organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-3,3-bis­­[(4-methyl­phen­yl)sulfan­yl]piperidin-2-one

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bChemistry Institute, Universidade de São Paulo, 05508-000 São Paulo-SP, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: julio@power.ufscar.br

(Received 11 September 2011; accepted 13 September 2011; online 30 September 2011)

The piperidone ring in the title compound, C20H23NOS2, has a half-chair distorted to a twisted-boat conformation [QT = 0.5200 (17) Å]. One of the S-bound benzene rings is almost perpendicular to the least-squares plane through the piperidone ring, whereas the other is not [dihedral angles = 75.28 (5) and 46.41 (5) Å, respectively]. In the crystal, the presence of C—H⋯O and C—H⋯π inter­actions leads to the formation of supra­molecular layers in the ab plane.

Related literature

For background to β-thio­carbonyl compounds, see: Vinhato et al. (2011[Vinhato, E., Olivato, P. R., Rodrigues, A., Zukerman-Schpector, J. & Dal Colle, M. (2011). J. Mol. Struct. 1002, 97-106.]); Olivato et al. (2009[Olivato, P. R., Domingues, N. L. C., Mondino, M. G., Tormena, C. F., Rittner, R. & Dal Colle, M. (2009). J. Mol. Struct. 920, 393-400.]). For related structures, see: Zukerman-Schpector et al. (2008[Zukerman-Schpector, J., Olivato, P. R., Cerqueira, C. R. Jr, Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835-o836.], 2010[Zukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis, see: Hashmat & McDermott (2002[Hashmat, A. M. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271-6273.]); Zoretic & Soja (1976[Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23NOS2

  • Mr = 357.53

  • Monoclinic, P 21 /n

  • a = 7.8943 (1) Å

  • b = 9.8078 (2) Å

  • c = 23.9145 (4) Å

  • β = 92.803 (1)°

  • V = 1849.38 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.65 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual Cu at zero diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.558, Tmax = 0.692

  • 14169 measured reflections

  • 3719 independent reflections

  • 3465 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.06

  • 3719 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.95 2.37 3.294 (3) 166
C1—H1b⋯Cg1ii 0.98 2.84 3.624 (2) 137
C15—H15⋯Cg1iii 0.95 2.88 3.459 (2) 120
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of our on-going research on the conformational and electronic interactions in β-thio-carbonyl and β-bis-thio-carbonyl compounds, e.g. N,N-diethyl-2-[(4'-substituted)phelysulfonyl] acetamides, N-methoxy-N-methyl-2-[(4'-substituted) phenylthio]propanamides, 1-methyl-3-phenylsulfonyl-2-piperidone and 3,3-bis[(4-chlorophenyl)sulfanyl]-1-methyl-2-piperidone, utilizing spectroscopic, theoretical and X-ray diffraction methods (Vinhato, et al. 2011; Olivato et al., 2009; Zukerman-Schpector et al. 2008, 2010), the title compound, (I), was synthesized and its crystal structure determined.

In (I), Fig. 1, the piperidone ring has a distorted half-chair conformation with the C3 atom lying 0.687 (2) Å out of the plane defined by the other five atoms (r.m.s. deviation = 0.0833 Å). The ring puckering parameters are: q2 = 0.4309 (17) Å, q3 = 0.2909 (17) Å, QT = 0.5200 (17) Å, φ2 = 145.6 (2) ° (Cremer & Pople, 1975). The S2-bound benzene ring is orientated to be almost perpendicular to the plane through the piperidone ring [dihedral angle = 75.28 (5) °]. The S1-bond benzene ring is somewhat splayed with respect to the other rings, forming dihedral angles of 46.41 (5) and 59.02 (5) ° with those through the piperidone and S2-bound benzene rings, respectively.

The crystal packing of (I), Table 1, is sustained by C—H···O and C—H···π interactions that lead to the formation of supramolecular layers in the ab plane, Fig. 1. The S1-benzene accepts to C—H···π contacts. Layers stack along the c axis as illustrated in Fig.3.

Related literature top

For background to β-thiocarbonyl compounds, see: Vinhato et al. (2011); Olivato et al. (2009). For related structures, see: Zukerman-Schpector et al. (2008, 2010). For ring conformational analysis, see: Cremer & Pople (1975). For the synthesis, see: Hashmat & McDermott (2002); Zoretic & Soja (1976).

Experimental top

Firstly, 4-methylthiophenol (5.0 g, 40 mmol) was reacted with bromine (1.1 ml, 20 mmol) in dichloromethane (250 ml) on hydrated silica gel support (25 g of SiO2 and 12 ml of water) to give 4-methylphenyl disulfide (4.1 g, yield = 83%). A white solid was obtained after filtration and evaporation without further purification (Hashmat & McDermott, 2002). 1-Methyl-2-piperidinone (1.9 g, 17 mmol) was added drop-wise to a cooled (195 K) solution of hexamethylphosphoramide (HMPA) (3.1 ml, 17 mmol), diisopropylamine (2.6 ml, 17 mmol) and butyllithium (13.5 ml, 17 mmol) in THF (60 ml). After 20 minutes, 4-methylphenyl disulfide (4.1 g, 17 mmol) dissolved in THF (10 ml) was added drop-wise to the enolate solution (Zoretic & Soja, 1976). After the mixture was stirred for 4 h at 195 K, water (80 ml) was added at room temperature and extraction with chloroform was performed. The organic layer was dried over anhydrous sodium sulfate. After evaporation of solvent, a crude solid was obtained. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 7:3 ratio give the pure product (3.3 g, yield = 56%). Suitable crystals for X-ray analysis were obtained by vapour diffusion of n-hexane into a chloroform solution of (I) held at 283 K; m.p. 392–393 K. IR (cm-1): ν(C=O) 1662. NMR (CDCl3, p.p.m.): δ 1.88–1.93 (2H, m), 1.96–1.99 (2H, m), 2.38 (6H, s), 2.93 (3H, s), 3.163.18 (2H, t, J = 6.1 Hz), 7.15–7.17 (4H, d, J = 7.8 Hz,Aryl-H), 7.52–7.54 (4H, m, Aryl-H). Analysis found: C 67.22, H 6.45, N 3.95%. C20H23ONS2 requires: C 67.19, H 6.48, N 3.92%.

Refinement top

The H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

As part of our on-going research on the conformational and electronic interactions in β-thio-carbonyl and β-bis-thio-carbonyl compounds, e.g. N,N-diethyl-2-[(4'-substituted)phelysulfonyl] acetamides, N-methoxy-N-methyl-2-[(4'-substituted) phenylthio]propanamides, 1-methyl-3-phenylsulfonyl-2-piperidone and 3,3-bis[(4-chlorophenyl)sulfanyl]-1-methyl-2-piperidone, utilizing spectroscopic, theoretical and X-ray diffraction methods (Vinhato, et al. 2011; Olivato et al., 2009; Zukerman-Schpector et al. 2008, 2010), the title compound, (I), was synthesized and its crystal structure determined.

In (I), Fig. 1, the piperidone ring has a distorted half-chair conformation with the C3 atom lying 0.687 (2) Å out of the plane defined by the other five atoms (r.m.s. deviation = 0.0833 Å). The ring puckering parameters are: q2 = 0.4309 (17) Å, q3 = 0.2909 (17) Å, QT = 0.5200 (17) Å, φ2 = 145.6 (2) ° (Cremer & Pople, 1975). The S2-bound benzene ring is orientated to be almost perpendicular to the plane through the piperidone ring [dihedral angle = 75.28 (5) °]. The S1-bond benzene ring is somewhat splayed with respect to the other rings, forming dihedral angles of 46.41 (5) and 59.02 (5) ° with those through the piperidone and S2-bound benzene rings, respectively.

The crystal packing of (I), Table 1, is sustained by C—H···O and C—H···π interactions that lead to the formation of supramolecular layers in the ab plane, Fig. 1. The S1-benzene accepts to C—H···π contacts. Layers stack along the c axis as illustrated in Fig.3.

For background to β-thiocarbonyl compounds, see: Vinhato et al. (2011); Olivato et al. (2009). For related structures, see: Zukerman-Schpector et al. (2008, 2010). For ring conformational analysis, see: Cremer & Pople (1975). For the synthesis, see: Hashmat & McDermott (2002); Zoretic & Soja (1976).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Supramolecular layer in the ab plane of (I) mediated by C—H···O and C—H···π interactions, shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I) showing the stacking of layers alog the c axis. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
1-Methyl-3,3-bis[(4-methylphenyl)sulfanyl]piperidin-2-one top
Crystal data top
C20H23NOS2F(000) = 760
Mr = 357.53Dx = 1.284 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 8545 reflections
a = 7.8943 (1) Åθ = 3.7–74.2°
b = 9.8078 (2) ŵ = 2.65 mm1
c = 23.9145 (4) ÅT = 100 K
β = 92.803 (1)°Block, colourless
V = 1849.38 (5) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual Cu at zero
diffractometer with an Atlas detector
3719 independent reflections
Radiation source: fine-focus sealed tube3465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 3.7°
ω scansh = 79
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1112
Tmin = 0.558, Tmax = 0.692l = 2929
14169 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.7727P]
where P = (Fo2 + 2Fc2)/3
3719 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C20H23NOS2V = 1849.38 (5) Å3
Mr = 357.53Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.8943 (1) ŵ = 2.65 mm1
b = 9.8078 (2) ÅT = 100 K
c = 23.9145 (4) Å0.25 × 0.20 × 0.15 mm
β = 92.803 (1)°
Data collection top
Agilent SuperNova Dual Cu at zero
diffractometer with an Atlas detector
3719 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3465 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.692Rint = 0.042
14169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.68 e Å3
3719 reflectionsΔρmin = 0.31 e Å3
220 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56118 (5)0.85032 (4)0.742407 (16)0.02168 (13)
S20.59643 (5)0.63592 (4)0.658865 (16)0.02231 (13)
N10.15516 (17)0.80815 (15)0.66875 (6)0.0232 (3)
O10.38510 (15)0.88872 (12)0.62753 (5)0.0266 (3)
C10.0471 (2)0.8882 (2)0.62973 (8)0.0307 (4)
H1A0.08710.87830.59180.046*
H1B0.05170.98440.64070.046*
H1C0.07010.85540.63050.046*
C20.0687 (2)0.73621 (18)0.71307 (7)0.0265 (3)
H2A0.00910.65560.69680.032*
H2B0.01740.79730.72840.032*
C30.1907 (2)0.69027 (17)0.76010 (7)0.0229 (3)
H3A0.13330.62580.78480.028*
H3B0.22930.76980.78280.028*
C40.3418 (2)0.62117 (16)0.73509 (6)0.0201 (3)
H4A0.30210.54410.71120.024*
H4B0.41820.58440.76550.024*
C50.43854 (18)0.72223 (16)0.70031 (6)0.0193 (3)
C60.32331 (19)0.81387 (16)0.66234 (6)0.0204 (3)
C70.62175 (19)0.76581 (16)0.80585 (6)0.0194 (3)
C80.5588 (2)0.81362 (17)0.85544 (7)0.0240 (3)
H80.47730.88490.85460.029*
C90.6155 (2)0.75683 (18)0.90622 (7)0.0259 (4)
H90.57290.79070.94000.031*
C100.7334 (2)0.65141 (17)0.90856 (7)0.0241 (3)
C110.7935 (2)0.60218 (16)0.85848 (7)0.0220 (3)
H110.87270.52920.85920.026*
C120.73859 (19)0.65906 (16)0.80755 (6)0.0197 (3)
H120.78080.62510.77370.024*
C130.7979 (3)0.5920 (2)0.96396 (7)0.0344 (4)
H130.70350.58310.98890.052*
H13B0.88440.65240.98120.052*
H13C0.84740.50200.95770.052*
C140.46802 (19)0.53540 (17)0.61152 (6)0.0220 (3)
C150.4551 (2)0.39502 (18)0.61902 (7)0.0242 (3)
H150.50830.35330.65120.029*
C160.3648 (2)0.31557 (19)0.57978 (7)0.0273 (4)
H160.35680.21990.58540.033*
C170.2859 (2)0.37422 (19)0.53241 (7)0.0276 (4)
C180.2970 (2)0.5147 (2)0.52567 (7)0.0318 (4)
H180.24200.55630.49380.038*
C190.3866 (2)0.59541 (19)0.56450 (7)0.0288 (4)
H190.39260.69120.55910.035*
C200.1961 (2)0.2880 (2)0.48744 (8)0.0356 (4)
H20A0.09530.33640.47240.053*
H20B0.16210.20100.50360.053*
H20C0.27300.27090.45720.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0222 (2)0.0165 (2)0.0259 (2)0.00289 (13)0.00351 (15)0.00200 (13)
S20.0170 (2)0.0272 (2)0.0228 (2)0.00184 (14)0.00158 (14)0.00095 (14)
N10.0186 (6)0.0239 (7)0.0269 (7)0.0039 (5)0.0015 (5)0.0002 (5)
O10.0270 (6)0.0237 (6)0.0289 (6)0.0027 (5)0.0023 (5)0.0067 (5)
C10.0246 (9)0.0338 (10)0.0329 (9)0.0076 (7)0.0077 (7)0.0009 (7)
C20.0188 (8)0.0266 (9)0.0342 (9)0.0007 (6)0.0038 (6)0.0022 (7)
C30.0221 (8)0.0212 (8)0.0259 (8)0.0039 (6)0.0055 (6)0.0023 (6)
C40.0201 (7)0.0169 (7)0.0233 (8)0.0018 (6)0.0011 (6)0.0005 (6)
C50.0174 (7)0.0184 (7)0.0221 (7)0.0003 (6)0.0005 (5)0.0001 (6)
C60.0209 (7)0.0154 (7)0.0246 (8)0.0002 (6)0.0018 (6)0.0017 (6)
C70.0178 (7)0.0176 (7)0.0225 (7)0.0032 (6)0.0016 (5)0.0002 (6)
C80.0201 (8)0.0225 (8)0.0295 (8)0.0011 (6)0.0012 (6)0.0055 (6)
C90.0253 (8)0.0297 (9)0.0231 (8)0.0047 (7)0.0043 (6)0.0069 (6)
C100.0248 (8)0.0252 (8)0.0219 (8)0.0079 (6)0.0012 (6)0.0001 (6)
C110.0208 (7)0.0190 (8)0.0260 (8)0.0013 (6)0.0013 (6)0.0001 (6)
C120.0180 (7)0.0190 (8)0.0221 (7)0.0017 (6)0.0017 (6)0.0031 (5)
C130.0435 (11)0.0347 (10)0.0244 (9)0.0040 (8)0.0040 (7)0.0023 (7)
C140.0193 (7)0.0265 (8)0.0204 (7)0.0044 (6)0.0032 (5)0.0016 (6)
C150.0234 (8)0.0265 (8)0.0226 (8)0.0041 (6)0.0027 (6)0.0016 (6)
C160.0270 (8)0.0256 (9)0.0297 (8)0.0005 (7)0.0062 (6)0.0023 (7)
C170.0216 (8)0.0363 (10)0.0251 (8)0.0026 (7)0.0029 (6)0.0070 (7)
C180.0353 (9)0.0364 (10)0.0232 (8)0.0098 (8)0.0046 (7)0.0013 (7)
C190.0346 (9)0.0267 (9)0.0250 (8)0.0059 (7)0.0008 (7)0.0009 (7)
C200.0312 (9)0.0441 (11)0.0316 (9)0.0026 (8)0.0034 (7)0.0116 (8)
Geometric parameters (Å, º) top
S1—C71.7738 (16)C9—C101.390 (3)
S1—C51.8531 (16)C9—H90.9500
S2—C141.7802 (17)C10—C111.396 (2)
S2—C51.8366 (16)C10—C131.513 (2)
N1—C61.345 (2)C11—C121.390 (2)
N1—C11.462 (2)C11—H110.9500
N1—C21.469 (2)C12—H120.9500
O1—C61.229 (2)C13—H130.9800
C1—H1A0.9800C13—H13B0.9800
C1—H1B0.9800C13—H13C0.9800
C1—H1C0.9800C14—C151.393 (2)
C2—C31.513 (2)C14—C191.398 (2)
C2—H2A0.9900C15—C161.390 (2)
C2—H2B0.9900C15—H150.9500
C3—C41.520 (2)C16—C171.390 (2)
C3—H3A0.9900C16—H160.9500
C3—H3B0.9900C17—C181.391 (3)
C4—C51.523 (2)C17—C201.516 (2)
C4—H4A0.9900C18—C191.387 (3)
C4—H4B0.9900C18—H180.9500
C5—C61.542 (2)C19—H190.9500
C7—C81.389 (2)C20—H20A0.9800
C7—C121.395 (2)C20—H20B0.9800
C8—C91.390 (2)C20—H20C0.9800
C8—H80.9500
C7—S1—C5105.06 (7)C9—C8—H8120.1
C14—S2—C5102.60 (7)C8—C9—C10121.29 (15)
C6—N1—C1116.97 (14)C8—C9—H9119.4
C6—N1—C2126.74 (14)C10—C9—H9119.4
C1—N1—C2116.19 (14)C9—C10—C11118.54 (15)
N1—C1—H1A109.5C9—C10—C13121.17 (16)
N1—C1—H1B109.5C11—C10—C13120.28 (16)
H1A—C1—H1B109.5C12—C11—C10120.56 (16)
N1—C1—H1C109.5C12—C11—H11119.7
H1A—C1—H1C109.5C10—C11—H11119.7
H1B—C1—H1C109.5C11—C12—C7120.31 (15)
N1—C2—C3112.24 (13)C11—C12—H12119.8
N1—C2—H2A109.2C7—C12—H12119.8
C3—C2—H2A109.2C10—C13—H13109.5
N1—C2—H2B109.2C10—C13—H13B109.5
C3—C2—H2B109.2H13—C13—H13B109.5
H2A—C2—H2B107.9C10—C13—H13C109.5
C2—C3—C4108.87 (13)H13—C13—H13C109.5
C2—C3—H3A109.9H13B—C13—H13C109.5
C4—C3—H3A109.9C15—C14—C19119.09 (15)
C2—C3—H3B109.9C15—C14—S2120.57 (12)
C4—C3—H3B109.9C19—C14—S2120.24 (13)
H3A—C3—H3B108.3C16—C15—C14120.38 (15)
C3—C4—C5110.42 (13)C16—C15—H15119.8
C3—C4—H4A109.6C14—C15—H15119.8
C5—C4—H4A109.6C15—C16—C17120.85 (17)
C3—C4—H4B109.6C15—C16—H16119.6
C5—C4—H4B109.6C17—C16—H16119.6
H4A—C4—H4B108.1C16—C17—C18118.45 (16)
C4—C5—C6113.82 (12)C16—C17—C20121.49 (17)
C4—C5—S2111.49 (11)C18—C17—C20120.01 (17)
C6—C5—S2110.31 (10)C19—C18—C17121.37 (16)
C4—C5—S1114.02 (10)C19—C18—H18119.3
C6—C5—S1101.67 (10)C17—C18—H18119.3
S2—C5—S1104.79 (7)C18—C19—C14119.84 (17)
O1—C6—N1121.93 (14)C18—C19—H19120.1
O1—C6—C5120.32 (14)C14—C19—H19120.1
N1—C6—C5117.75 (13)C17—C20—H20A109.5
C8—C7—C12119.48 (15)C17—C20—H20B109.5
C8—C7—S1118.66 (12)H20A—C20—H20B109.5
C12—C7—S1121.73 (12)C17—C20—H20C109.5
C7—C8—C9119.81 (16)H20A—C20—H20C109.5
C7—C8—H8120.1H20B—C20—H20C109.5
C6—N1—C2—C312.2 (2)C5—S1—C7—C1268.39 (14)
C1—N1—C2—C3163.84 (14)C12—C7—C8—C91.4 (2)
N1—C2—C3—C447.35 (18)S1—C7—C8—C9174.50 (12)
C2—C3—C4—C563.55 (16)C7—C8—C9—C100.7 (2)
C3—C4—C5—C643.61 (17)C8—C9—C10—C110.5 (2)
C3—C4—C5—S2169.18 (10)C8—C9—C10—C13178.60 (16)
C3—C4—C5—S172.41 (14)C9—C10—C11—C121.1 (2)
C14—S2—C5—C465.40 (12)C13—C10—C11—C12178.10 (15)
C14—S2—C5—C662.08 (12)C10—C11—C12—C70.3 (2)
C14—S2—C5—S1170.79 (8)C8—C7—C12—C110.9 (2)
C7—S1—C5—C431.05 (13)S1—C7—C12—C11174.87 (12)
C7—S1—C5—C6153.97 (10)C5—S2—C14—C15105.11 (14)
C7—S1—C5—S291.12 (8)C5—S2—C14—C1978.55 (14)
C1—N1—C6—O14.1 (2)C19—C14—C15—C161.1 (2)
C2—N1—C6—O1171.93 (15)S2—C14—C15—C16175.31 (12)
C1—N1—C6—C5175.70 (14)C14—C15—C16—C170.0 (2)
C2—N1—C6—C58.2 (2)C15—C16—C17—C181.1 (3)
C4—C5—C6—O1171.64 (14)C15—C16—C17—C20176.18 (16)
S2—C5—C6—O145.45 (17)C16—C17—C18—C191.1 (3)
S1—C5—C6—O165.30 (16)C20—C17—C18—C19176.26 (16)
C4—C5—C6—N18.2 (2)C17—C18—C19—C140.0 (3)
S2—C5—C6—N1134.37 (13)C15—C14—C19—C181.1 (2)
S1—C5—C6—N1114.88 (13)S2—C14—C19—C18175.28 (14)
C5—S1—C7—C8115.80 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.952.373.294 (3)166
C1—H1b···Cg1ii0.982.843.624 (2)137
C15—H15···Cg1iii0.952.883.459 (2)120
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H23NOS2
Mr357.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.8943 (1), 9.8078 (2), 23.9145 (4)
β (°) 92.803 (1)
V3)1849.38 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.65
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual Cu at zero
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.558, 0.692
No. of measured, independent and
observed [I > 2σ(I)] reflections
14169, 3719, 3465
Rint0.042
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.06
No. of reflections3719
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.31

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.952.373.294 (3)166
C1—H1b···Cg1ii0.982.843.624 (2)137
C15—H15···Cg1iii0.952.883.459 (2)120
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Brazilian agencies FAPESP, CNPq (fellowships to JZ-S and PRO) and CAPES (808/2009 to JZ-S) for financial support. The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHashmat, A. M. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271–6273.  Google Scholar
First citationOlivato, P. R., Domingues, N. L. C., Mondino, M. G., Tormena, C. F., Rittner, R. & Dal Colle, M. (2009). J. Mol. Struct. 920, 393–400.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinhato, E., Olivato, P. R., Rodrigues, A., Zukerman-Schpector, J. & Dal Colle, M. (2011). J. Mol. Struct. 1002, 97–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.  CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Cerqueira, C. R. Jr, Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835–o836.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds