metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[[μ2-1,1′-(butane-1,4-di­yl)bis­­(1H-imidazole)-κ2N3:N3′](μ2-2,6-di­methyl­pyridine-3,5-di­carboxyl­ato-κ2O3:O5)zinc] dihydrate]

aPesticide Engineering Research Center of Heilongjiang Province, Heilongjiang University, Harbin 150080, People's Republic of China, bDaqing Oil Field Water Supply Company, Institute of Source of Water Researching, Daqing 163458, People's Republic of China, cDepartment of Service, Dionex China Ltd, Beijing 100029, People's Republic of China, and dSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: yueyumei@yahoo.com.cn

(Received 15 July 2011; accepted 26 September 2011; online 30 September 2011)

In the title coordination polymer, {[Zn(C9H7NO4)(C10H14N4)]·2H2O}n, the ZnII ion displays a distorted tetra­hedral geometry with two imidazole N atoms from two 1,1′-(butane-1,4-di­yl)bis­(imidazole) (bbi) ligands and two carboxyl­ate O atoms from two 2,6-dimethyl­pyridine-3,5-dicarboxyl­ate (dpdc) ligands. The bbi and dpdc ligands bridge the ZnII ions, forming layers parallel to (011). O—H⋯O and O—H⋯N hydrogen bonds and ππ inter­actions between the imidazole rings [centroid–centroid distance = 3.807 (5) Å] connect the layers. Two of the three uncoordinated water mol­ecules are disordered, each over two 0.25-occupancy positions.

Related literature

For transition metal complexes derived from 2,6-dimethyl­pyridine-3,5-dicarb­oxy­lic acid, see: Chen et al. (2009[Chen, C.-L., Zou, Y., Qiu, P., Wen, Y.-H., Li, J.-Y., Hong, Z.-H., Lin, X.-M., Xu, A.-W. & Cai, Y.-P. (2009). J. Coord. Chem. 62, 2480-2489.]); Huang et al. (2008[Huang, K.-L., Sun, J., Peng, D.-Q., Liu, X. & Zhang, M.-X. (2008). Chin. J. Struct. Chem. 27, 1499-1505.]); Zhang et al. (2008a[Zhang, H.-K., Du, Y.-H., Jiang, T., Li, B.-Y. & Hou, G.-F. (2008a). Acta Cryst. E64, m1510.]); Zhou et al. (2009[Zhou, X.-X., Liu, M.-S., Lin, X.-M., Fang, H.-C., Chen, J.-Q., Yang, D.-Q. & Cai, Y.-P. (2009). Inorg. Chim. Acta, 362, 1441-1447.]). For metal complexes derived from 1,1′-(butane-1,4-di­yl)bis­(imidazole) and carb­oxy­lic acids, see: Lan et al. (2008[Lan, Y.-Q., Li, S.-L., Qin, J.-S., Du, D.-Y., Wang, X.-L., Su, Z.-M. & Fu, Q. (2008). Inorg. Chem. 47, 10600-10610.]); Tian et al. (2009[Tian, Z.-F., Duan, H.-B., Xuan, F. & Ren, X.-M. (2009). Inorg. Chem. Commun. 12, 417-419.]); Zhang et al. (2008b[Zhang, W.-L., Liu, Y.-Y., Ma, J.-F., Jiang, H. & Yang, J. (2008b). Polyhedron, 27, 3351-3358.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H7NO4)(C10H14N4)]·2H2O

  • Mr = 484.82

  • Orthorhombic, P c a 21

  • a = 17.8088 (12) Å

  • b = 9.4003 (4) Å

  • c = 15.5798 (8) Å

  • V = 2608.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.807, Tmax = 0.823

  • 14228 measured reflections

  • 4717 independent reflections

  • 3753 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.175

  • S = 1.03

  • 4717 reflections

  • 315 parameters

  • 36 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.64 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2186 Friedel pairs

  • Flack parameter: 0.03 (2)

Table 1
Selected bond lengths (Å)

Zn1—O1 1.954 (4)
Zn1—O4i 1.965 (3)
Zn1—N2 1.994 (6)
Zn1—N4ii 2.032 (6)
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, -y+2, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1B⋯O2iii 0.87 (4) 1.99 (4) 2.820 (9) 160 (4)
O1W—H1A⋯N1 0.87 (3) 1.95 (3) 2.736 (10) 149 (5)
Symmetry code: (iii) [x-{\script{1\over 2}}, -y+1, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, great interest has been focused on the crystal engineering of coordination frameworks. As is already known, pyridine-3,5-dicarboxylic acid is a rigid and linear ligand that possesses the capability to bridge metal atoms in various coordination modes through the carboxylate O atoms and the pyridine N atom (Chen et al., 2009; Huang et al., 2008; Zhang et al., 2008a; Zhou et al., 2009). Flexible 1,1'-(butane-1,4-diyl)bis(imidazole) (bbi) ligand with organic carboxylic acids can build diverse topological architectures (Lan et al., 2008; Tian et al., 2009; Zhang et al., 2008b). Herein, we report the crystal structure of the title compound obtained by reacting bbi and 2,6-dimethylpyridine-3,5-dicarboxylic acid (H2dpdc) with Zn(NO3)2.

In the title compound (Fig. 1), the ZnII ion has a distorted tetrahedral geometry with two imidazole N atoms from two different bbi ligands and two carboxylate O atoms from two different dpdc ligands (Table 1). The bbi and dpdc ligands bridge the ZnII ions into a layer parallel to (0 1 1) (Fig. 2). O—H···O and O—H···N hydrogen bonds (Table 2) and ππ interactions between the imidazole rings [centroid–centroid distance = 3.807 (5) Å] connect the layers.

Related literature top

For transition metal complexes of 2,6-dimethylpyridine-3,5-dicarboxylic acid, see: Chen et al. (2009); Huang et al. (2008); Zhang et al. (2008a); Zhou et al. (2009). For metal complexes of 1,1'-(butane-1,4-diyl)bis(imidazole) and carboxylic acids, see: Lan et al. (2008); Tian et al. (2009); Zhang et al. (2008b).

Experimental top

The title complex was obtained by the reaction of zinc(II) nitrate (59.5 mg, 0.2 mmol) with bbi (37.6 mg, 0.2 mmol) and H2dpdc (39.4 mg, 0.2 mmol) in DMF/ethanol/water (10/10/5 ml). The mixture was stirred for 1 h and the solution was placed at room temperature for solvent volatilization. Single crystals were obtained after several days. Analysis, calculated for C19H25N5O6Zn: C 47.96, H 5.08, N 14.72%; found: C 48.08, H 5.49, N 14.52%.

Refinement top

H atoms attached to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 (methyl) Å and with Uiso(H) = 0.08 Å2. H atoms on O1W were located in a difference Fourier map and refined with a distance restraint of O—H = 0.85 Å and Uiso(H) = 0.08 Å2. H atom on disordered O2W, O2W', O3W and O3W' were not located duo to partial possession of the H atoms.

Structure description top

In recent years, great interest has been focused on the crystal engineering of coordination frameworks. As is already known, pyridine-3,5-dicarboxylic acid is a rigid and linear ligand that possesses the capability to bridge metal atoms in various coordination modes through the carboxylate O atoms and the pyridine N atom (Chen et al., 2009; Huang et al., 2008; Zhang et al., 2008a; Zhou et al., 2009). Flexible 1,1'-(butane-1,4-diyl)bis(imidazole) (bbi) ligand with organic carboxylic acids can build diverse topological architectures (Lan et al., 2008; Tian et al., 2009; Zhang et al., 2008b). Herein, we report the crystal structure of the title compound obtained by reacting bbi and 2,6-dimethylpyridine-3,5-dicarboxylic acid (H2dpdc) with Zn(NO3)2.

In the title compound (Fig. 1), the ZnII ion has a distorted tetrahedral geometry with two imidazole N atoms from two different bbi ligands and two carboxylate O atoms from two different dpdc ligands (Table 1). The bbi and dpdc ligands bridge the ZnII ions into a layer parallel to (0 1 1) (Fig. 2). O—H···O and O—H···N hydrogen bonds (Table 2) and ππ interactions between the imidazole rings [centroid–centroid distance = 3.807 (5) Å] connect the layers.

For transition metal complexes of 2,6-dimethylpyridine-3,5-dicarboxylic acid, see: Chen et al. (2009); Huang et al. (2008); Zhang et al. (2008a); Zhou et al. (2009). For metal complexes of 1,1'-(butane-1,4-diyl)bis(imidazole) and carboxylic acids, see: Lan et al. (2008); Tian et al. (2009); Zhang et al. (2008b).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, 1+y, z; (ii) 2-x, 2-y, 0.5+z.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the layer structure.
Poly[[[µ2-1,1'-(butane-1,4-diyl)bis(1H-imidazole)- κ2N3:N3'](µ2-2,6-dimethylpyridine-3,5-dicarboxylato- κ2O3:O5)zinc] dihydrate] top
Crystal data top
[Zn(C9H7NO4)(C10H14N4)]·2H2ODx = 1.234 Mg m3
Mr = 484.82Melting point: not measured K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4717 reflections
a = 17.8088 (12) Åθ = 2.3–25.5°
b = 9.4003 (4) ŵ = 0.98 mm1
c = 15.5798 (8) ÅT = 293 K
V = 2608.2 (2) Å3Block, colorless
Z = 40.22 × 0.21 × 0.20 mm
F(000) = 1008
Data collection top
Bruker SMART APEX CCD
diffractometer
4717 independent reflections
Radiation source: fine-focus sealed tube3753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
φ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1221
Tmin = 0.807, Tmax = 0.823k = 1111
14228 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.1192P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.042
4717 reflectionsΔρmax = 0.67 e Å3
315 parametersΔρmin = 0.64 e Å3
36 restraintsAbsolute structure: Flack (1983), 2186 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Crystal data top
[Zn(C9H7NO4)(C10H14N4)]·2H2OV = 2608.2 (2) Å3
Mr = 484.82Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 17.8088 (12) ŵ = 0.98 mm1
b = 9.4003 (4) ÅT = 293 K
c = 15.5798 (8) Å0.22 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4717 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3753 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.823Rint = 0.087
14228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175Δρmax = 0.67 e Å3
S = 1.03Δρmin = 0.64 e Å3
4717 reflectionsAbsolute structure: Flack (1983), 2186 Friedel pairs
315 parametersAbsolute structure parameter: 0.03 (2)
36 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.73885 (3)0.97189 (5)0.87767 (6)0.0381 (2)
O10.6630 (2)0.8258 (4)0.8567 (3)0.0560 (12)
O20.7521 (2)0.6656 (5)0.8691 (6)0.0684 (15)
O30.5991 (3)0.1007 (5)0.9535 (4)0.0695 (14)
O40.6934 (2)0.1619 (3)0.8694 (3)0.0467 (9)
C30.6499 (2)0.4454 (4)0.8818 (5)0.0351 (10)
H30.70120.42690.88170.080*
N20.8088 (3)0.9860 (6)0.7781 (4)0.0429 (13)
N30.8753 (3)0.9276 (6)0.6618 (4)0.0522 (13)
N41.2098 (4)1.0326 (6)0.4941 (4)0.0477 (15)
N51.1556 (4)0.9499 (7)0.6067 (3)0.0527 (16)
C20.6262 (3)0.5836 (5)0.8704 (4)0.0362 (10)
C10.5488 (2)0.6115 (5)0.8722 (4)0.0362 (10)
N10.5019 (2)0.4987 (4)0.8838 (6)0.0395 (10)
C50.5237 (3)0.3608 (6)0.8968 (3)0.0381 (13)
C40.5999 (3)0.3304 (5)0.8935 (3)0.0363 (13)
C60.6854 (3)0.6980 (5)0.8651 (4)0.0383 (12)
C70.6308 (3)0.1830 (5)0.9067 (3)0.0372 (12)
C80.5117 (3)0.7510 (6)0.8585 (5)0.0523 (16)
H8A0.51600.77770.79920.080*
H8B0.53540.82180.89370.080*
H8C0.45960.74390.87380.080*
C90.4619 (4)0.2569 (7)0.9113 (5)0.0599 (18)
H9A0.44560.26230.97000.080*
H9B0.47960.16250.89930.080*
H9C0.42060.27890.87400.080*
C100.8374 (4)0.8823 (7)0.7308 (4)0.0470 (15)
H100.83180.78650.74440.080*
C110.8304 (5)1.1069 (9)0.7376 (5)0.065 (2)
H110.81871.19800.75670.080*
C120.8718 (5)1.0785 (10)0.6648 (6)0.073 (2)
H120.89271.14320.62640.080*
C130.9116 (4)0.8468 (8)0.5972 (4)0.0553 (16)
H13A0.88880.86850.54220.080*
H13B0.90350.74650.60860.080*
C140.9961 (4)0.8745 (8)0.5913 (4)0.0560 (16)
H14A1.01830.80450.55320.080*
H14B1.00410.96750.56590.080*
C151.0364 (4)0.8687 (9)0.6769 (4)0.0663 (19)
H15A1.01570.79170.71090.080*
H15B1.02770.95690.70760.080*
C161.1211 (4)0.8462 (11)0.6664 (5)0.080 (3)
H16A1.14510.85450.72210.080*
H16B1.13010.75070.64520.080*
C171.1862 (5)0.9177 (9)0.5306 (5)0.060 (2)
H171.19000.82660.50770.080*
C181.1924 (4)1.1407 (8)0.5463 (4)0.0531 (16)
H181.20171.23650.53580.080*
C191.1601 (4)1.0882 (12)0.6143 (5)0.069 (2)
H191.14291.14080.66090.080*
O1W0.3529 (5)0.5563 (7)0.9086 (4)0.0930 (19)
O3W0.7170 (19)0.455 (3)1.0985 (19)0.094 (7)0.25
O3W'0.670 (3)0.304 (5)1.064 (3)0.166 (14)0.25
O2W'0.9930 (11)0.4765 (19)1.0714 (12)0.053 (4)0.25
O2W0.9724 (18)0.538 (3)1.1357 (19)0.091 (7)0.25
H1B0.320 (2)0.488 (4)0.910 (3)0.080*
H1A0.3963 (11)0.515 (6)0.916 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0316 (3)0.0328 (3)0.0500 (3)0.0002 (2)0.0009 (4)0.0007 (5)
O10.044 (2)0.0301 (18)0.094 (4)0.0058 (15)0.003 (2)0.003 (2)
O20.037 (2)0.042 (2)0.126 (5)0.0053 (15)0.003 (3)0.012 (4)
O30.070 (3)0.048 (3)0.091 (3)0.011 (2)0.024 (3)0.023 (3)
O40.0391 (19)0.0318 (16)0.069 (2)0.0063 (13)0.002 (2)0.005 (2)
C30.032 (2)0.033 (2)0.040 (2)0.0028 (17)0.009 (3)0.005 (3)
N20.034 (3)0.045 (3)0.050 (3)0.003 (2)0.002 (2)0.001 (2)
N30.029 (3)0.062 (3)0.066 (3)0.002 (3)0.004 (2)0.012 (3)
N40.037 (3)0.054 (3)0.052 (3)0.000 (2)0.001 (2)0.002 (3)
N50.046 (3)0.072 (4)0.041 (3)0.002 (3)0.002 (2)0.008 (3)
C20.036 (2)0.034 (2)0.039 (3)0.0024 (19)0.005 (3)0.004 (3)
C10.031 (2)0.037 (2)0.041 (2)0.0024 (18)0.006 (3)0.009 (3)
N10.035 (2)0.036 (2)0.047 (3)0.0004 (15)0.007 (3)0.004 (2)
C50.028 (2)0.042 (3)0.045 (4)0.008 (2)0.001 (2)0.002 (2)
C40.035 (3)0.028 (2)0.046 (4)0.0025 (19)0.005 (2)0.003 (2)
C60.038 (3)0.030 (2)0.048 (3)0.0060 (19)0.004 (2)0.001 (2)
C70.040 (3)0.030 (3)0.042 (3)0.002 (2)0.004 (2)0.004 (2)
C80.039 (3)0.038 (3)0.080 (5)0.003 (2)0.002 (3)0.001 (3)
C90.040 (3)0.047 (3)0.092 (5)0.014 (3)0.002 (3)0.008 (3)
C100.040 (4)0.046 (3)0.055 (3)0.001 (3)0.004 (3)0.008 (3)
C110.068 (5)0.050 (4)0.076 (5)0.001 (4)0.035 (4)0.012 (4)
C120.076 (6)0.063 (5)0.081 (5)0.005 (5)0.015 (4)0.002 (4)
C130.048 (4)0.071 (4)0.047 (3)0.000 (3)0.007 (3)0.002 (3)
C140.040 (3)0.078 (5)0.050 (3)0.004 (3)0.009 (3)0.010 (3)
C150.051 (4)0.099 (6)0.049 (4)0.002 (4)0.004 (3)0.014 (4)
C160.048 (4)0.125 (8)0.066 (4)0.001 (4)0.005 (3)0.038 (5)
C170.056 (4)0.062 (5)0.063 (4)0.022 (4)0.006 (3)0.007 (4)
C180.048 (4)0.059 (4)0.052 (3)0.009 (3)0.005 (3)0.013 (3)
C190.041 (4)0.102 (7)0.063 (5)0.002 (5)0.008 (3)0.012 (4)
O1W0.090 (2)0.092 (2)0.097 (2)0.0007 (10)0.0000 (10)0.0017 (10)
O3W0.094 (7)0.094 (7)0.093 (7)0.0002 (10)0.0002 (10)0.0003 (10)
O3W'0.166 (14)0.166 (14)0.166 (14)0.0000 (10)0.0000 (10)0.0001 (10)
O2W'0.053 (4)0.053 (4)0.053 (4)0.0006 (10)0.0003 (10)0.0006 (10)
O2W0.092 (7)0.091 (7)0.092 (7)0.0001 (10)0.0002 (10)0.0001 (10)
Geometric parameters (Å, º) top
Zn1—O11.954 (4)C4—C71.505 (7)
Zn1—O4i1.965 (3)C8—H8A0.9600
Zn1—N21.994 (6)C8—H8B0.9600
Zn1—N4ii2.032 (6)C8—H8C0.9600
O1—C61.272 (6)C9—H9A0.9600
O2—C61.228 (7)C9—H9B0.9600
O3—C71.204 (7)C9—H9C0.9600
O4—C71.273 (7)C10—H100.9300
O4—Zn1iii1.965 (3)C11—C121.380 (12)
C3—C21.377 (7)C11—H110.9300
C3—C41.412 (6)C12—H120.9300
C3—H30.9300C13—C141.530 (9)
N2—C101.324 (9)C13—H13A0.9700
N2—C111.355 (10)C13—H13B0.9700
N3—C101.339 (8)C14—C151.515 (9)
N3—C131.418 (9)C14—H14A0.9700
N3—C121.420 (11)C14—H14B0.9700
N4—C171.291 (11)C15—C161.533 (11)
N4—C181.337 (9)C15—H15A0.9700
N4—Zn1iv2.032 (6)C15—H15B0.9700
N5—C191.308 (12)C16—H16A0.9700
N5—C171.340 (9)C16—H16B0.9700
N5—C161.480 (9)C17—H170.9300
C2—C11.403 (6)C18—C191.303 (10)
C2—C61.509 (7)C18—H180.9300
C1—N11.362 (6)C19—H190.9300
C1—C81.484 (7)O1W—H1B0.870 (10)
N1—C51.368 (7)O1W—H1A0.871 (10)
C5—C41.388 (7)O3W—O3W'1.73 (6)
C5—C91.489 (8)O2W'—O2W1.21 (3)
O1—Zn1—O4i110.09 (16)C5—C9—H9B109.5
O1—Zn1—N2110.4 (2)H9A—C9—H9B109.5
O4i—Zn1—N298.4 (2)C5—C9—H9C109.5
O1—Zn1—N4ii116.5 (2)H9A—C9—H9C109.5
O4i—Zn1—N4ii105.2 (2)H9B—C9—H9C109.5
N2—Zn1—N4ii114.5 (3)N2—C10—N3114.0 (6)
C6—O1—Zn1115.4 (4)N2—C10—H10123.0
C7—O4—Zn1iii118.2 (3)N3—C10—H10123.0
C2—C3—C4123.0 (4)N2—C11—C12111.8 (7)
C2—C3—H3118.5N2—C11—H11124.1
C4—C3—H3118.5C12—C11—H11124.1
C10—N2—C11104.4 (6)C11—C12—N3104.1 (7)
C10—N2—Zn1128.6 (5)C11—C12—H12128.0
C11—N2—Zn1126.5 (5)N3—C12—H12128.0
C10—N3—C13129.0 (6)N3—C13—C14113.7 (6)
C10—N3—C12105.7 (5)N3—C13—H13A108.8
C13—N3—C12125.3 (6)C14—C13—H13A108.8
C17—N4—C18107.0 (7)N3—C13—H13B108.8
C17—N4—Zn1iv121.5 (5)C14—C13—H13B108.8
C18—N4—Zn1iv131.5 (5)H13A—C13—H13B107.7
C19—N5—C17106.3 (6)C15—C14—C13114.0 (5)
C19—N5—C16128.5 (6)C15—C14—H14A108.8
C17—N5—C16125.2 (7)C13—C14—H14A108.8
C3—C2—C1118.4 (4)C15—C14—H14B108.8
C3—C2—C6117.7 (4)C13—C14—H14B108.8
C1—C2—C6123.6 (4)H14A—C14—H14B107.7
N1—C1—C2117.3 (4)C14—C15—C16112.2 (5)
N1—C1—C8115.7 (4)C14—C15—H15A109.2
C2—C1—C8126.9 (4)C16—C15—H15A109.2
C1—N1—C5125.7 (4)C14—C15—H15B109.2
N1—C5—C4117.8 (4)C16—C15—H15B109.2
N1—C5—C9115.8 (5)H15A—C15—H15B107.9
C4—C5—C9126.4 (5)N5—C16—C15112.6 (6)
C5—C4—C3117.6 (4)N5—C16—H16A109.1
C5—C4—C7122.8 (5)C15—C16—H16A109.1
C3—C4—C7119.4 (4)N5—C16—H16B109.1
O2—C6—O1122.9 (5)C15—C16—H16B109.1
O2—C6—C2119.7 (4)H16A—C16—H16B107.8
O1—C6—C2117.4 (5)N4—C17—N5109.5 (7)
O3—C7—O4126.0 (5)N4—C17—H17125.3
O3—C7—C4120.2 (5)N5—C17—H17125.3
O4—C7—C4113.7 (4)C19—C18—N4108.0 (8)
C1—C8—H8A109.5C19—C18—H18126.0
C1—C8—H8B109.5N4—C18—H18126.0
H8A—C8—H8B109.5C18—C19—N5109.2 (7)
C1—C8—H8C109.5C18—C19—H19125.4
H8A—C8—H8C109.5N5—C19—H19125.4
H8B—C8—H8C109.5H1B—O1W—H1A105 (4)
C5—C9—H9A109.5
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+2, z+1/2; (iii) x, y1, z; (iv) x+2, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O2v0.87 (4)1.99 (4)2.820 (9)160 (4)
O1W—H1A···N10.87 (3)1.95 (3)2.736 (10)149 (5)
Symmetry code: (v) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C9H7NO4)(C10H14N4)]·2H2O
Mr484.82
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)17.8088 (12), 9.4003 (4), 15.5798 (8)
V3)2608.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.22 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.807, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
14228, 4717, 3753
Rint0.087
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.175, 1.03
No. of reflections4717
No. of parameters315
No. of restraints36
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.64
Absolute structureFlack (1983), 2186 Friedel pairs
Absolute structure parameter0.03 (2)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Zn1—O11.954 (4)Zn1—N21.994 (6)
Zn1—O4i1.965 (3)Zn1—N4ii2.032 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O2iii0.87 (4)1.99 (4)2.820 (9)160 (4)
O1W—H1A···N10.87 (3)1.95 (3)2.736 (10)149 (5)
Symmetry code: (iii) x1/2, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Education Department of Heilongjiang Province (grant Nos. 11551335, 11551334 and 11551339) and Heilongjiang University.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C.-L., Zou, Y., Qiu, P., Wen, Y.-H., Li, J.-Y., Hong, Z.-H., Lin, X.-M., Xu, A.-W. & Cai, Y.-P. (2009). J. Coord. Chem. 62, 2480–2489.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, K.-L., Sun, J., Peng, D.-Q., Liu, X. & Zhang, M.-X. (2008). Chin. J. Struct. Chem. 27, 1499–1505.  CAS Google Scholar
First citationLan, Y.-Q., Li, S.-L., Qin, J.-S., Du, D.-Y., Wang, X.-L., Su, Z.-M. & Fu, Q. (2008). Inorg. Chem. 47, 10600–10610.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z.-F., Duan, H.-B., Xuan, F. & Ren, X.-M. (2009). Inorg. Chem. Commun. 12, 417–419.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H.-K., Du, Y.-H., Jiang, T., Li, B.-Y. & Hou, G.-F. (2008a). Acta Cryst. E64, m1510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W.-L., Liu, Y.-Y., Ma, J.-F., Jiang, H. & Yang, J. (2008b). Polyhedron, 27, 3351–3358.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, X.-X., Liu, M.-S., Lin, X.-M., Fang, H.-C., Chen, J.-Q., Yang, D.-Q. & Cai, Y.-P. (2009). Inorg. Chim. Acta, 362, 1441–1447.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds