4)
O20.0421 (8)0.0277 (7)0.0423 (8)0.0015 (6)0.0020 (6)0.0073 (6)
O30.0284 (6)0.0250 (6)0.0162 (5)0.0015 (5)0.0055 (4)0.0001 (4)
O40.0357 (7)0.0314 (7)0.0232 (6)0.0047 (5)0.0090 (5)0.0096 (5)
O50.0253 (6)0.0199 (5)0.0236 (6)0.0061 (4)0.0104 (5)0.0069 (4)
N10.0186 (6)0.0138 (6)0.0165 (6)0.0001 (5)0.0014 (5)0.0012 (5)
N20.0269 (7)0.0157 (6)0.0193 (6)0.0015 (5)0.0053 (5)0.0025 (5)
N30.0234 (6)0.0184 (6)0.0194 (6)0.0005 (5)0.0055 (5)0.0002 (5)
C10.0170 (7)0.0150 (6)0.0203 (7)0.0005 (6)0.0013 (5)0.0042 (6)
C20.0259 (8)0.0236 (7)0.0201 (8)0.0013 (6)0.0037 (6)0.0024 (6)
C30.0283 (8)0.0291 (9)0.0253 (8)0.0004 (7)0.0064 (6)0.0080 (7)
C40.0239 (8)0.0201 (8)0.0355 (9)0.0033 (6)0.0016 (7)0.0088 (7)
C50.0312 (9)0.0201 (8)0.0319 (9)0.0042 (7)0.0014 (7)0.0011 (7)
C60.0266 (8)0.0203 (7)0.0228 (7)0.0027 (7)0.0027 (6)0.0007 (6)
C70.0182 (7)0.0176 (7)0.0174 (7)0.0019 (6)0.0029 (5)0.0005 (6)
C80.0162 (7)0.0162 (7)0.0156 (7)0.0027 (5)0.0010 (5)0.0019 (5)
C90.0172 (7)0.0180 (7)0.0177 (7)0.0022 (6)0.0025 (5)0.0017 (6)
C100.0161 (7)0.0209 (8)0.0210 (7)0.0008 (5)0.0033 (5)0.0009 (6)
C110.0189 (7)0.0186 (7)0.0233 (8)0.0015 (6)0.0074 (6)0.0012 (6)
C120.0195 (7)0.0173 (7)0.0219 (8)0.0037 (6)0.0078 (6)0.0030 (6)
C130.0180 (7)0.0190 (7)0.0178 (7)0.0037 (6)0.0057 (5)0.0021 (5)
C140.0210 (7)0.0280 (8)0.0188 (7)0.0011 (6)0.0045 (6)0.0012 (6)
C150.0238 (8)0.0304 (9)0.0195 (7)0.0080 (7)0.0032 (6)0.0028 (6)
C160.0289 (9)0.0513 (12)0.0226 (8)0.0084 (9)0.0036 (7)0.0073 (8)
C170.0205 (7)0.0174 (7)0.0221 (7)0.0028 (6)0.0005 (6)0.0031 (6)
C180.0266 (8)0.0196 (8)0.0349 (9)0.0029 (6)0.0016 (7)0.0030 (6)
Geometric parameters (Å, º) top
O1—C131.4289 (17)C7—C81.373 (2)
O1—C91.4425 (17)C7—H70.9500
O2—C151.203 (2)C8—C91.503 (2)
O3—C151.353 (2)C9—C101.507 (2)
O3—C141.4435 (18)C9—H91.0000
O4—C171.204 (2)C10—C111.326 (2)
O5—C171.3494 (19)C10—H100.9500
O5—C121.4537 (18)C11—C121.501 (2)
N1—C71.3482 (19)C11—H110.9500
N1—N21.3591 (18)C12—C131.524 (2)
N1—C11.4320 (19)C12—H121.0000
N2—N31.3113 (19)C13—C141.511 (2)
N3—C81.3617 (19)C13—H131.0000
C1—C61.384 (2)C14—H14A0.9900
C1—C21.387 (2)C14—H14B0.9900
C2—C31.387 (2)C15—C161.489 (2)
C2—H20.9500C16—H16A0.9800
C3—C41.389 (3)C16—H16B0.9800
C3—H30.9500C16—H16C0.9800
C4—C51.384 (3)C17—C181.494 (2)
C4—H40.9500C18—H18A0.9800
C5—C61.392 (2)C18—H18B0.9800
C5—H50.9500C18—H18C0.9800
C6—H60.9500
C13—O1—C9112.08 (11)C9—C10—H10119.1
C15—O3—C14117.93 (13)C10—C11—C12121.97 (14)
C17—O5—C12117.77 (12)C10—C11—H11119.0
C7—N1—N2110.90 (12)C12—C11—H11119.0
C7—N1—C1129.40 (13)O5—C12—C11107.19 (12)
N2—N1—C1119.55 (12)O5—C12—C13108.46 (12)
N3—N2—N1106.72 (12)C11—C12—C13109.44 (12)
N2—N3—C8109.38 (13)O5—C12—H12110.6
C6—C1—C2121.36 (14)C11—C12—H12110.6
C6—C1—N1119.64 (14)C13—C12—H12110.6
C2—C1—N1118.96 (14)O1—C13—C14107.51 (12)
C3—C2—C1119.13 (15)O1—C13—C12107.63 (12)
C3—C2—H2120.4C14—C13—C12115.09 (13)
C1—C2—H2120.4O1—C13—H13108.8
C2—C3—C4120.28 (15)C14—C13—H13108.8
C2—C3—H3119.9C12—C13—H13108.8
C4—C3—H3119.9O3—C14—C13109.89 (12)
C5—C4—C3119.84 (15)O3—C14—H14A109.7
C5—C4—H4120.1C13—C14—H14A109.7
C3—C4—H4120.1O3—C14—H14B109.7
C4—C5—C6120.51 (16)C13—C14—H14B109.7
C4—C5—H5119.7H14A—C14—H14B108.2
C6—C5—H5119.7O2—C15—O3123.73 (16)
C1—C6—C5118.85 (15)O2—C15—C16125.44 (17)
C1—C6—H6120.6O3—C15—C16110.83 (16)
C5—C6—H6120.6C15—C16—H16A109.5
N1—C7—C8104.66 (13)C15—C16—H16B109.5
N1—C7—H7127.7H16A—C16—H16B109.5
C8—C7—H7127.7C15—C16—H16C109.5
N3—C8—C7108.34 (13)H16A—C16—H16C109.5
N3—C8—C9122.66 (13)H16B—C16—H16C109.5
C7—C8—C9128.96 (14)O4—C17—O5123.09 (14)
O1—C9—C8110.58 (12)O4—C17—C18125.26 (14)
O1—C9—C10111.38 (12)O5—C17—C18111.64 (14)
C8—C9—C10112.47 (12)C17—C18—H18A109.5
O1—C9—H9107.4C17—C18—H18B109.5
C8—C9—H9107.4H18A—C18—H18B109.5
C10—C9—H9107.4C17—C18—H18C109.5
C11—C10—C9121.71 (14)H18A—C18—H18C109.5
C11—C10—H10119.1H18B—C18—H18C109.5
C7—N1—N2—N30.21 (17)C7—C8—C9—O160.2 (2)
C1—N1—N2—N3176.19 (13)N3—C8—C9—C107.9 (2)
N1—N2—N3—C80.02 (16)C7—C8—C9—C10174.61 (14)
C7—N1—C1—C621.1 (2)O1—C9—C10—C119.9 (2)
N2—N1—C1—C6154.08 (15)C8—C9—C10—C11114.87 (16)
C7—N1—C1—C2161.09 (15)C9—C10—C11—C123.5 (2)
N2—N1—C1—C223.8 (2)C17—O5—C12—C11124.32 (14)
C6—C1—C2—C32.0 (2)C17—O5—C12—C13117.60 (14)
N1—C1—C2—C3175.82 (14)C10—C11—C12—O5135.30 (15)
C1—C2—C3—C41.4 (2)C10—C11—C12—C1317.9 (2)
C2—C3—C4—C50.1 (3)C9—O1—C13—C14165.40 (12)
C3—C4—C5—C60.7 (3)C9—O1—C13—C1270.07 (14)
C2—C1—C6—C51.2 (2)O5—C12—C13—O1169.07 (11)
N1—C1—C6—C5176.58 (15)C11—C12—C13—O152.44 (15)
C4—C5—C6—C10.2 (3)O5—C12—C13—C1471.10 (15)
N2—N1—C7—C80.34 (16)C11—C12—C13—C14172.27 (13)
C1—N1—C7—C8175.81 (14)C15—O3—C14—C13117.54 (15)
N2—N3—C8—C70.23 (17)O1—C13—C14—O363.44 (16)
N2—N3—C8—C9178.14 (13)C12—C13—C14—O356.45 (17)
N1—C7—C8—N30.34 (16)C14—O3—C15—O23.6 (2)
N1—C7—C8—C9178.08 (14)C14—O3—C15—C16176.58 (13)
C13—O1—C9—C878.46 (14)C12—O5—C17—O43.6 (2)
C13—O1—C9—C1047.37 (15)C12—O5—C17—C18177.05 (14)
N3—C8—C9—O1117.28 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.952.293.2207 (19)167
C9—H9···Cg1ii1.002.683.5362 (16)144
C16—H16a···N3iii0.982.623.463 (2)145
C16—H16b···O2ii0.982.593.570 (2)177
C18—H18a···O1iv0.982.543.516 (2)174
C18—H18c···O4v0.982.453.400 (2)164
Symmetry codes: (i) x, y1/2, z+1; (ii) x1, y, z; (iii) x, y, z+1; (iv) x, y+1/2, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H19N3O5
Mr357.36
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)4.79932 (7), 16.6308 (2), 10.76331 (14)
β (°) 93.225 (1)
V3)857.73 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual Cu at zero
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.848, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
5784, 3369, 3304
Rint0.019
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.04
No. of reflections3369
No. of parameters237
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19
Absolute structureFlack (1983), 1591 Friedel pairs
Absolute structure parameter0.09 (15)

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.952.293.2207 (19)167
C9—H9···Cg1ii1.002.683.5362 (16)144
C16—H16a···N3iii0.982.623.463 (2)145
C16—H16b···O2ii0.982.593.570 (2)177
C18—H18a···O1iv0.982.543.516 (2)174
C18—H18c···O4v0.982.453.400 (2)164
Symmetry codes: (i) x, y1/2, z+1; (ii) x1, y, z; (iii) x, y, z+1; (iv) x, y+1/2, z+1; (v) x+1, y, z.
 

Acknowledgements

We thank FAPESP (07/59404-2 to HAS), CNPq (300613/2007 to HAS, and 306532/2009-3 to JZ-S) and CAPES (808/2009 to JZ-S) for financial support. We also thank the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChemAxon (2009). MarvinSketch. URL: www.chemaxon.com.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHanessian, S. & Lou, B. (2000). Chem. Rev. 100, 4443–4463.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHultin, P. G. (2005). Curr. Top. Med. Chem. 5, 1299–1331.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakata, T. (2005). Chem. Rev. 105, 4314–4347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNicolaou, K. C., Frederick, M. O. & Aversa, R. J. (2008). Angew. Chem. Int. Ed. 47, 7182–7225.  Web of Science CrossRef CAS Google Scholar
First citationRitchie, G. E., Moffatt, B. E., Sim, R. B., Morgan, B. P., Dwek, R. A. & Rudd, P. M. (2002). Chem. Rev. 102, 305–320.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomsak, L. (2001). Chem. Rev. 101, 81–135.  PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, W. (2005). Curr. Top. Med. Chem. 5, 1363–1391.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds