metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{5,5′-Dimeth­­oxy-2,2′-[1,1′-(2,2-di­methyl­propane-1,3-diyldi­nitrilo)­di­ethyl­­idyne]diphenolato-κ4O,N,N′,O′}copper(II) monohydrate

aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, bDepartment of Chemistry, K. N. Toosi University of Technology, PO Box, 16315-1618, Tehran, Iran, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 21 September 2011; accepted 22 September 2011; online 30 September 2011)

The tetra­dentate dianion in the title complex hydrate, [Cu(C23H28N2O4)]·H2O, provides the CuII atom with a cis-N2O2 donor set. There is a significant twist from a regular square-planar geometry with the dihedral angle formed between the two six-membered CuOC3N chelate rings being 32.14 (8)°. The water mol­ecule forms hydrogen bonds to each of the coordinating O atoms of a given complex mol­ecule. Supra­molecular layers in the bc plane are formed in the crystal packing through C—H⋯O and C—H⋯π inter­actions.

Related literature

For the catalytic potential of Schiff base complexes of CuII, see: Gupta & Sutar (2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]); Rayati et al. (2010[Rayati, S., Zakavi, S., Koliaei, M., Wojtczak, A. & Kozakiewicz, A. (2010). Inorg. Chem. Commun. 13, 203-207.]). For the structure of the ligand, see: Ghaemi et al. (2011[Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2760.]). For crystallization conditions, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C23H28N2O4)]·H2O

  • Mr = 478.03

  • Triclinic, [P \overline 1]

  • a = 10.4721 (7) Å

  • b = 10.8023 (9) Å

  • c = 10.8487 (7) Å

  • α = 106.699 (7)°

  • β = 99.823 (5)°

  • γ = 100.035 (6)°

  • V = 1125.37 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 294 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.643, Tmax = 1.000

  • 11143 measured reflections

  • 5034 independent reflections

  • 4332 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 0.99

  • 5034 reflections

  • 285 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O2 1.8825 (16)
Cu—O3 1.8776 (15)
Cu—N1 1.9597 (17)
Cu—N2 1.9524 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O2 0.84 2.12 2.832 (3) 142
O1w—H2w⋯O3 0.84 2.32 3.035 (3) 143
C7—H7c⋯O1wi 0.96 2.55 3.476 (5) 163
C16—H16c⋯O2ii 0.96 2.52 3.409 (3) 153
C14—H14b⋯Cg1ii 0.97 2.62 3.426 (2) 141
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Synthetic copper(II) Schiff base complexes have long been of great interest because of their potential as catalysts in the oxidation of various organic compounds (Gupta & Sutar, 2008). In continuation of research in this field (Rayati et al., 2010), the title complex, (I), was investigated.

The tetradentate dianion in the title monohydrate, (I), Fig. 1, provides a cis-N2O2 donor set, Table 1. Three six-membered chelate rings are formed as a result of coordination of the dianion. The CuNC3N ring adopts a half-chair conformation. While the CuOC3N chelate ring containing the O3 atom approaches planarity with a r.m.s. deviation of 0.031 Å, the other ring displays significant distortions. Thus, the r.m.s. deviation for the O2-containing CuOC3N chelate ring is 0.163 Å with maximum deviations of 0.162 (2) Å for atom O2 and -0.159 (1) Å for the Cu atom. The dihedral angle formed between the two CuOC3N chelate rings is 32.14 (8)° indicating a significant distortion from a regular square planar geometry. Each of the methoxy groups is co-planar with the benzene ring to which it is attached as seen in the values of the C7—O1—C3—C2 and C23—O4—C20—C19 of -0.8 (4) and -179.3 (3)°, respectively. The water molecule of solvation is associated with the complex, forming a bridge via its hydrogen atoms between the two coordinated oxygen atoms, Table 2.

The crystal packing features C—H···O and C—H···π interactions, Table 2, that assemble molecules into layers in the bc plane, Fig. 2, which stack along the a axis, Fig. 3.

Related literature top

For the catalytic potential of Schiff base complexes of CuII, see: Gupta & Sutar (2008); Rayati et al. (2010). For the structure of the ligand, see: Ghaemi et al. (2011). For crystallization conditions, see: Harrowfield et al. (1996).

Experimental top

The title complex was obtained by the template method in a branch tube (Harrowfield et al., 1996). The recently described (Ghaemi et al., 2011) N,N'-bis(2-hydroxy-4-methoxyacetophenone)-2,2-dimethylpropane-1,3-diamine (0.40 g, 1 mmol) and copper(II) acetate monohydrate (0.199 g, 1 mmol) were placed in the main arm of a branched tube. Ethanol was added to fill both arms. The tube was sealed and the main arm immersed in an oil bath at 333 K while the other was held at ambient temperature. After one week, crystals deposited in the cooler arm. These were filtered off and air dried. Yield: 75%. FT—IR data: ν(CN) 1595 cm-1.

Refinement top

The H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The water-H atoms were placed in calculated positions (O—H = 0.84 Å; 1.5Uequiv(O) on the basis of hydrogen bonding.

Structure description top

Synthetic copper(II) Schiff base complexes have long been of great interest because of their potential as catalysts in the oxidation of various organic compounds (Gupta & Sutar, 2008). In continuation of research in this field (Rayati et al., 2010), the title complex, (I), was investigated.

The tetradentate dianion in the title monohydrate, (I), Fig. 1, provides a cis-N2O2 donor set, Table 1. Three six-membered chelate rings are formed as a result of coordination of the dianion. The CuNC3N ring adopts a half-chair conformation. While the CuOC3N chelate ring containing the O3 atom approaches planarity with a r.m.s. deviation of 0.031 Å, the other ring displays significant distortions. Thus, the r.m.s. deviation for the O2-containing CuOC3N chelate ring is 0.163 Å with maximum deviations of 0.162 (2) Å for atom O2 and -0.159 (1) Å for the Cu atom. The dihedral angle formed between the two CuOC3N chelate rings is 32.14 (8)° indicating a significant distortion from a regular square planar geometry. Each of the methoxy groups is co-planar with the benzene ring to which it is attached as seen in the values of the C7—O1—C3—C2 and C23—O4—C20—C19 of -0.8 (4) and -179.3 (3)°, respectively. The water molecule of solvation is associated with the complex, forming a bridge via its hydrogen atoms between the two coordinated oxygen atoms, Table 2.

The crystal packing features C—H···O and C—H···π interactions, Table 2, that assemble molecules into layers in the bc plane, Fig. 2, which stack along the a axis, Fig. 3.

For the catalytic potential of Schiff base complexes of CuII, see: Gupta & Sutar (2008); Rayati et al. (2010). For the structure of the ligand, see: Ghaemi et al. (2011). For crystallization conditions, see: Harrowfield et al. (1996).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular layer in the bc plane in (I) sustained by C—H···O and C—H···π interactions shown as blue and black dashed lines, respectively. The O—H···O hydrogen bonds are shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents of (I), highlighting the stacking of layers along the a axis. The C—H···O and C—H···π interactions shown as blue and black dashed lines, respectively, and the O—H···O hydrogen bonds are shown as orange dashed lines.
{5,5'-Dimethoxy-2,2'-[1,1'-(2,2-dimethylpropane-1,3-diyldinitrilo)diethylidyne]diphenolato-κ4O,N,N',O'}copper(II) monohydrate top
Crystal data top
[Cu(C23H28N2O4)]·H2OZ = 2
Mr = 478.03F(000) = 502
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4721 (7) ÅCell parameters from 5694 reflections
b = 10.8023 (9) Åθ = 2.3–29.3°
c = 10.8487 (7) ŵ = 1.01 mm1
α = 106.699 (7)°T = 294 K
β = 99.823 (5)°Block, dark-brown
γ = 100.035 (6)°0.40 × 0.40 × 0.20 mm
V = 1125.37 (14) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
5034 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4332 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scanh = 1213
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1413
Tmin = 0.643, Tmax = 1.000l = 1411
11143 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.3861P]
where P = (Fo2 + 2Fc2)/3
5034 reflections(Δ/σ)max = 0.002
285 parametersΔρmax = 0.26 e Å3
6 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(C23H28N2O4)]·H2Oγ = 100.035 (6)°
Mr = 478.03V = 1125.37 (14) Å3
Triclinic, P1Z = 2
a = 10.4721 (7) ÅMo Kα radiation
b = 10.8023 (9) ŵ = 1.01 mm1
c = 10.8487 (7) ÅT = 294 K
α = 106.699 (7)°0.40 × 0.40 × 0.20 mm
β = 99.823 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
5034 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4332 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 1.000Rint = 0.024
11143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.99Δρmax = 0.26 e Å3
5034 reflectionsΔρmin = 0.47 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.48963 (3)0.47337 (3)0.24182 (2)0.04175 (11)
O10.04084 (19)0.0426 (2)0.1635 (2)0.0746 (6)
O20.40205 (16)0.30214 (16)0.12419 (15)0.0519 (4)
O30.62185 (18)0.39699 (17)0.30882 (16)0.0580 (5)
O40.96607 (19)0.3235 (2)0.60237 (19)0.0702 (5)
O1w0.5646 (3)0.1173 (3)0.1144 (3)0.1143 (10)
H1w0.49560.14030.08670.171*
H2w0.61210.18150.17940.171*
N10.40191 (19)0.55577 (19)0.12292 (18)0.0440 (4)
N20.54285 (18)0.63414 (17)0.39652 (18)0.0404 (4)
C10.2881 (2)0.2697 (2)0.0363 (2)0.0429 (5)
C20.2249 (2)0.1342 (2)0.0152 (2)0.0472 (5)
H20.26380.07430.01550.057*
C30.1068 (2)0.0873 (3)0.1098 (2)0.0553 (6)
C40.0476 (3)0.1766 (3)0.1551 (3)0.0685 (8)
H40.03290.14620.21820.082*
C50.1076 (3)0.3079 (3)0.1070 (3)0.0607 (7)
H50.06640.36570.13920.073*
C60.2299 (2)0.3623 (2)0.0100 (2)0.0461 (5)
C70.0998 (3)0.1364 (3)0.1189 (3)0.0780 (9)
H7A0.04490.22450.16470.117*
H7B0.10710.11610.02550.117*
H7C0.18690.13170.13670.117*
C80.2965 (2)0.5025 (3)0.0267 (2)0.0481 (6)
C90.2384 (3)0.5809 (3)0.0542 (3)0.0696 (8)
H9A0.29020.67110.02120.104*
H9B0.14800.57950.04750.104*
H9C0.24010.54200.14520.104*
C100.4828 (3)0.6911 (2)0.1535 (2)0.0520 (6)
H10A0.45730.72300.08010.062*
H10B0.57590.68820.16230.062*
C110.4675 (3)0.7898 (2)0.2811 (3)0.0511 (6)
C120.3407 (3)0.8406 (3)0.2542 (3)0.0714 (8)
H12A0.34820.88910.19320.107*
H12B0.33010.89800.33580.107*
H12C0.26460.76650.21700.107*
C130.5910 (3)0.9054 (3)0.3299 (3)0.0732 (8)
H13A0.59940.94410.26150.110*
H13B0.66880.87320.35190.110*
H13C0.58220.97130.40700.110*
C140.4513 (2)0.7208 (2)0.3848 (2)0.0456 (5)
H14A0.46520.78830.47030.055*
H14B0.36040.66810.36230.055*
C150.6363 (2)0.6611 (2)0.5039 (2)0.0434 (5)
C160.6651 (3)0.7919 (2)0.6149 (3)0.0632 (7)
H16A0.63220.85620.58120.095*
H16B0.75960.82300.65080.095*
H16C0.62180.77940.68310.095*
C170.7159 (2)0.5667 (2)0.5215 (2)0.0423 (5)
C180.8061 (3)0.5949 (3)0.6445 (2)0.0564 (6)
H180.81150.67300.71200.068*
C190.8854 (3)0.5134 (3)0.6686 (3)0.0635 (7)
H190.94180.53510.75160.076*
C200.8819 (2)0.3976 (3)0.5691 (2)0.0508 (6)
C210.7941 (2)0.3632 (2)0.4486 (2)0.0459 (5)
H210.79170.28540.38220.055*
C220.7074 (2)0.4443 (2)0.4242 (2)0.0425 (5)
C230.9685 (3)0.2051 (4)0.5051 (3)0.0800 (9)
H23A1.03080.16250.54220.120*
H23B0.99510.22590.43150.120*
H23C0.88120.14650.47540.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.04730 (18)0.04062 (18)0.03637 (16)0.01857 (13)0.00166 (12)0.01100 (12)
O10.0582 (11)0.0691 (13)0.0700 (12)0.0033 (10)0.0159 (10)0.0074 (10)
O20.0550 (9)0.0437 (9)0.0456 (9)0.0209 (8)0.0136 (7)0.0063 (7)
O30.0669 (11)0.0539 (10)0.0417 (8)0.0319 (9)0.0107 (8)0.0014 (7)
O40.0647 (12)0.0861 (14)0.0622 (11)0.0343 (11)0.0056 (9)0.0297 (11)
O1w0.0964 (18)0.0788 (16)0.153 (2)0.0434 (14)0.0017 (17)0.0207 (17)
N10.0504 (10)0.0491 (11)0.0414 (9)0.0236 (9)0.0130 (8)0.0198 (8)
N20.0443 (10)0.0368 (9)0.0434 (9)0.0130 (8)0.0108 (8)0.0154 (8)
C10.0449 (12)0.0550 (13)0.0294 (9)0.0224 (10)0.0044 (9)0.0110 (9)
C20.0471 (12)0.0536 (14)0.0371 (11)0.0195 (11)0.0007 (9)0.0099 (10)
C30.0486 (13)0.0643 (16)0.0437 (12)0.0144 (12)0.0010 (10)0.0087 (12)
C40.0521 (15)0.087 (2)0.0535 (15)0.0173 (15)0.0137 (12)0.0185 (15)
C50.0559 (15)0.0807 (19)0.0504 (14)0.0302 (14)0.0010 (12)0.0283 (14)
C60.0480 (12)0.0607 (15)0.0348 (10)0.0256 (11)0.0063 (9)0.0178 (10)
C70.0662 (18)0.0586 (17)0.086 (2)0.0091 (15)0.0071 (16)0.0059 (16)
C80.0545 (13)0.0627 (15)0.0400 (11)0.0308 (12)0.0133 (10)0.0251 (11)
C90.0762 (19)0.079 (2)0.0666 (17)0.0324 (16)0.0040 (14)0.0419 (16)
C100.0565 (14)0.0581 (15)0.0553 (14)0.0217 (12)0.0194 (11)0.0313 (12)
C110.0610 (14)0.0421 (12)0.0596 (14)0.0211 (11)0.0165 (12)0.0242 (11)
C120.087 (2)0.0629 (17)0.0770 (19)0.0444 (16)0.0179 (16)0.0274 (15)
C130.084 (2)0.0560 (16)0.081 (2)0.0073 (15)0.0165 (17)0.0320 (15)
C140.0522 (13)0.0409 (12)0.0482 (12)0.0187 (10)0.0169 (10)0.0136 (10)
C150.0487 (12)0.0373 (11)0.0406 (11)0.0041 (10)0.0098 (10)0.0113 (9)
C160.086 (2)0.0412 (13)0.0514 (14)0.0139 (13)0.0024 (13)0.0066 (11)
C170.0414 (11)0.0394 (11)0.0411 (11)0.0037 (9)0.0021 (9)0.0136 (9)
C180.0568 (14)0.0482 (14)0.0470 (13)0.0036 (12)0.0092 (11)0.0069 (11)
C190.0554 (15)0.0667 (17)0.0531 (14)0.0070 (13)0.0161 (12)0.0173 (13)
C200.0406 (12)0.0599 (15)0.0524 (13)0.0119 (11)0.0003 (10)0.0252 (12)
C210.0434 (12)0.0536 (14)0.0422 (11)0.0174 (10)0.0060 (9)0.0169 (10)
C220.0400 (11)0.0478 (12)0.0378 (11)0.0098 (10)0.0018 (9)0.0157 (9)
C230.082 (2)0.099 (2)0.077 (2)0.056 (2)0.0146 (17)0.0381 (19)
Geometric parameters (Å, º) top
Cu—O21.8825 (16)C9—H9C0.9600
Cu—O31.8776 (15)C10—C111.538 (3)
Cu—N11.9597 (17)C10—H10A0.9700
Cu—N21.9524 (18)C10—H10B0.9700
O1—C31.358 (3)C11—C131.528 (4)
O1—C71.428 (3)C11—C141.535 (3)
O2—C11.316 (3)C11—C121.538 (3)
O3—C221.312 (3)C12—H12A0.9600
O4—C201.361 (3)C12—H12B0.9600
O4—C231.412 (4)C12—H12C0.9600
O1w—H1w0.8400C13—H13A0.9600
O1w—H2w0.8400C13—H13B0.9600
N1—C81.296 (3)C13—H13C0.9600
N1—C101.469 (3)C14—H14A0.9700
N2—C151.310 (3)C14—H14B0.9700
N2—C141.466 (3)C15—C171.458 (3)
C1—C21.400 (3)C15—C161.512 (3)
C1—C61.421 (3)C16—H16A0.9600
C2—C31.374 (3)C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
C3—C41.390 (4)C17—C221.412 (3)
C4—C51.353 (4)C17—C181.414 (3)
C4—H40.9300C18—C191.359 (4)
C5—C61.420 (3)C18—H180.9300
C5—H50.9300C19—C201.387 (4)
C6—C81.459 (4)C19—H190.9300
C7—H7A0.9600C20—C211.373 (3)
C7—H7B0.9600C21—C221.411 (3)
C7—H7C0.9600C21—H210.9300
C8—C91.511 (3)C23—H23A0.9600
C9—H9A0.9600C23—H23B0.9600
C9—H9B0.9600C23—H23C0.9600
O3—Cu—O287.70 (7)C13—C11—C10107.4 (2)
O3—Cu—N293.30 (7)C14—C11—C10110.41 (18)
O2—Cu—N2161.99 (8)C13—C11—C12110.3 (2)
O3—Cu—N1156.09 (8)C14—C11—C12106.3 (2)
O2—Cu—N191.13 (7)C10—C11—C12110.7 (2)
N2—Cu—N195.08 (8)C11—C12—H12A109.5
C3—O1—C7117.2 (2)C11—C12—H12B109.5
C1—O2—Cu126.53 (14)H12A—C12—H12B109.5
C22—O3—Cu128.03 (15)C11—C12—H12C109.5
C20—O4—C23118.3 (2)H12A—C12—H12C109.5
H1w—O1w—H2w107.4H12B—C12—H12C109.5
C8—N1—C10123.47 (19)C11—C13—H13A109.5
C8—N1—Cu128.32 (17)C11—C13—H13B109.5
C10—N1—Cu108.06 (14)H13A—C13—H13B109.5
C15—N2—C14121.92 (19)C11—C13—H13C109.5
C15—N2—Cu127.82 (15)H13A—C13—H13C109.5
C14—N2—Cu109.93 (14)H13B—C13—H13C109.5
O2—C1—C2116.13 (19)N2—C14—C11114.24 (18)
O2—C1—C6124.1 (2)N2—C14—H14A108.7
C2—C1—C6119.7 (2)C11—C14—H14A108.7
C3—C2—C1121.7 (2)N2—C14—H14B108.7
C3—C2—H2119.1C11—C14—H14B108.7
C1—C2—H2119.1H14A—C14—H14B107.6
O1—C3—C2124.5 (2)N2—C15—C17121.6 (2)
O1—C3—C4116.1 (2)N2—C15—C16120.9 (2)
C2—C3—C4119.4 (3)C17—C15—C16117.5 (2)
C5—C4—C3119.7 (2)C15—C16—H16A109.5
C5—C4—H4120.1C15—C16—H16B109.5
C3—C4—H4120.1H16A—C16—H16B109.5
C4—C5—C6123.6 (2)C15—C16—H16C109.5
C4—C5—H5118.2H16A—C16—H16C109.5
C6—C5—H5118.2H16B—C16—H16C109.5
C5—C6—C1115.8 (2)C22—C17—C18116.3 (2)
C5—C6—C8120.7 (2)C22—C17—C15124.43 (19)
C1—C6—C8123.2 (2)C18—C17—C15119.3 (2)
O1—C7—H7A109.5C19—C18—C17123.1 (2)
O1—C7—H7B109.5C19—C18—H18118.5
H7A—C7—H7B109.5C17—C18—H18118.5
O1—C7—H7C109.5C18—C19—C20119.9 (2)
H7A—C7—H7C109.5C18—C19—H19120.1
H7B—C7—H7C109.5C20—C19—H19120.1
N1—C8—C6121.1 (2)O4—C20—C21124.7 (2)
N1—C8—C9122.0 (2)O4—C20—C19115.5 (2)
C6—C8—C9116.9 (2)C21—C20—C19119.7 (2)
C8—C9—H9A109.4C20—C21—C22120.9 (2)
C8—C9—H9B109.4C20—C21—H21119.6
H9A—C9—H9B109.5C22—C21—H21119.6
C8—C9—H9C109.6O3—C22—C21115.4 (2)
H9A—C9—H9C109.5O3—C22—C17124.6 (2)
H9B—C9—H9C109.5C21—C22—C17119.95 (19)
N1—C10—C11113.23 (19)O4—C23—H23A109.5
N1—C10—H10A108.9O4—C23—H23B109.5
C11—C10—H10A108.9H23A—C23—H23B109.5
N1—C10—H10B108.9O4—C23—H23C109.5
C11—C10—H10B108.9H23A—C23—H23C109.5
H10A—C10—H10B107.7H23B—C23—H23C109.5
C13—C11—C14111.8 (2)
O3—Cu—O2—C1178.8 (2)C5—C6—C8—N1174.0 (2)
N2—Cu—O2—C185.3 (3)C1—C6—C8—N113.1 (3)
N1—Cu—O2—C125.1 (2)C5—C6—C8—C97.1 (3)
O2—Cu—O3—C22158.8 (2)C1—C6—C8—C9165.8 (2)
N2—Cu—O3—C223.2 (2)C8—N1—C10—C11108.3 (3)
N1—Cu—O3—C22113.6 (2)Cu—N1—C10—C1176.0 (2)
O3—Cu—N1—C8104.7 (3)N1—C10—C11—C13158.1 (2)
O2—Cu—N1—C817.8 (2)N1—C10—C11—C1436.0 (3)
N2—Cu—N1—C8145.2 (2)N1—C10—C11—C1281.4 (2)
O3—Cu—N1—C1070.8 (2)C15—N2—C14—C11113.8 (2)
O2—Cu—N1—C10157.67 (15)Cu—N2—C14—C1172.3 (2)
N2—Cu—N1—C1039.26 (15)C13—C11—C14—N275.8 (3)
O3—Cu—N2—C152.6 (2)C10—C11—C14—N243.7 (3)
O2—Cu—N2—C1590.1 (3)C12—C11—C14—N2163.8 (2)
N1—Cu—N2—C15160.20 (19)C14—N2—C15—C17172.1 (2)
O3—Cu—N2—C14176.04 (14)Cu—N2—C15—C170.6 (3)
O2—Cu—N2—C1483.4 (2)C14—N2—C15—C167.6 (3)
N1—Cu—N2—C1426.38 (15)Cu—N2—C15—C16179.70 (18)
Cu—O2—C1—C2163.66 (16)N2—C15—C17—C224.5 (4)
Cu—O2—C1—C618.1 (3)C16—C15—C17—C22175.7 (2)
O2—C1—C2—C3178.5 (2)N2—C15—C17—C18173.7 (2)
C6—C1—C2—C30.2 (3)C16—C15—C17—C186.0 (3)
C7—O1—C3—C20.8 (4)C22—C17—C18—C192.6 (4)
C7—O1—C3—C4179.8 (3)C15—C17—C18—C19179.0 (2)
C1—C2—C3—O1180.0 (2)C17—C18—C19—C201.4 (4)
C1—C2—C3—C40.6 (4)C23—O4—C20—C212.8 (4)
O1—C3—C4—C5179.7 (3)C23—O4—C20—C19179.3 (3)
C2—C3—C4—C50.9 (4)C18—C19—C20—O4179.2 (2)
C3—C4—C5—C60.4 (5)C18—C19—C20—C212.9 (4)
C4—C5—C6—C10.3 (4)O4—C20—C21—C22178.0 (2)
C4—C5—C6—C8173.1 (3)C19—C20—C21—C220.3 (4)
O2—C1—C6—C5178.8 (2)Cu—O3—C22—C21178.78 (16)
C2—C1—C6—C50.7 (3)Cu—O3—C22—C170.6 (4)
O2—C1—C6—C85.6 (3)C20—C21—C22—O3175.6 (2)
C2—C1—C6—C8172.6 (2)C20—C21—C22—C173.9 (4)
C10—N1—C8—C6172.0 (2)C18—C17—C22—O3174.3 (2)
Cu—N1—C8—C62.9 (3)C15—C17—C22—O34.0 (4)
C10—N1—C8—C96.9 (4)C18—C17—C22—C215.1 (3)
Cu—N1—C8—C9178.26 (18)C15—C17—C22—C21176.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O20.842.122.832 (3)142
O1w—H2w···O30.842.323.035 (3)143
C7—H7c···O1wi0.962.553.476 (5)163
C16—H16c···O2ii0.962.523.409 (3)153
C14—H14b···Cg1ii0.972.623.426 (2)141
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C23H28N2O4)]·H2O
Mr478.03
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)10.4721 (7), 10.8023 (9), 10.8487 (7)
α, β, γ (°)106.699 (7), 99.823 (5), 100.035 (6)
V3)1125.37 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.643, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11143, 5034, 4332
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 0.99
No. of reflections5034
No. of parameters285
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.47

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu—O21.8825 (16)Cu—N11.9597 (17)
Cu—O31.8776 (15)Cu—N21.9524 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O20.842.122.832 (3)142
O1w—H2w···O30.842.323.035 (3)143
C7—H7c···O1wi0.962.553.476 (5)163
C16—H16c···O2ii0.962.523.409 (3)153
C14—H14b···Cg1ii0.972.623.426 (2)141
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

Acknowledgements

We gratefully acknowledge practical support of this study by K. N. Toosi University of Technology, Islamic Azad University (Saveh Branch), and thank the University of Malaya for supporting the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationRayati, S., Zakavi, S., Koliaei, M., Wojtczak, A. & Kozakiewicz, A. (2010). Inorg. Chem. Commun. 13, 203–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds