metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-3-chloro­benzene-1,2-di­carboxyl­ato-κ2O2:O2)bis­­[di­aqua­(5,5′-di­methyl-2,2′-bi­pyridine-κ2N,N′)copper(II)]

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, Henan, People's Republic of China
*Correspondence e-mail: lifuanpds@163.com

(Received 16 August 2011; accepted 27 August 2011; online 14 September 2011)

In the centrosymmetric binuclear title compound, [Cu2(C8H3ClO4)2(C12H12N2)2(H2O)4], the CuII ion is six-coordinated by two N atoms from a 5,5′-dimethyl-2,2′-bipyridine ligand, two bridging O atoms from two 3-chloro­benzene-1,2-dicarboxyl­ate ligands and two water mol­ecules in a distorted octa­hedral geometry. The binuclear complex mol­ecules are linked together by inter­molecular O—H⋯O hydrogen bonds into a layer parallel to (100). The layers are connected by C—H⋯Cl hydrogen bonds. Intra­molecular O—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distance = 3.5958 (16) Å] are also present.

Related literature

For background to polynuclear coordination compounds containing benzene­carboxyl­ate ligands, see: Baca et al. (2005[Baca, S. G., Filippova, I. G., Ambrus, C., Gdaniec, M., Simonov, Y. A., Gerbeleu, N., Gherco, O. A. & Decurtins, S. (2005). Eur. J. Inorg. Chem. pp. 3118-3130.]); Ma et al. (2004[Ma, C.-B., Wang, W.-G., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Zhu, H.-P., Liao, D.-Z. & Li, L.-C. (2004). Eur. J. Inorg. Chem. pp. 3522-3532.]); Thirumurugan & Rao (2005[Thirumurugan, A. & Rao, C. N. R. (2005). J. Mater. Chem. 15, 3852-3858.]); Zang et al. (2010[Zang, S.-Q., Li, J.-B., Li, Q.-Y., Hou, H.-W. & Mak, T. C. W. (2010). Polyhedron, 29, 2907-2915.]). For O—H⋯O and C—H⋯Cl hydrogen bonds, see: Desiraju (2004[Desiraju, G. R. (2004). Hydrogen Bonding. Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658-665. New York: Marcel Dekker Inc.]); Song & Iyoda (2009[Song, L. J. & Iyoda, T. (2009). J. Inorg. Organomet. Polym. 19, 124-132.]); Wang et al. (2011[Wang, X.-S., Li, Q., Wu, J.-R. & Zhang, M.-M. (2011). J. Chem. Crystallogr. 41, 59-63.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H3ClO4)2(C12H12N2)2(H2O)4]

  • Mr = 964.72

  • Monoclinic, P 21 /c

  • a = 11.6908 (7) Å

  • b = 11.8643 (6) Å

  • c = 17.2869 (13) Å

  • β = 124.806 (5)°

  • V = 1968.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.774, Tmax = 0.792

  • 7602 measured reflections

  • 3450 independent reflections

  • 2845 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.07

  • 3450 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3 0.85 1.79 2.622 (3) 164
O1W—H1WB⋯O4i 0.85 1.82 2.655 (3) 167
O2W—H2WA⋯O1 0.85 2.17 2.731 (3) 124
O2W—H2WB⋯O4i 0.85 2.06 2.786 (3) 143
C6—H6⋯Cl1ii 0.93 2.82 3.609 (4) 144
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is common knowledge that the coordination geometry of metal ion and the shape and bonding mode of ligand are generally the primary considerations in metal-mediated self-assembly reactions. Relatively small changes in the bridging ligand can give rise to large variation in the overall structure of the assembly. Recently, some polynuclear coordination compounds containing benzenecarboxylate ligands and O—H···O and C—H···Cl hydrogen bonds (Desiraju, 2004; Song & Iyoda, 2009; Wang et al., 2011) have been reported (Baca et al., 2005; Ma et al., 2004; Thirumurugan & Rao, 2005; Zang et al., 2010). To better understand the influence of benzenecarboxylate ligands and hydrogen-bonding interactions on the resultant structures, we have begun working on the architectures of polynuclear structures from 3-chlorobenzene-1,2-dioic acid. As part of our ongoing investigation, the title compound has been prepared and its structure was determined.

The title compound is a binuclear complex (Fig. 1). The CuII atom is coordinated by two N atoms from a 5,5'-dimethyl-2,2'-bipyridine ligand, two O atoms from two 3-chlorobenzene-1,2-dicarboxylate ligands and two O atoms from two coordinated water molecules, forming a distorted octahedral geometry. As shown in Fig. 2, each complex molecule is connected to four neighboring molecules through O—H···O hydrogen bonds (Table 1), resulting in a two-dimensional supramolecular structure parallel to (1 0 0). Adjacent layers are associated together by C—H···Cl hydrogen bonds, forming a three-dimensional supramolecular structure (Fig. 3).

Related literature top

For background to polynuclear coordination compounds containing benzenecarboxylate ligands, see: Baca et al. (2005); Ma et al. (2004); Thirumurugan & Rao (2005); Zang et al. (2010). For O—H···O and C—H···Cl hydrogen bonds, see: Desiraju (2004); Song et al. (2009); Wang et al. (2011).

Experimental top

A mixture of CuSO4.5H2O (7.5 mg, 0.03 mmol), 3-chlorobenzene-1,2-dioic acid (6 mg, 0.03 mmol), 5,5'-dimethyl-2,2'-bipyridine (5.5 mg, 0.03 mmol) and NaOH (2.4 mg, 0.06 mmol) in 10 ml of H2O was sealed in a stainless-steel reactor with a Teflon liner and heated at 393 K for 72 h. A quantity of green single crystals was obtained after the solution was cooled to room temperature at a rate of 10 K h-1.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). H atoms of the water molecules were located from a difference Fourier map and refined with a distance restraint of O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Structure description top

It is common knowledge that the coordination geometry of metal ion and the shape and bonding mode of ligand are generally the primary considerations in metal-mediated self-assembly reactions. Relatively small changes in the bridging ligand can give rise to large variation in the overall structure of the assembly. Recently, some polynuclear coordination compounds containing benzenecarboxylate ligands and O—H···O and C—H···Cl hydrogen bonds (Desiraju, 2004; Song & Iyoda, 2009; Wang et al., 2011) have been reported (Baca et al., 2005; Ma et al., 2004; Thirumurugan & Rao, 2005; Zang et al., 2010). To better understand the influence of benzenecarboxylate ligands and hydrogen-bonding interactions on the resultant structures, we have begun working on the architectures of polynuclear structures from 3-chlorobenzene-1,2-dioic acid. As part of our ongoing investigation, the title compound has been prepared and its structure was determined.

The title compound is a binuclear complex (Fig. 1). The CuII atom is coordinated by two N atoms from a 5,5'-dimethyl-2,2'-bipyridine ligand, two O atoms from two 3-chlorobenzene-1,2-dicarboxylate ligands and two O atoms from two coordinated water molecules, forming a distorted octahedral geometry. As shown in Fig. 2, each complex molecule is connected to four neighboring molecules through O—H···O hydrogen bonds (Table 1), resulting in a two-dimensional supramolecular structure parallel to (1 0 0). Adjacent layers are associated together by C—H···Cl hydrogen bonds, forming a three-dimensional supramolecular structure (Fig. 3).

For background to polynuclear coordination compounds containing benzenecarboxylate ligands, see: Baca et al. (2005); Ma et al. (2004); Thirumurugan & Rao (2005); Zang et al. (2010). For O—H···O and C—H···Cl hydrogen bonds, see: Desiraju (2004); Song et al. (2009); Wang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry code: (i) -x, 2-y, 1-z.]
[Figure 2] Fig. 2. A view of the supramolecular layer in the title compound. Dotted lines represent hydrogen bonds.
[Figure 3] Fig. 3. The three-dimensional supramolecular structure in the title compound. Dashed lines indicate hydrogen bonds.
Bis(µ-3-chlorobenzene-1,2-dicarboxylato- κ2O2:O2)bis[diaqua(5,5'-dimethyl-2,2'-bipyridine- κ2N,N')copper(II)] top
Crystal data top
[Cu2(C8H3ClO4)2(C12H12N2)2(H2O)4]F(000) = 988
Mr = 964.72Dx = 1.627 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2332 reflections
a = 11.6908 (7) Åθ = 3.0–29.3°
b = 11.8643 (6) ŵ = 1.29 mm1
c = 17.2869 (13) ÅT = 296 K
β = 124.806 (5)°Block, green
V = 1968.8 (2) Å30.21 × 0.20 × 0.19 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3450 independent reflections
Radiation source: fine-focus sealed tube2845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1312
Tmin = 0.774, Tmax = 0.792k = 1314
7602 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
3450 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu2(C8H3ClO4)2(C12H12N2)2(H2O)4]V = 1968.8 (2) Å3
Mr = 964.72Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.6908 (7) ŵ = 1.29 mm1
b = 11.8643 (6) ÅT = 296 K
c = 17.2869 (13) Å0.21 × 0.20 × 0.19 mm
β = 124.806 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3450 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2845 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.792Rint = 0.030
7602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
3450 reflectionsΔρmin = 0.29 e Å3
273 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00030 (3)0.85763 (3)0.53560 (2)0.02829 (13)
O10.2700 (2)0.90830 (15)0.72939 (15)0.0422 (5)
O20.11583 (17)0.99350 (14)0.59290 (12)0.0273 (4)
O30.0506 (2)1.03936 (16)0.73724 (14)0.0417 (5)
O40.0696 (2)1.19348 (17)0.81467 (15)0.0481 (6)
O1W0.08536 (18)0.88808 (15)0.60396 (13)0.0323 (4)
H1WA0.04750.94590.63860.048*
H1WB0.07330.83170.63820.048*
O2W0.1570 (2)0.69797 (18)0.67213 (17)0.0595 (7)
H2WA0.22980.72860.71870.089*
H2WB0.10930.66950.69030.089*
N10.0910 (2)0.80054 (17)0.47615 (15)0.0283 (5)
N20.1213 (2)0.72318 (17)0.47124 (15)0.0291 (5)
C10.2153 (3)0.9926 (2)0.68096 (18)0.0275 (6)
C20.1059 (3)1.1301 (2)0.77408 (19)0.0294 (6)
C30.2744 (3)1.1063 (2)0.72625 (18)0.0262 (6)
C40.2292 (3)1.1679 (2)0.77316 (19)0.0313 (7)
C50.2972 (3)1.2677 (2)0.8182 (2)0.0442 (8)
H50.26701.30910.84900.053*
C60.4079 (4)1.3067 (3)0.8183 (2)0.0535 (9)
H60.45291.37280.85010.064*
C70.4520 (3)1.2485 (3)0.7716 (2)0.0438 (8)
H70.52571.27510.77040.053*
C80.3848 (3)1.1490 (2)0.7262 (2)0.0332 (7)
C90.1929 (3)0.8511 (2)0.47533 (19)0.0329 (7)
H90.22670.91960.50660.040*
C100.2500 (3)0.8080 (3)0.4313 (2)0.0430 (8)
C110.3573 (4)0.8730 (3)0.4275 (3)0.0691 (11)
H11A0.37840.94200.46210.104*
H11B0.32140.88980.36310.104*
H11C0.44050.82870.45480.104*
C120.2011 (3)0.7028 (3)0.3883 (2)0.0457 (8)
H120.23900.66870.35930.055*
C130.0978 (3)0.6501 (2)0.3887 (2)0.0432 (8)
H130.06510.58030.35990.052*
C140.0421 (3)0.7003 (2)0.43179 (18)0.0290 (6)
C150.0748 (3)0.6550 (2)0.43229 (19)0.0317 (7)
C160.1362 (3)0.5512 (2)0.3958 (2)0.0435 (8)
H160.10470.50510.36820.052*
C170.2437 (3)0.5169 (2)0.4008 (2)0.0482 (9)
H170.28420.44670.37720.058*
C180.2924 (3)0.5854 (2)0.4403 (2)0.0398 (7)
C190.4090 (3)0.5521 (3)0.4481 (3)0.0620 (10)
H19A0.49610.57650.39290.093*
H19B0.39590.58670.50280.093*
H19C0.40990.47160.45360.093*
C200.2279 (3)0.6894 (2)0.4739 (2)0.0353 (7)
H200.26050.73790.49950.042*
Cl10.44008 (8)1.07793 (7)0.66549 (6)0.0534 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0343 (2)0.0238 (2)0.0340 (2)0.00589 (14)0.02376 (18)0.00736 (15)
O10.0441 (12)0.0252 (10)0.0467 (13)0.0041 (10)0.0196 (10)0.0063 (10)
O20.0310 (10)0.0261 (9)0.0260 (10)0.0061 (8)0.0170 (9)0.0060 (9)
O30.0569 (13)0.0368 (11)0.0489 (13)0.0175 (10)0.0405 (11)0.0177 (10)
O40.0625 (14)0.0416 (12)0.0574 (15)0.0008 (11)0.0444 (13)0.0117 (11)
O1W0.0441 (11)0.0252 (9)0.0366 (11)0.0045 (9)0.0284 (10)0.0031 (9)
O2W0.0635 (15)0.0554 (14)0.0714 (17)0.0126 (12)0.0455 (14)0.0206 (13)
N10.0357 (13)0.0248 (12)0.0271 (12)0.0010 (10)0.0194 (11)0.0024 (10)
N20.0336 (13)0.0242 (11)0.0271 (12)0.0014 (10)0.0159 (11)0.0003 (10)
C10.0281 (14)0.0294 (14)0.0321 (16)0.0001 (12)0.0213 (13)0.0032 (13)
C20.0386 (16)0.0265 (14)0.0246 (14)0.0025 (13)0.0190 (13)0.0014 (12)
C30.0278 (14)0.0233 (13)0.0202 (13)0.0004 (12)0.0094 (12)0.0033 (12)
C40.0399 (16)0.0258 (13)0.0260 (15)0.0024 (13)0.0175 (13)0.0008 (13)
C50.062 (2)0.0355 (16)0.0428 (19)0.0137 (16)0.0344 (17)0.0129 (15)
C60.073 (2)0.0365 (17)0.056 (2)0.0237 (17)0.040 (2)0.0156 (17)
C70.0390 (16)0.0455 (18)0.0418 (19)0.0152 (15)0.0200 (15)0.0018 (16)
C80.0296 (15)0.0365 (15)0.0323 (16)0.0012 (13)0.0170 (13)0.0029 (14)
C90.0379 (16)0.0341 (15)0.0286 (15)0.0016 (13)0.0200 (14)0.0002 (13)
C100.0429 (18)0.057 (2)0.0355 (17)0.0078 (16)0.0265 (15)0.0077 (16)
C110.066 (2)0.099 (3)0.069 (3)0.013 (2)0.055 (2)0.007 (2)
C120.056 (2)0.056 (2)0.0368 (18)0.0155 (17)0.0341 (17)0.0012 (16)
C130.061 (2)0.0343 (16)0.0388 (18)0.0077 (15)0.0313 (17)0.0042 (15)
C140.0376 (16)0.0250 (14)0.0227 (14)0.0053 (12)0.0162 (13)0.0025 (12)
C150.0393 (17)0.0251 (14)0.0233 (14)0.0022 (13)0.0134 (13)0.0021 (12)
C160.057 (2)0.0276 (15)0.0389 (18)0.0044 (15)0.0233 (16)0.0087 (14)
C170.050 (2)0.0288 (15)0.0441 (19)0.0129 (15)0.0141 (16)0.0029 (15)
C180.0358 (16)0.0363 (16)0.0326 (16)0.0078 (14)0.0109 (14)0.0044 (15)
C190.050 (2)0.058 (2)0.067 (2)0.0219 (18)0.0273 (19)0.002 (2)
C200.0314 (15)0.0360 (15)0.0314 (16)0.0018 (13)0.0138 (13)0.0011 (14)
Cl10.0504 (5)0.0573 (5)0.0724 (6)0.0032 (4)0.0468 (5)0.0078 (5)
Geometric parameters (Å, º) top
Cu1—O21.9689 (16)C7—C81.387 (4)
Cu1—O2i2.5406 (17)C7—H70.9300
Cu1—N11.971 (2)C8—Cl11.733 (3)
Cu1—N22.000 (2)C9—C101.366 (4)
Cu1—O1W1.9700 (19)C9—H90.9300
Cu1—O2W2.753 (2)C10—C121.397 (4)
O1—C11.224 (3)C10—C111.506 (4)
O2—C11.284 (3)C11—H11A0.9600
O3—C21.230 (3)C11—H11B0.9600
O4—C21.256 (3)C11—H11C0.9600
O1W—H1WA0.8500C12—C131.363 (4)
O1W—H1WB0.8500C12—H120.9300
O2W—H2WA0.8500C13—C141.373 (4)
O2W—H2WB0.8500C13—H130.9300
N1—C91.341 (3)C14—C151.474 (4)
N1—C141.352 (3)C15—C161.382 (4)
N2—C201.334 (3)C16—C171.370 (4)
N2—C151.350 (4)C16—H160.9300
C1—C31.514 (4)C17—C181.376 (4)
C2—C41.518 (4)C17—H170.9300
C3—C81.387 (4)C18—C201.389 (4)
C3—C41.400 (4)C18—C191.498 (4)
C4—C51.390 (4)C19—H19A0.9600
C5—C61.373 (4)C19—H19B0.9600
C5—H50.9300C19—H19C0.9600
C6—C71.367 (5)C20—H200.9300
C6—H60.9300
O2—Cu1—O1W89.18 (7)C6—C7—H7120.6
O2—Cu1—N197.18 (8)C8—C7—H7120.6
O1W—Cu1—N1170.06 (8)C7—C8—C3122.5 (3)
O2—Cu1—N2177.20 (8)C7—C8—Cl1118.1 (2)
O1W—Cu1—N292.09 (9)C3—C8—Cl1119.4 (2)
N1—Cu1—N281.90 (9)N1—C9—C10123.9 (3)
O2—Cu1—O2W101.68 (7)N1—C9—H9118.1
O1W—Cu1—O2W85.94 (7)C10—C9—H9118.1
N1—Cu1—O2W85.29 (8)C9—C10—C12116.7 (3)
N2—Cu1—O2W80.91 (8)C9—C10—C11121.1 (3)
O1W—Cu1—O2i101.31 (7)C12—C10—C11122.1 (3)
N1—Cu1—O2i87.77 (8)C10—C11—H11A109.5
O2—Cu1—O2i75.02 (7)C10—C11—H11B109.5
O2W—Cu1—O2i171.88 (8)H11A—C11—H11B109.5
N2—Cu1—O2i102.28 (7)C10—C11—H11C109.5
C1—O2—Cu1119.12 (17)H11A—C11—H11C109.5
Cu1—O1W—H1WA109.4H11B—C11—H11C109.5
Cu1—O1W—H1WB109.5C13—C12—C10120.1 (3)
H1WA—O1W—H1WB109.5C13—C12—H12120.0
Cu1—O2W—H2WA109.5C10—C12—H12120.0
Cu1—O2W—H2WB109.5C12—C13—C14120.0 (3)
H2WA—O2W—H2WB109.5C12—C13—H13120.0
C9—N1—C14118.6 (2)C14—C13—H13120.0
C9—N1—Cu1126.69 (18)N1—C14—C13120.7 (3)
C14—N1—Cu1114.75 (18)N1—C14—C15114.3 (2)
C20—N2—C15119.2 (2)C13—C14—C15125.0 (3)
C20—N2—Cu1127.0 (2)N2—C15—C16120.6 (3)
C15—N2—Cu1113.24 (18)N2—C15—C14115.1 (2)
O1—C1—O2125.7 (2)C16—C15—C14124.3 (3)
O1—C1—C3117.9 (2)C17—C16—C15119.5 (3)
O2—C1—C3116.3 (2)C17—C16—H16120.3
O3—C2—O4124.6 (3)C15—C16—H16120.3
O3—C2—C4118.4 (2)C16—C17—C18120.7 (3)
O4—C2—C4117.0 (2)C16—C17—H17119.7
C8—C3—C4118.0 (2)C18—C17—H17119.7
C8—C3—C1118.4 (2)C17—C18—C20116.9 (3)
C4—C3—C1123.6 (2)C17—C18—C19123.0 (3)
C5—C4—C3119.0 (3)C20—C18—C19120.1 (3)
C5—C4—C2119.3 (3)C18—C19—H19A109.5
C3—C4—C2121.7 (2)C18—C19—H19B109.5
C6—C5—C4121.7 (3)H19A—C19—H19B109.5
C6—C5—H5119.2C18—C19—H19C109.5
C4—C5—H5119.2H19A—C19—H19C109.5
C7—C6—C5120.1 (3)H19B—C19—H19C109.5
C7—C6—H6120.0N2—C20—C18123.1 (3)
C5—C6—H6120.0N2—C20—H20118.4
C6—C7—C8118.8 (3)C18—C20—H20118.4
O1W—Cu1—O2—C171.57 (19)C4—C3—C8—C70.9 (4)
N1—Cu1—O2—C1100.76 (19)C1—C3—C8—C7175.4 (3)
O2W—Cu1—O2—C114.12 (19)C4—C3—C8—Cl1177.8 (2)
O2—Cu1—N1—C93.7 (2)C1—C3—C8—Cl15.9 (3)
N2—Cu1—N1—C9173.6 (2)C14—N1—C9—C100.7 (4)
O2W—Cu1—N1—C9104.9 (2)Cu1—N1—C9—C10178.8 (2)
O2—Cu1—N1—C14176.77 (18)N1—C9—C10—C122.5 (4)
N2—Cu1—N1—C145.90 (18)N1—C9—C10—C11175.7 (3)
O2W—Cu1—N1—C1475.57 (18)C9—C10—C12—C132.2 (5)
O1W—Cu1—N2—C207.1 (2)C11—C10—C12—C13176.0 (3)
N1—Cu1—N2—C20179.1 (2)C10—C12—C13—C140.2 (5)
O2W—Cu1—N2—C2092.6 (2)C9—N1—C14—C131.5 (4)
O1W—Cu1—N2—C15163.93 (18)Cu1—N1—C14—C13178.9 (2)
N1—Cu1—N2—C158.11 (18)C9—N1—C14—C15176.8 (2)
O2W—Cu1—N2—C1578.38 (18)Cu1—N1—C14—C152.8 (3)
Cu1—O2—C1—O119.6 (4)C12—C13—C14—N11.7 (4)
Cu1—O2—C1—C3164.18 (17)C12—C13—C14—C15176.3 (3)
O1—C1—C3—C886.6 (3)C20—N2—C15—C160.2 (4)
O2—C1—C3—C889.9 (3)Cu1—N2—C15—C16171.6 (2)
O1—C1—C3—C489.5 (3)C20—N2—C15—C14179.4 (2)
O2—C1—C3—C494.0 (3)Cu1—N2—C15—C148.8 (3)
C8—C3—C4—C50.7 (4)N1—C14—C15—N24.1 (3)
C1—C3—C4—C5175.4 (3)C13—C14—C15—N2174.0 (3)
C8—C3—C4—C2177.8 (2)N1—C14—C15—C16176.3 (3)
C1—C3—C4—C26.1 (4)C13—C14—C15—C165.5 (4)
O3—C2—C4—C5177.1 (3)N2—C15—C16—C171.0 (4)
O4—C2—C4—C51.4 (4)C14—C15—C16—C17179.4 (3)
O3—C2—C4—C34.5 (4)C15—C16—C17—C181.0 (4)
O4—C2—C4—C3177.1 (3)C16—C17—C18—C200.2 (4)
C3—C4—C5—C60.5 (5)C16—C17—C18—C19179.7 (3)
C2—C4—C5—C6179.0 (3)C15—N2—C20—C181.5 (4)
C4—C5—C6—C71.4 (5)Cu1—N2—C20—C18169.0 (2)
C5—C6—C7—C81.2 (5)C17—C18—C20—N21.5 (4)
C6—C7—C8—C30.0 (5)C19—C18—C20—N2178.3 (3)
C6—C7—C8—Cl1178.7 (3)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.851.792.622 (3)164
O1W—H1WB···O4ii0.851.822.655 (3)167
O2W—H2WA···O10.852.172.731 (3)124
O2W—H2WB···O4ii0.852.062.786 (3)143
C6—H6···Cl1iii0.932.823.609 (4)144
Symmetry codes: (ii) x, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu2(C8H3ClO4)2(C12H12N2)2(H2O)4]
Mr964.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.6908 (7), 11.8643 (6), 17.2869 (13)
β (°) 124.806 (5)
V3)1968.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.774, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
7602, 3450, 2845
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.07
No. of reflections3450
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.851.792.622 (3)164
O1W—H1WB···O4i0.851.822.655 (3)167
O2W—H2WA···O10.852.172.731 (3)124
O2W—H2WB···O4i0.852.062.786 (3)143
C6—H6···Cl1ii0.932.823.609 (4)144
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

We thank the Science Research Foundation for High-level Talents of Pingdingshan University (No. 2006046) for support.

References

First citationBaca, S. G., Filippova, I. G., Ambrus, C., Gdaniec, M., Simonov, Y. A., Gerbeleu, N., Gherco, O. A. & Decurtins, S. (2005). Eur. J. Inorg. Chem. pp. 3118–3130.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2004). Hydrogen Bonding. Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658–665. New York: Marcel Dekker Inc.  Google Scholar
First citationMa, C.-B., Wang, W.-G., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Zhu, H.-P., Liao, D.-Z. & Li, L.-C. (2004). Eur. J. Inorg. Chem. pp. 3522–3532.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L. J. & Iyoda, T. (2009). J. Inorg. Organomet. Polym. 19, 124–132.  Web of Science CSD CrossRef CAS Google Scholar
First citationThirumurugan, A. & Rao, C. N. R. (2005). J. Mater. Chem. 15, 3852–3858.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X.-S., Li, Q., Wu, J.-R. & Zhang, M.-M. (2011). J. Chem. Crystallogr. 41, 59–63.  Web of Science CSD CrossRef CAS Google Scholar
First citationZang, S.-Q., Li, J.-B., Li, Q.-Y., Hou, H.-W. & Mak, T. C. W. (2010). Polyhedron, 29, 2907–2915.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds