metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­iodido(1,10-phenanthroline-5,6-dione-κ2N,N′)mercury(II)

aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 21 September 2011; accepted 21 September 2011; online 30 September 2011)

The HgII atom in the title complex, [HgI2(C12H6N2O2)], is tetra­hedrally coordinated by the N atoms of the chelating 1,10-phenanthroline-5,6-dione ligand and two I atoms. The range of tetra­hedral angles is broad, viz. 68.94 (17)° for the chelate angle to a wide 132.627 (15)° for the I—Hg—I angle. The ligand mol­ecule is non-planar with the O atoms lying 0.422 (5) and −0.325 (5) Å out of the plane through the remaining atoms [r.m.s. deviation = 0.068 Å]. Mol­ecules are consolidated in the crystal packing by C—H⋯O inter­actions.

Related literature

For the ligand synthesis and the crystal structure of 1,10-phenanthroline-5,6-dione, see: Calderazzo et al. (1999[Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389-4396.]). For an evaluation of the different coordinating ability of the two sets of donor atoms in the ligand, see: Fujihara et al. (2003[Fujihara, T., Okamura, R., Wada, T. & Tanaka, K. (2003). J. Chem. Soc. Dalton Trans. pp. 3221-3226.]). For the structure of the dichlorido analogue with two 1,10-phenanthroline-5,6-dione ligands, see: Figueiras et al. (2009[Figueiras, C. A. L., Bomfim, J. A. S., Howie, R. A., Tiekink, E. R. T. & Wardell, J. L. (2009). Acta Cryst. E65, m1645.]). For the crystallization procedure, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • [HgI2(C12H6N2O2)]

  • Mr = 664.58

  • Monoclinic, C c

  • a = 11.7941 (3) Å

  • b = 8.1725 (1) Å

  • c = 15.3982 (3) Å

  • β = 108.298 (2)°

  • V = 1409.14 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 15.30 mm−1

  • T = 100 K

  • 0.15 × 0.15 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.586, Tmax = 1.000

  • 15631 measured reflections

  • 3209 independent reflections

  • 3155 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.049

  • S = 1.03

  • 3209 reflections

  • 172 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.79 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1579 Friedel pairs

  • Flack parameter: −0.005 (3)

Table 1
Selected bond lengths (Å)

Hg1—N1 2.411 (5)
Hg1—N2 2.416 (5)
Hg1—I1 2.6637 (4)
Hg1—I2 2.6739 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.95 2.58 3.077 (8) 113
C12—H12⋯O1ii 0.95 2.40 3.248 (7) 148
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,10-Phenanthroline-5,6-dione (Calderazzo et al., 1999) has attracted our attention due to the presence of two coordinating functionalities within the same molecule, i.e. the quinonoid and the diimine residues. Moreover, the presence of two types of basic centres, i.e. nitrogen and oxygen, both sp2-hybridized, makes this molecule an ideal system to study the different coordinating ability of the two sets of donor atoms (Calderazzo et al., 1999; Fujihara et al., 2003). In connection with a recent structure determination of the related mercury(II)dichlorido structure with two 1,10-phenanthroline-5,6-dione ligands (Figueiras et al., 2009), the structure of the title compound, (I), was determined.

The Hg atom in (I), Fig. 1 and Table 1, is chelated by the 1,10-phenanthroline-5,6-dione ligand and the distorted tetrahedral I2N2 donor set is completed by two I atoms. The range of tetrahedral angles is from a narrow 68.94 (17)°, for the chelate angle, to a wide 132.627 (15)°, for the angle subtended at Hg by the I atoms. The 1,10-phenanthroline-5,6-dione ligand is planar with the r.m.s. deviation for the 14 C and N atoms being 0.068 Å with the maximum deviations from the least-squares plane being 0.146 (6) Å for atom C7 and -0.116 (7) for atom C6; the O1 and O2 atoms lie -0.325 (5) and 0.422 (5) Å out of this plane, respectively.

The molecules of (I) are consolidated in the crystal packing via weak C—H···O interactions involving both O atoms, Table 2 and Fig. 2.

Related literature top

For the ligand synthesis and the crystal structure of 1,10-phenanthroline-5,6-dione, see: Calderazzo et al. (1999). For an evaluation of the different coordinating ability of the two sets of donor atoms in the ligand, see: Fujihara et al. (2003). For the structure of the dichlorido analogue with two 1,10-phenanthroline-5,6-dione ligands, see: Figueiras et al. (2009). For the crystallization procedure, see: Harrowfield et al. (1996).

Experimental top

The title complex was obtained by the branched tube method (Harrowfield et al., 1996). 1,10-Phenanthroline-5,6-dione (0.136 g, 0.648 mmol) and HgI2 (0.294 g, 0648 mmol) were placed at the bottom of main arm of a branched tube. Methanol was carefully added to fill both arms. The tube was sealed and the main arm immersed in a bath at 333 K while the other was kept at ambient temperature. After five days, red crystals were deposited in the cooler arm. These were filtered off, washed with acetone and ether, and air dried; Yield: 60%; M.pt. 524–526 K. Anal. Calc for C12H6HgI2N2O2; C, 21.7, H, 0.60, N, 4.2%; Found: C, 21.89, H, 0.69, N: 4.24%. Selected FT—IR data, ν(cm-1): 1687 (CO). 1H NMR (δ): 7.85–7.89 (dd, 2H, H3,8), 8.53–8.56 (dd, 2H, H2,9), 9.01–9.03 (dd, 2H, H4,7) p.p.m..

Refinement top

The H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C). A number of reflections, i.e. 4 0 -10, 1 3 -10, 6 0 -10, 0 0 8, 2 4 -11, 6 0 8, 5 3 -14 and 3 3 -12, were omitted from the final refinement owing to poor agreement.

Structure description top

1,10-Phenanthroline-5,6-dione (Calderazzo et al., 1999) has attracted our attention due to the presence of two coordinating functionalities within the same molecule, i.e. the quinonoid and the diimine residues. Moreover, the presence of two types of basic centres, i.e. nitrogen and oxygen, both sp2-hybridized, makes this molecule an ideal system to study the different coordinating ability of the two sets of donor atoms (Calderazzo et al., 1999; Fujihara et al., 2003). In connection with a recent structure determination of the related mercury(II)dichlorido structure with two 1,10-phenanthroline-5,6-dione ligands (Figueiras et al., 2009), the structure of the title compound, (I), was determined.

The Hg atom in (I), Fig. 1 and Table 1, is chelated by the 1,10-phenanthroline-5,6-dione ligand and the distorted tetrahedral I2N2 donor set is completed by two I atoms. The range of tetrahedral angles is from a narrow 68.94 (17)°, for the chelate angle, to a wide 132.627 (15)°, for the angle subtended at Hg by the I atoms. The 1,10-phenanthroline-5,6-dione ligand is planar with the r.m.s. deviation for the 14 C and N atoms being 0.068 Å with the maximum deviations from the least-squares plane being 0.146 (6) Å for atom C7 and -0.116 (7) for atom C6; the O1 and O2 atoms lie -0.325 (5) and 0.422 (5) Å out of this plane, respectively.

The molecules of (I) are consolidated in the crystal packing via weak C—H···O interactions involving both O atoms, Table 2 and Fig. 2.

For the ligand synthesis and the crystal structure of 1,10-phenanthroline-5,6-dione, see: Calderazzo et al. (1999). For an evaluation of the different coordinating ability of the two sets of donor atoms in the ligand, see: Fujihara et al. (2003). For the structure of the dichlorido analogue with two 1,10-phenanthroline-5,6-dione ligands, see: Figueiras et al. (2009). For the crystallization procedure, see: Harrowfield et al. (1996).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents of (I). The C—H···O interactions are shown as orange dashed lines.
Diiodido(1,10-phenanthroline-5,6-dione-κ2N,N')mercury(II) top
Crystal data top
[HgI2(C12H6N2O2)]F(000) = 1176
Mr = 664.58Dx = 3.133 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 11298 reflections
a = 11.7941 (3) Åθ = 2.8–29.3°
b = 8.1725 (1) ŵ = 15.30 mm1
c = 15.3982 (3) ÅT = 100 K
β = 108.298 (2)°Block, red
V = 1409.14 (5) Å30.15 × 0.15 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3209 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3155 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scanh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1010
Tmin = 0.586, Tmax = 1.000l = 1919
15631 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0292P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3209 reflectionsΔρmax = 0.51 e Å3
172 parametersΔρmin = 0.79 e Å3
2 restraintsAbsolute structure: Flack (1983), 1579 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (3)
Crystal data top
[HgI2(C12H6N2O2)]V = 1409.14 (5) Å3
Mr = 664.58Z = 4
Monoclinic, CcMo Kα radiation
a = 11.7941 (3) ŵ = 15.30 mm1
b = 8.1725 (1) ÅT = 100 K
c = 15.3982 (3) Å0.15 × 0.15 × 0.15 mm
β = 108.298 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3209 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3155 reflections with I > 2σ(I)
Tmin = 0.586, Tmax = 1.000Rint = 0.041
15631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.049Δρmax = 0.51 e Å3
S = 1.03Δρmin = 0.79 e Å3
3209 reflectionsAbsolute structure: Flack (1983), 1579 Friedel pairs
172 parametersAbsolute structure parameter: 0.005 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.499993 (19)0.48034 (2)0.500006 (16)0.01421 (6)
I10.46538 (3)0.38365 (4)0.65496 (2)0.01434 (9)
I20.66399 (3)0.67286 (5)0.46534 (3)0.01911 (10)
O10.0663 (4)0.5129 (5)0.0820 (3)0.0211 (10)
O20.2083 (4)0.2572 (5)0.0607 (3)0.0174 (9)
N10.3288 (4)0.5884 (6)0.3831 (3)0.0132 (10)
N20.4235 (4)0.2848 (6)0.3779 (3)0.0120 (10)
C10.2862 (5)0.7383 (7)0.3878 (4)0.0154 (12)
H10.31750.79880.44280.018*
C20.1973 (6)0.8101 (7)0.3152 (4)0.0160 (12)
H20.16790.91640.32080.019*
C30.1537 (5)0.7221 (8)0.2351 (4)0.0156 (12)
H30.09380.76730.18420.019*
C40.1990 (6)0.5657 (7)0.2299 (4)0.0132 (11)
C50.2882 (6)0.5030 (6)0.3057 (4)0.0111 (11)
C60.1530 (6)0.4715 (7)0.1439 (4)0.0142 (12)
C70.2238 (5)0.3175 (7)0.1356 (4)0.0115 (11)
C80.3413 (5)0.3392 (7)0.3019 (4)0.0100 (11)
C90.3084 (5)0.2485 (7)0.2209 (4)0.0130 (12)
C100.3582 (5)0.0953 (7)0.2196 (4)0.0156 (12)
H100.33780.03240.16500.019*
C110.4383 (6)0.0363 (7)0.2996 (4)0.0147 (12)
H110.47130.07020.30190.018*
C120.4696 (6)0.1365 (8)0.3764 (4)0.0155 (12)
H120.52670.09710.43070.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01526 (11)0.01650 (11)0.01011 (10)0.00067 (10)0.00290 (7)0.00105 (10)
I10.01624 (19)0.01475 (19)0.01394 (18)0.00041 (15)0.00747 (15)0.00073 (14)
I20.0206 (2)0.01604 (19)0.0225 (2)0.00531 (16)0.00937 (17)0.00433 (16)
O10.023 (3)0.019 (2)0.015 (2)0.0015 (18)0.0049 (19)0.0022 (17)
O20.021 (2)0.018 (2)0.012 (2)0.0045 (18)0.0053 (17)0.0010 (18)
N10.012 (2)0.013 (2)0.015 (2)0.001 (2)0.007 (2)0.001 (2)
N20.014 (2)0.012 (2)0.012 (2)0.0029 (19)0.0064 (19)0.0014 (19)
C10.017 (3)0.015 (3)0.016 (3)0.000 (2)0.009 (3)0.002 (2)
C20.017 (3)0.011 (3)0.021 (3)0.003 (2)0.009 (3)0.002 (2)
C30.013 (3)0.021 (3)0.012 (3)0.000 (2)0.004 (2)0.006 (2)
C40.015 (3)0.012 (3)0.013 (3)0.005 (2)0.005 (2)0.001 (2)
C50.013 (3)0.011 (3)0.011 (3)0.004 (2)0.006 (2)0.001 (2)
C60.018 (3)0.014 (3)0.011 (3)0.005 (2)0.005 (3)0.001 (2)
C70.009 (3)0.013 (3)0.014 (3)0.004 (2)0.005 (2)0.002 (2)
C80.010 (3)0.008 (2)0.012 (3)0.000 (2)0.003 (2)0.001 (2)
C90.015 (3)0.013 (3)0.012 (3)0.005 (2)0.006 (2)0.002 (2)
C100.018 (3)0.014 (3)0.015 (3)0.007 (2)0.005 (2)0.001 (2)
C110.014 (3)0.009 (3)0.021 (3)0.001 (2)0.006 (3)0.005 (2)
C120.014 (3)0.019 (3)0.012 (3)0.001 (2)0.004 (2)0.006 (2)
Geometric parameters (Å, º) top
Hg1—N12.411 (5)C3—C41.398 (9)
Hg1—N22.416 (5)C3—H30.9500
Hg1—I12.6637 (4)C4—C51.400 (9)
Hg1—I22.6739 (4)C4—C61.479 (8)
O1—C61.207 (8)C5—C81.487 (8)
O2—C71.215 (7)C6—C71.538 (8)
N1—C51.333 (8)C7—C91.488 (8)
N1—C11.335 (8)C8—C91.396 (8)
N2—C81.341 (7)C9—C101.386 (9)
N2—C121.331 (8)C10—C111.382 (9)
C1—C21.399 (9)C10—H100.9500
C1—H10.9500C11—C121.390 (9)
C2—C31.380 (9)C11—H110.9500
C2—H20.9500C12—H120.9500
N2—Hg1—N168.94 (17)N1—C5—C4121.3 (5)
N2—Hg1—I1112.07 (11)N1—C5—C8118.0 (5)
N1—Hg1—I1116.72 (11)C4—C5—C8120.7 (5)
N2—Hg1—I2110.55 (11)O1—C6—C4122.9 (6)
N1—Hg1—I297.13 (12)O1—C6—C7120.7 (5)
I1—Hg1—I2132.627 (15)C4—C6—C7116.4 (5)
C5—N1—C1119.5 (5)O2—C7—C9123.0 (5)
C5—N1—Hg1117.2 (4)O2—C7—C6119.2 (5)
C1—N1—Hg1122.5 (4)C9—C7—C6117.9 (5)
C8—N2—C12118.3 (5)N2—C8—C9121.7 (5)
C8—N2—Hg1116.8 (4)N2—C8—C5117.5 (5)
C12—N2—Hg1124.1 (4)C9—C8—C5120.7 (5)
N1—C1—C2122.8 (6)C10—C9—C8119.5 (6)
N1—C1—H1118.6C10—C9—C7120.0 (5)
C2—C1—H1118.6C8—C9—C7120.5 (5)
C3—C2—C1118.1 (6)C9—C10—C11118.5 (6)
C3—C2—H2120.9C9—C10—H10120.8
C1—C2—H2120.9C11—C10—H10120.8
C2—C3—C4119.1 (6)C10—C11—C12118.5 (6)
C2—C3—H3120.5C10—C11—H11120.8
C4—C3—H3120.5C12—C11—H11120.8
C5—C4—C3119.1 (6)N2—C12—C11123.4 (6)
C5—C4—C6121.6 (5)N2—C12—H12118.3
C3—C4—C6119.2 (6)C11—C12—H12118.3
N2—Hg1—N1—C59.4 (4)C5—C4—C6—C711.3 (8)
I1—Hg1—N1—C5114.3 (4)C3—C4—C6—C7167.7 (5)
I2—Hg1—N1—C599.9 (4)O1—C6—C7—O215.4 (8)
N2—Hg1—N1—C1179.3 (5)C4—C6—C7—O2163.1 (5)
I1—Hg1—N1—C175.8 (5)O1—C6—C7—C9164.2 (6)
I2—Hg1—N1—C169.9 (4)C4—C6—C7—C917.3 (7)
N1—Hg1—N2—C810.8 (4)C12—N2—C8—C93.4 (8)
I1—Hg1—N2—C8122.1 (4)Hg1—N2—C8—C9167.0 (4)
I2—Hg1—N2—C879.1 (4)C12—N2—C8—C5178.2 (5)
N1—Hg1—N2—C12179.4 (5)Hg1—N2—C8—C511.3 (6)
I1—Hg1—N2—C1268.1 (5)N1—C5—C8—N22.7 (8)
I2—Hg1—N2—C1290.8 (5)C4—C5—C8—N2177.9 (5)
C5—N1—C1—C21.7 (9)N1—C5—C8—C9175.7 (5)
Hg1—N1—C1—C2171.3 (4)C4—C5—C8—C93.8 (8)
N1—C1—C2—C30.9 (9)N2—C8—C9—C102.5 (8)
C1—C2—C3—C40.4 (9)C5—C8—C9—C10179.2 (5)
C2—C3—C4—C50.6 (9)N2—C8—C9—C7175.3 (5)
C2—C3—C4—C6179.6 (5)C5—C8—C9—C73.0 (8)
C1—N1—C5—C41.8 (8)O2—C7—C9—C1010.9 (8)
Hg1—N1—C5—C4172.0 (4)C6—C7—C9—C10168.7 (5)
C1—N1—C5—C8177.6 (5)O2—C7—C9—C8166.9 (5)
Hg1—N1—C5—C87.4 (6)C6—C7—C9—C813.6 (8)
C3—C4—C5—N11.3 (9)C8—C9—C10—C110.9 (9)
C6—C4—C5—N1179.7 (5)C7—C9—C10—C11178.6 (5)
C3—C4—C5—C8178.1 (5)C9—C10—C11—C123.0 (9)
C6—C4—C5—C80.8 (9)C8—N2—C12—C111.1 (9)
C5—C4—C6—O1170.3 (6)Hg1—N2—C12—C11168.6 (4)
C3—C4—C6—O110.8 (9)C10—C11—C12—N22.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.583.077 (8)113
C12—H12···O1ii0.952.403.248 (7)148
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[HgI2(C12H6N2O2)]
Mr664.58
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)11.7941 (3), 8.1725 (1), 15.3982 (3)
β (°) 108.298 (2)
V3)1409.14 (5)
Z4
Radiation typeMo Kα
µ (mm1)15.30
Crystal size (mm)0.15 × 0.15 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.586, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15631, 3209, 3155
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.049, 1.03
No. of reflections3209
No. of parameters172
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.79
Absolute structureFlack (1983), 1579 Friedel pairs
Absolute structure parameter0.005 (3)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Hg1—N12.411 (5)Hg1—I12.6637 (4)
Hg1—N22.416 (5)Hg1—I22.6739 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.583.077 (8)113
C12—H12···O1ii0.952.403.248 (7)148
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

Acknowledgements

We acknowledge financial support of this work by the Islamic Azad University, Saveh Branch, and thank the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCalderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFigueiras, C. A. L., Bomfim, J. A. S., Howie, R. A., Tiekink, E. R. T. & Wardell, J. L. (2009). Acta Cryst. E65, m1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujihara, T., Okamura, R., Wada, T. & Tanaka, K. (2003). J. Chem. Soc. Dalton Trans. pp. 3221–3226.  CSD CrossRef Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds