organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-2-Phen­­oxy-1-(4-phenyl-2-sulfan­yl­idene-1,3-oxazolidin-3-yl)ethanone

aBioMat-Departamento de Física, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil, bLaboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Universidade Federal de São Carlos, Departamento de Química, CP 676, 13565-905, São Carlos, SP, Brazil, cChemistry Institute, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil, dDepartamento de Ciencias Exatas e da Terra, Universidade Federal de São Paulo, UNIFESP, Diadema, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

(Received 16 September 2011; accepted 20 September 2011; online 30 September 2011)

The central 1,3-oxazolidine-2-thione ring in the title compound, C17H15NO3S, is approximately planar with maximum deviations of 0.036 (4) and −0.041 (5) Å for the O and methyl­ene-C atoms, respectively. The dihedral angles formed between this plane and the two benzene rings, which lie to the same side of the central plane, are 86.5 (2) [ring-bound benzene] and 50.6 (3)°. The ethan-1-one residue is also twisted out of the central plane, forming a O—C—N—C torsion angle of 151.5 (5)°. The dihedral angle formed by the benzene rings is 62.8 (2)° so that overall, the mol­ecule has a twisted U-shape. In the crystal, mol­ecules are linked into supra­molecular arrays two mol­ecules thick in the bc plane through C—H⋯O, C—H⋯S and C—H⋯π inter­actions.

Related literature

For background to oxazolidine-2-thio­nes, see: Evans et al. (1981[Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127-2129.]); Crimmins & King (1998[Crimmins, M. T. & King, B. W. (1998). J. Am. Chem. Soc. 120, 9084-9085.]); Zhang et al. (2004)[Zhang, W., Carter, R. G. & Yokochi, F. T. (2004). J. Org. Chem. 69, 2569-2572.]; Shinisha & Sunoj (2010[Shinisha, C. B. & Sunoj, R. B. (2010). J. Am. Chem. Soc. 132, 12319-12330.]); Tamura et al. (2009[Tamura, K., Nakazaki, A. & Kobayashi, S. (2009). Synlett, 15, 2449-2452.]). For related structures, see: Kitoh et al. (2002[Kitoh, S., Kunimoto, K.-K., Funaki, N., Senda, H., Kuwae, A. & Hanai, K. (2002). J. Chem. Crystallogr. 32, 547-553.]). For the synthesis, see: Wu et al. (2004[Wu, Y., Yang, Y.-Q. & Hu, Q. (2004). J. Org. Chem. 69, 3990-3992.]); Rodrigues et al. (2005[Rodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578-2582.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO3S

  • Mr = 313.37

  • Monoclinic, C 2

  • a = 33.514 (3) Å

  • b = 5.7514 (6) Å

  • c = 7.7172 (8) Å

  • β = 93.808 (7)°

  • V = 1484.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 126 K

  • 0.30 × 0.25 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 7408 measured reflections

  • 2588 independent reflections

  • 2166 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.180

  • S = 1.08

  • 2588 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1143 Friedel pairs

  • Flack parameter: 0.01 (18)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4–C9 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.29 3.202 (6) 162
C9—H9⋯O3ii 0.95 2.56 3.350 (6) 140
C11—H11b⋯Siii 0.99 2.87 3.814 (5) 160
C17—H17⋯Cg1iv 0.95 2.99 3.703 (5) 133
C8—H8⋯Cg2ii 0.95 2.79 3.523 (6) 135
Symmetry codes: (i) x, y-1, z; (ii) x, y, z-1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+2]; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010[Chemaxon (2010). Marvinsketch. http://www.chemaxon.com]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Since the first report in 1981 (Evans et al. 1981) exploring oxazolidin-2-ones as chiral auxiliaries in enantioselective aldol condensations, a number of related oxazolidin-2-ones and their synthetic applications have been reported. Recently, studies have shown that sulfur oxazolidine-2-thione derivatives have some advantages in terms of the asymmetric induction over the original 2-oxo analogues (Crimmins et al., 1998; Zhang et al., 2004; Shinisha et al., 2010). For this reason, the use of oxazolidine-2-thiones as chiral auxiliaries is a widely employed strategy for the total synthesis of relevant biological compounds (Tamura et al., 2009). An interesting study reported by Kitoh and collaborators (Kitoh et al., 2002) showed an alternative route to chiral 4-phenyl-1,3-oxazolidine-2-thione by optical resolution of the racemate through preferential crystallization. In this study, the crystal structure and vibrational spectra analysis of chiral 4-phenyl-1,3-oxazolidine-2-thione, (I), are reported.

The molecular structure of (I), Fig. 1, features a planar 1,3-oxazolidine-2-thione ring with the maximum deviations from the least-squares plane being 0.036 (4) for atom O1 and -0.041 (5) for atom C2. With reference to this plane, the two benzene rings are orientated to the same side and form dihedral angles of 86.5 (2) [ring-bound benzene ring] and 50.6 (2) °, respectively, with it. The ethan-1-one group is not co-planar with the five-membered ring as seen in the value of the O2—C10—N—C1 torsion angle of 151.5 (5) °; the carbonyl-O2 atom lies to the opposide side of the central plane to the benzene rings. The dihedral angle formed between the two benzene rings of 62.8 (2) ° indicates a non-parallel alignment. Overall, the molecule of (I) adopts a twisted U-shape.

The presence of C—H···O and C—H···S contacts, Table 1, leads to the formation of supramolecular 2-D arrays in the bc-plane, Fig. 2. The layers are two molecules thick. Additional stability to the layers is afforded by C—H···π interactions, Table 1. The layers with a flat topology stack along the a-direction, Fig. 3.

Related literature top

For background to oxazolidine-2-thiones, see: Evans et al. (1981); Crimmins et al. (1998); Zhang et al. (2004); Shinisha & Sunoj (2010); Tamura et al. (2009). For related structures, see: Kitoh et al. (2002). For the synthesis, see: Wu et al. (2004); Rodrigues et al. (2005).

Experimental top

The starting (R)-4-phenyloxazolidine-2-thione was synthesized from (R)-phenylglycine in three steps as previously reported (Wu et al. 2004). The phenoxyacetyl-oxazolidine- 2-thione derivative was prepared by acylation of (R)-4- phenyloxazolidine-2-thione (Rodrigues et al. 2005). The title compound was then obtained by adding DCC (N,N'-dicyclohexylcarbodiimide) (690 mg, 3.35 mmol) in one portion to an ice-cooled solution of (R)-4-phenyloxazolidine-2-thione (500 mg, 2.79 mmol), N,N-dimethylpyridin-4-amine (34 mg, 0.28 mmol) and 2-phenoxyacetic acid (510 mg, 3.35 mmol) in methylene chloride (10 ml). The resulting suspension, kept under a nitrogen atmosphere during the reaction time, was then allowed to reach r.t. After 48 h under stirring, the dicyclohexylurea formed was filtered off and the precipitate washed with methylene chloride (10 ml). The organic layers were washed with a sat. aq. solution of NaHCO3 (20 ml) and dried over Na2SO4. Filtration and evaporation of the solvent in vacuum gave the crude product which was purified by flash column chromatography on silica gel with 30% acetone in hexanes to give the pure product as a white solid (320 mg, 37%). Colourless crystals of the compound were obtained by vapour diffusion from hexane/acetone at 298 K: m.p. = 385–387 K;[α]D25 -66.7° (c 1.8, CHCl3); 1H NMR (300 MHz, CDCl3/TMS), δ (p.p.m.): 7.40–7.29 (m, 5H), 7.26–7.21 (m, 2H), 6.98–6.92 (m, 1H), 6.85–6.82 (m, 2H), 5.71 (dd,3J = 8.65 Hz, 3J = 3.24 Hz, 1H), 5.55 (AB system,Δν = 56.0 Hz, 2J = 17.7 Hz, 1H). 3C NMR (75 MHz, CDCl3/TMS); δ(p.p.m.): 184.93, 168.69, 157.60, 137.99, 129.52, 129.32, 129.14, 126.29, 121.70, 114.76, 75.26, 69.34, 62.07. Anal. calcd. for C17H15NO3S: C,65.16%; H,4.82%, N, 4.47%. Found: C,64.48%; H,4.71%, N, 4.18%. Mass Spectra: M+ = 314.0836, Exact mass = 314.0845.

Refinement top

The H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Since the first report in 1981 (Evans et al. 1981) exploring oxazolidin-2-ones as chiral auxiliaries in enantioselective aldol condensations, a number of related oxazolidin-2-ones and their synthetic applications have been reported. Recently, studies have shown that sulfur oxazolidine-2-thione derivatives have some advantages in terms of the asymmetric induction over the original 2-oxo analogues (Crimmins et al., 1998; Zhang et al., 2004; Shinisha et al., 2010). For this reason, the use of oxazolidine-2-thiones as chiral auxiliaries is a widely employed strategy for the total synthesis of relevant biological compounds (Tamura et al., 2009). An interesting study reported by Kitoh and collaborators (Kitoh et al., 2002) showed an alternative route to chiral 4-phenyl-1,3-oxazolidine-2-thione by optical resolution of the racemate through preferential crystallization. In this study, the crystal structure and vibrational spectra analysis of chiral 4-phenyl-1,3-oxazolidine-2-thione, (I), are reported.

The molecular structure of (I), Fig. 1, features a planar 1,3-oxazolidine-2-thione ring with the maximum deviations from the least-squares plane being 0.036 (4) for atom O1 and -0.041 (5) for atom C2. With reference to this plane, the two benzene rings are orientated to the same side and form dihedral angles of 86.5 (2) [ring-bound benzene ring] and 50.6 (2) °, respectively, with it. The ethan-1-one group is not co-planar with the five-membered ring as seen in the value of the O2—C10—N—C1 torsion angle of 151.5 (5) °; the carbonyl-O2 atom lies to the opposide side of the central plane to the benzene rings. The dihedral angle formed between the two benzene rings of 62.8 (2) ° indicates a non-parallel alignment. Overall, the molecule of (I) adopts a twisted U-shape.

The presence of C—H···O and C—H···S contacts, Table 1, leads to the formation of supramolecular 2-D arrays in the bc-plane, Fig. 2. The layers are two molecules thick. Additional stability to the layers is afforded by C—H···π interactions, Table 1. The layers with a flat topology stack along the a-direction, Fig. 3.

For background to oxazolidine-2-thiones, see: Evans et al. (1981); Crimmins et al. (1998); Zhang et al. (2004); Shinisha & Sunoj (2010); Tamura et al. (2009). For related structures, see: Kitoh et al. (2002). For the synthesis, see: Wu et al. (2004); Rodrigues et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view in projection of the supramolecular 2-D array with a thickness corresponding to two molecules. The C—H···O and C—H···S contacts are shown as blue and orange dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I) highlighting the stacking of layers along the a axis. The C—H···O, C—H···S and C—H···π contacts are shown as blue, orange and purple dashed lines, respectively.
(R)-2-Phenoxy-1-(4-phenyl-2-sulfanylidene-1,3-oxazolidin-3-yl)ethanone top
Crystal data top
C17H15NO3SF(000) = 656
Mr = 313.37Dx = 1.402 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2062 reflections
a = 33.514 (3) Åθ = 2.7–26.4°
b = 5.7514 (6) ŵ = 0.23 mm1
c = 7.7172 (8) ÅT = 126 K
β = 93.808 (7)°Block, colourless
V = 1484.2 (3) Å30.30 × 0.25 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2166 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
φ and ω scansh = 3936
7408 measured reflectionsk = 66
2588 independent reflectionsl = 89
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1039P)2 + 1.9443P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2588 reflectionsΔρmax = 0.81 e Å3
199 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 1143 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (18)
Crystal data top
C17H15NO3SV = 1484.2 (3) Å3
Mr = 313.37Z = 4
Monoclinic, C2Mo Kα radiation
a = 33.514 (3) ŵ = 0.23 mm1
b = 5.7514 (6) ÅT = 126 K
c = 7.7172 (8) Å0.30 × 0.25 × 0.16 mm
β = 93.808 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2166 reflections with I > 2σ(I)
7408 measured reflectionsRint = 0.064
2588 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.180Δρmax = 0.81 e Å3
S = 1.08Δρmin = 0.47 e Å3
2588 reflectionsAbsolute structure: Flack (1983), 1143 Friedel pairs
199 parametersAbsolute structure parameter: 0.01 (18)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71650 (13)0.0824 (8)0.6314 (6)0.0265 (11)
C20.70382 (14)0.0160 (10)0.3371 (6)0.0298 (11)
H2A0.68570.11250.29840.036*
H2B0.72190.04990.24390.036*
C30.67974 (14)0.2332 (8)0.3797 (6)0.0248 (10)
H30.69060.37170.32020.030*
C40.63525 (14)0.2206 (8)0.3422 (6)0.0240 (10)
C50.61306 (13)0.0403 (10)0.4132 (6)0.0284 (10)
H50.62630.07650.48230.034*
C60.57230 (14)0.0333 (10)0.3826 (6)0.0311 (10)
H60.55740.08730.43230.037*
C70.55245 (14)0.2019 (10)0.2792 (7)0.0332 (12)
H70.52430.19480.25640.040*
C80.57425 (15)0.3789 (9)0.2104 (7)0.0311 (11)
H80.56090.49500.14090.037*
C90.61494 (15)0.3893 (8)0.2410 (6)0.0274 (11)
H90.62950.51260.19280.033*
C100.67735 (13)0.4532 (9)0.6533 (7)0.0272 (11)
C110.67426 (15)0.4547 (9)0.8496 (7)0.0318 (12)
H11A0.66080.31090.88560.038*
H11B0.70140.45860.90860.038*
C120.61226 (14)0.6591 (8)0.8538 (6)0.0242 (10)
C130.59105 (15)0.4913 (9)0.7557 (6)0.0310 (12)
H130.60450.35860.71490.037*
C140.55026 (14)0.5183 (10)0.7176 (6)0.0319 (11)
H140.53600.40380.64980.038*
C150.52995 (15)0.7094 (10)0.7768 (7)0.0343 (12)
H150.50190.72470.75250.041*
C160.55166 (17)0.8801 (10)0.8735 (7)0.0358 (12)
H160.53821.01300.91380.043*
C170.59217 (15)0.8566 (9)0.9103 (6)0.0291 (11)
H170.60660.97420.97410.035*
N0.68964 (11)0.2510 (7)0.5738 (5)0.0255 (9)
O10.72682 (10)0.0467 (6)0.4973 (4)0.0305 (8)
O20.66648 (10)0.6161 (6)0.5650 (4)0.0300 (8)
O30.65227 (10)0.6512 (6)0.8994 (4)0.0306 (8)
S0.73540 (4)0.0379 (2)0.82903 (16)0.0340 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (2)0.030 (3)0.026 (3)0.0007 (18)0.0016 (18)0.001 (2)
C20.035 (2)0.034 (3)0.021 (2)0.003 (2)0.0009 (18)0.000 (2)
C30.037 (3)0.025 (2)0.012 (2)0.004 (2)0.0019 (18)0.0023 (19)
C40.035 (3)0.023 (2)0.014 (2)0.0003 (19)0.0044 (18)0.0011 (19)
C50.035 (2)0.026 (2)0.024 (2)0.002 (2)0.0004 (18)0.001 (2)
C60.037 (3)0.028 (2)0.029 (3)0.003 (2)0.0054 (19)0.002 (3)
C70.023 (2)0.049 (3)0.027 (3)0.000 (2)0.002 (2)0.006 (2)
C80.037 (3)0.035 (3)0.021 (3)0.003 (2)0.001 (2)0.005 (2)
C90.039 (3)0.025 (3)0.019 (3)0.002 (2)0.004 (2)0.002 (2)
C100.021 (2)0.027 (2)0.034 (3)0.0025 (18)0.001 (2)0.000 (2)
C110.032 (3)0.033 (3)0.030 (3)0.002 (2)0.001 (2)0.001 (2)
C120.029 (2)0.024 (2)0.020 (2)0.0033 (18)0.0030 (18)0.001 (2)
C130.036 (3)0.032 (3)0.026 (3)0.004 (2)0.011 (2)0.006 (2)
C140.033 (3)0.038 (3)0.024 (2)0.004 (2)0.0004 (18)0.003 (2)
C150.031 (3)0.039 (3)0.033 (3)0.004 (2)0.000 (2)0.004 (2)
C160.045 (3)0.034 (3)0.029 (3)0.009 (2)0.006 (2)0.001 (2)
C170.040 (3)0.027 (3)0.020 (3)0.000 (2)0.003 (2)0.000 (2)
N0.026 (2)0.031 (2)0.019 (2)0.0027 (17)0.0002 (15)0.0011 (18)
O10.0286 (18)0.0299 (19)0.032 (2)0.0042 (13)0.0022 (14)0.0018 (15)
O20.0333 (19)0.029 (2)0.0276 (19)0.0021 (14)0.0027 (14)0.0049 (16)
O30.036 (2)0.0321 (18)0.0238 (18)0.0025 (14)0.0029 (14)0.0057 (15)
S0.0338 (6)0.0398 (7)0.0275 (7)0.0061 (6)0.0047 (4)0.0051 (6)
Geometric parameters (Å, º) top
C1—O11.338 (6)C9—H90.9500
C1—N1.377 (6)C10—O21.201 (6)
C1—S1.632 (5)C10—N1.390 (6)
C2—O11.458 (5)C10—C111.525 (7)
C2—C31.535 (7)C11—O31.416 (6)
C2—H2A0.9900C11—H11A0.9900
C2—H2B0.9900C11—H11B0.9900
C3—C41.501 (6)C12—O31.364 (6)
C3—N1.516 (6)C12—C131.392 (7)
C3—H31.0000C12—C171.404 (7)
C4—C91.394 (7)C13—C141.388 (7)
C4—C51.408 (7)C13—H130.9500
C5—C61.371 (6)C14—C151.386 (8)
C5—H50.9500C14—H140.9500
C6—C71.396 (7)C15—C161.407 (8)
C6—H60.9500C15—H150.9500
C7—C81.379 (8)C16—C171.375 (7)
C7—H70.9500C16—H160.9500
C8—C91.370 (7)C17—H170.9500
C8—H80.9500
O1—C1—N109.7 (4)O2—C10—N119.3 (4)
O1—C1—S122.1 (3)O2—C10—C11121.4 (4)
N—C1—S128.1 (4)N—C10—C11119.0 (4)
O1—C2—C3106.0 (4)O3—C11—C10110.2 (4)
O1—C2—H2A110.5O3—C11—H11A109.6
C3—C2—H2A110.5C10—C11—H11A109.6
O1—C2—H2B110.5O3—C11—H11B109.6
C3—C2—H2B110.5C10—C11—H11B109.6
H2A—C2—H2B108.7H11A—C11—H11B108.1
C4—C3—N110.1 (4)O3—C12—C13125.1 (4)
C4—C3—C2116.7 (4)O3—C12—C17115.5 (4)
N—C3—C2100.5 (3)C13—C12—C17119.4 (4)
C4—C3—H3109.7C14—C13—C12119.8 (5)
N—C3—H3109.7C14—C13—H13120.1
C2—C3—H3109.7C12—C13—H13120.1
C9—C4—C5118.6 (4)C15—C14—C13121.2 (5)
C9—C4—C3121.0 (4)C15—C14—H14119.4
C5—C4—C3120.3 (4)C13—C14—H14119.4
C6—C5—C4120.0 (5)C14—C15—C16118.7 (5)
C6—C5—H5120.0C14—C15—H15120.6
C4—C5—H5120.0C16—C15—H15120.6
C5—C6—C7120.6 (5)C17—C16—C15120.6 (5)
C5—C6—H6119.7C17—C16—H16119.7
C7—C6—H6119.7C15—C16—H16119.7
C8—C7—C6119.2 (4)C16—C17—C12120.2 (5)
C8—C7—H7120.4C16—C17—H17119.9
C6—C7—H7120.4C12—C17—H17119.9
C9—C8—C7120.8 (5)C1—N—C10130.8 (4)
C9—C8—H8119.6C1—N—C3111.6 (4)
C7—C8—H8119.6C10—N—C3116.2 (4)
C8—C9—C4120.7 (5)C1—O1—C2111.7 (3)
C8—C9—H9119.7C12—O3—C11118.5 (4)
C4—C9—H9119.7
O1—C2—C3—C4124.8 (4)C15—C16—C17—C121.0 (8)
O1—C2—C3—N5.8 (5)O3—C12—C17—C16179.0 (5)
N—C3—C4—C9119.5 (5)C13—C12—C17—C162.0 (7)
C2—C3—C4—C9126.8 (5)O1—C1—N—C10163.8 (4)
N—C3—C4—C558.7 (6)S—C1—N—C1014.6 (7)
C2—C3—C4—C554.9 (6)O1—C1—N—C31.3 (5)
C9—C4—C5—C60.1 (7)S—C1—N—C3179.7 (4)
C3—C4—C5—C6178.1 (4)O2—C10—N—C1151.5 (5)
C4—C5—C6—C71.0 (7)C11—C10—N—C134.2 (7)
C5—C6—C7—C81.2 (7)O2—C10—N—C313.1 (6)
C6—C7—C8—C90.7 (7)C11—C10—N—C3161.2 (4)
C7—C8—C9—C40.1 (7)C4—C3—N—C1126.7 (4)
C5—C4—C9—C80.4 (7)C2—C3—N—C13.0 (5)
C3—C4—C9—C8178.7 (4)C4—C3—N—C1065.8 (5)
O2—C10—C11—O38.6 (6)C2—C3—N—C10170.5 (4)
N—C10—C11—O3165.6 (4)N—C1—O1—C25.5 (5)
O3—C12—C13—C14179.9 (4)S—C1—O1—C2175.9 (4)
C17—C12—C13—C141.2 (7)C3—C2—O1—C17.3 (5)
C12—C13—C14—C150.5 (8)C13—C12—O3—C112.3 (7)
C13—C14—C15—C161.5 (8)C17—C12—O3—C11178.8 (4)
C14—C15—C16—C170.7 (8)C10—C11—O3—C1269.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.293.202 (6)162
C9—H9···O3ii0.952.563.350 (6)140
C11—H11b···Siii0.992.873.814 (5)160
C17—H17···Cg1iv0.952.993.703 (5)133
C8—H8···Cg2ii0.952.793.523 (6)135
Symmetry codes: (i) x, y1, z; (ii) x, y, z1; (iii) x+3/2, y+1/2, z+2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H15NO3S
Mr313.37
Crystal system, space groupMonoclinic, C2
Temperature (K)126
a, b, c (Å)33.514 (3), 5.7514 (6), 7.7172 (8)
β (°) 93.808 (7)
V3)1484.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.25 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7408, 2588, 2166
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.180, 1.08
No. of reflections2588
No. of parameters199
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.47
Absolute structureFlack (1983), 1143 Friedel pairs
Absolute structure parameter0.01 (18)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.293.202 (6)162
C9—H9···O3ii0.952.563.350 (6)140
C11—H11b···Siii0.992.873.814 (5)160
C17—H17···Cg1iv0.952.993.703 (5)133
C8—H8···Cg2ii0.952.793.523 (6)135
Symmetry codes: (i) x, y1, z; (ii) x, y, z1; (iii) x+3/2, y+1/2, z+2; (iv) x, y, z+1.
 

Acknowledgements

We thank the Brazilian agencies FAPESP, CNPq (fellowships to IC and PRO) and CAPES (808/2009 to IC) for financial support. We also thank Dr Charles H. Lake from Indiana University of Pennsylvania for the data collection during the American Crystallographic Association Summer Course in small mol­ecule crystallography.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChemaxon (2010). Marvinsketch. http://www.chemaxon.com  Google Scholar
First citationCrimmins, M. T. & King, B. W. (1998). J. Am. Chem. Soc. 120, 9084–9085.  Web of Science CrossRef CAS Google Scholar
First citationEvans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKitoh, S., Kunimoto, K.-K., Funaki, N., Senda, H., Kuwae, A. & Hanai, K. (2002). J. Chem. Crystallogr. 32, 547–553.  Web of Science CSD CrossRef CAS Google Scholar
First citationRodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578–2582.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinisha, C. B. & Sunoj, R. B. (2010). J. Am. Chem. Soc. 132, 12319–12330.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTamura, K., Nakazaki, A. & Kobayashi, S. (2009). Synlett, 15, 2449–2452.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y., Yang, Y.-Q. & Hu, Q. (2004). J. Org. Chem. 69, 3990–3992.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, W., Carter, R. G. & Yokochi, F. T. (2004). J. Org. Chem. 69, 2569–2572.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds