organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{3-[1-(Hydroxyimino)ethyl]-4-methyl-1H-pyrazol-5-yl}ethanone

aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine, and bUniversity of Joensuu, Department of Chemistry, PO Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: malinachem@mail.ru

(Received 18 August 2011; accepted 7 September 2011; online 14 September 2011)

In the title compound, C8H11N3O2, the oxime and the acetyl groups adopt a transoid conformation, while the pyrazole H atom is localized in the proximity of the acetyl group and is cis with respect to the acetyl O atom. In the crystal, dimers are formed as the result of hydrogen-bonding inter­actions involving the pyrazole NH group of one mol­ecule and the carbonyl O atom of another. The dimers are associated into sheets via O—H⋯N hydrogen bonds involving the oxime hydroxyl and the unprotonated pyrazole N atom, generating a macrocyclic motif with six mol­ecules.

Related literature

For details and applications of related pyrazoles, see: Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]); Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]). For the use of azomethine-functionalized pyrazoles in coordination chemistry and catalysis, see: De Geest et al. (2007[De Geest, D. J., Noble, A., Moubaraki, B., Murray, K. S., Larsen, D. S. & Brooker, S. (2007). Dalton Trans. pp. 467-475.]); Roy et al. (2008[Roy, S., Mandal, T. N., Barik, A. K., Gupta, S., Butcher, R. J., El Fallah, M. S., Tercero, J. & Kar, S. K. (2008). Polyhedron, 27, 105-112.]). For the use of the oxime substituents in the synthesis of polynucleative ligands, see: Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]). For related structures, see: Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Petrusenko et al. (1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]); Wörl et al. (2005a[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759-765.],b[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27-29.]). For the preparation of related ligands, see: Wolff (1902[Wolff, L. (1902). Liebigs Ann. Chem. 325, 185-192.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N3O2

  • Mr = 181.20

  • Monoclinic, P 21 /c

  • a = 9.0721 (2) Å

  • b = 11.7030 (7) Å

  • c = 8.2401 (9) Å

  • β = 104.124 (3)°

  • V = 848.41 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.46 × 0.33 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.955, Tmax = 0.987

  • 8532 measured reflections

  • 1925 independent reflections

  • 1486 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.115

  • wR(F2) = 0.346

  • S = 1.12

  • 1925 reflections

  • 125 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2i 1.05 1.89 2.932 (6) 170
N3—H3N⋯O2ii 0.88 2.00 2.840 (5) 157
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole-based ligands have attracted considerable attention due to their bridging nature and possibility for easy functionalization with various additional donor groups (Kovbasyuk et al., 2004; Krämer & Fritsky, 2000; Sachse et al., 2008). In particular, azomethine-functionalized pyrazoles have been used extensively as ligands in the field of coordination chemistry and catalysis (De Geest et al., 2007; Roy et al., 2008). Furthermore, introduction of the potentially bridging oxime group into the ligands already having bridging moieties (such as pyrazoles) may result in significant increase of coordination versatility of such ligands and afford the formation of metal complexes of high nuclearity and coordination polymers (Kanderal et al., 2005; Moroz et al., 2010). The title compound, having different substituents in the 3- and 5-positions of the pyrazole ring (the oxime and the acetyl groups) was synthesized as a part of our study of the abovementioned ligands and we report herein its crystal structure.

In the title compound (Fig. 1), the oxime and acetyl groups are in the transoid conformation in reference to one another, while the pyrazole proton is localized in the proximity of the acetyl group and is cis with respect to the acetyl O atom. The molecule is virtually planar, with the maximal deviation from the mean plane defined by the non-hydrogen atoms not exceeding 0.047 (5) Å for the methyl C5. The C—C, C—N and N—N bond lengths in the pyrazole ring are normal for the 3,5-disubstituted pyrazoles (Petrusenko et al., 1997, Wörl et al., 2005a,b). The bond lengths and angles within the acetyl and oxime groups are normal and comparable to those in the related structures (Fritsky et al., 1998; Mokhir et al., 2002; Świątek-Kozłowska et al., 2000). The C, N, O atoms of the oxime group exist in the nitroso-form (Mokhir et al., 2002; Sliva et al., 1997).

The crystal of the title compound has a layer structure formed entirely by hydrogen bonds between the molecules. The approximately planar dimers form as the result of hydrogen-bonding interactions (Table 1) involving the pyrazole NH group of one molecule and the carbonyl O atom of another. The dimers are associated into planar sheets via O—H···N hydrogen bonds involving the unprotonated pyrazole N atom and the oxime hydroxyl, generating a macrocyclic motif with six molecules (Fig. 2).

Related literature top

For details and applications of related pyrazoles, see: Kovbasyuk et al. (2004); Krämer & Fritsky (2000); Sachse et al. (2008). For the use of azomethine-functionalized pyrazoles in coordination chemistry and catalysis, see: De Geest et al. (2007); Roy et al. (2008). For the use of the oxime substituents in the synthesis of polynucleative ligands, see: Kanderal et al. (2005); Moroz et al. (2010). For related structures, see: Fritsky et al. (1998); Mokhir et al. (2002); Petrusenko et al. (1997); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Wörl et al. (2005a,b). For the preparation of related ligands, see: Wolff (1902).

Experimental top

3,5-Di-acetyl-4-methyl-1H-pyrazole (Wolff, 1902) (0,30 g, 1.81 mmol), NH2OH.HCl (0.09 g, 1.3 mmol) and sodium acetate (0.14 g, 1.3 mmol) were dissolved in water (10 ml). The mixture was stirred for 2 h, and the pH value was adjusted to 4 by slow addition of aqueous HCl (1:1). The formed precipitate was separated by filtration and purified by recrystallization from water/methanol (v/v, 1:1). Yield: 0.10 g (30 %). Analysis, calculated for C8H11N3O2: C 53.03, H 6.12, N 23.19%; found: C 52.72, H 6.32, N 23.25%. The water solution of the title compound was allowed to evaporate slowly over several days. Yellow crystals suitable for single-crystal X-ray diffraction were collected.

Refinement top

The crystal structure was refined with two twin components (twin matrices: 1 0 0.537 0 -1 0 0 0 -1 and 1.008 0 0.502 0 -1 0 -0.033 0 -1.008). BASF values were refined to 0.241 and 0.069, respectively. H atoms bonded to N and O atoms were located from a difference Fourier map but constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). H atoms of the methyl groups were positioned geometrically and refined as riding atoms, with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(C).

Structure description top

Pyrazole-based ligands have attracted considerable attention due to their bridging nature and possibility for easy functionalization with various additional donor groups (Kovbasyuk et al., 2004; Krämer & Fritsky, 2000; Sachse et al., 2008). In particular, azomethine-functionalized pyrazoles have been used extensively as ligands in the field of coordination chemistry and catalysis (De Geest et al., 2007; Roy et al., 2008). Furthermore, introduction of the potentially bridging oxime group into the ligands already having bridging moieties (such as pyrazoles) may result in significant increase of coordination versatility of such ligands and afford the formation of metal complexes of high nuclearity and coordination polymers (Kanderal et al., 2005; Moroz et al., 2010). The title compound, having different substituents in the 3- and 5-positions of the pyrazole ring (the oxime and the acetyl groups) was synthesized as a part of our study of the abovementioned ligands and we report herein its crystal structure.

In the title compound (Fig. 1), the oxime and acetyl groups are in the transoid conformation in reference to one another, while the pyrazole proton is localized in the proximity of the acetyl group and is cis with respect to the acetyl O atom. The molecule is virtually planar, with the maximal deviation from the mean plane defined by the non-hydrogen atoms not exceeding 0.047 (5) Å for the methyl C5. The C—C, C—N and N—N bond lengths in the pyrazole ring are normal for the 3,5-disubstituted pyrazoles (Petrusenko et al., 1997, Wörl et al., 2005a,b). The bond lengths and angles within the acetyl and oxime groups are normal and comparable to those in the related structures (Fritsky et al., 1998; Mokhir et al., 2002; Świątek-Kozłowska et al., 2000). The C, N, O atoms of the oxime group exist in the nitroso-form (Mokhir et al., 2002; Sliva et al., 1997).

The crystal of the title compound has a layer structure formed entirely by hydrogen bonds between the molecules. The approximately planar dimers form as the result of hydrogen-bonding interactions (Table 1) involving the pyrazole NH group of one molecule and the carbonyl O atom of another. The dimers are associated into planar sheets via O—H···N hydrogen bonds involving the unprotonated pyrazole N atom and the oxime hydroxyl, generating a macrocyclic motif with six molecules (Fig. 2).

For details and applications of related pyrazoles, see: Kovbasyuk et al. (2004); Krämer & Fritsky (2000); Sachse et al. (2008). For the use of azomethine-functionalized pyrazoles in coordination chemistry and catalysis, see: De Geest et al. (2007); Roy et al. (2008). For the use of the oxime substituents in the synthesis of polynucleative ligands, see: Kanderal et al. (2005); Moroz et al. (2010). For related structures, see: Fritsky et al. (1998); Mokhir et al. (2002); Petrusenko et al. (1997); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Wörl et al. (2005a,b). For the preparation of related ligands, see: Wolff (1902).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing. Intermolecular hydrogen bonds (dashed lines) link the molecules into a two-dimensional network.
1-{3-[1-(Hydroxyimino)ethyl]-4-methyl-1H-pyrazol-5-yl}ethanone top
Crystal data top
C8H11N3O2F(000) = 384
Mr = 181.20Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1467 reflections
a = 9.0721 (2) Åθ = 3.0–27.5°
b = 11.7030 (7) ŵ = 0.11 mm1
c = 8.2401 (9) ÅT = 120 K
β = 104.124 (3)°Block, yellow
V = 848.41 (11) Å30.46 × 0.33 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1925 independent reflections
Radiation source: fine-focus sealed tube1486 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.061
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
φ and ω scans with κ offseth = 1111
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1415
Tmin = 0.955, Tmax = 0.987l = 1010
8532 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.115Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.346H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1523P)2 + 2.4348P]
where P = (Fo2 + 2Fc2)/3
1925 reflections(Δ/σ)max = 0.001
125 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C8H11N3O2V = 848.41 (11) Å3
Mr = 181.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0721 (2) ŵ = 0.11 mm1
b = 11.7030 (7) ÅT = 120 K
c = 8.2401 (9) Å0.46 × 0.33 × 0.13 mm
β = 104.124 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1925 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1486 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.987Rint = 0.061
8532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1150 restraints
wR(F2) = 0.346H-atom parameters constrained
S = 1.12Δρmax = 0.57 e Å3
1925 reflectionsΔρmin = 0.50 e Å3
125 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1219 (4)0.1464 (4)0.8109 (6)0.0463 (11)
H1O0.13540.05840.83030.069*
O20.5690 (4)0.3709 (3)0.4582 (5)0.0401 (10)
N10.0051 (5)0.1629 (3)0.7433 (6)0.0307 (10)
N20.1958 (4)0.4074 (3)0.6374 (5)0.0293 (9)
N30.3189 (4)0.4064 (3)0.5780 (5)0.0280 (9)
H3N0.35510.46810.53960.034*
C10.0281 (5)0.2679 (4)0.7208 (6)0.0272 (10)
C20.0687 (6)0.3628 (4)0.7597 (8)0.0377 (12)
H2A0.17250.35470.69030.056*
H2B0.02680.43640.73600.056*
H2C0.07000.35940.87810.056*
C30.1637 (5)0.2962 (4)0.6571 (6)0.0269 (10)
C40.2704 (5)0.2239 (4)0.6090 (6)0.0267 (10)
C50.2749 (6)0.0955 (4)0.6118 (7)0.0337 (11)
H5A0.18010.06610.63270.050*
H5B0.36100.06970.70090.050*
H5C0.28650.06710.50370.050*
C60.3685 (5)0.2991 (4)0.5583 (6)0.0273 (10)
C70.5069 (6)0.2844 (4)0.4959 (7)0.0320 (11)
C80.5688 (6)0.1672 (4)0.4798 (7)0.0367 (12)
H8A0.65030.17220.42100.055*
H8B0.48730.11810.41650.055*
H8C0.60910.13480.59150.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.043 (2)0.042 (2)0.059 (3)0.0029 (16)0.0225 (19)0.0047 (19)
O20.0369 (19)0.0322 (19)0.055 (2)0.0066 (15)0.0191 (17)0.0020 (17)
N10.0314 (19)0.0256 (19)0.040 (2)0.0020 (15)0.0179 (16)0.0007 (16)
N20.035 (2)0.0204 (19)0.035 (2)0.0004 (15)0.0147 (17)0.0016 (15)
N30.0322 (19)0.0196 (18)0.034 (2)0.0034 (14)0.0121 (16)0.0008 (15)
C10.0224 (19)0.027 (2)0.032 (2)0.0001 (16)0.0058 (17)0.0007 (18)
C20.037 (3)0.025 (2)0.055 (3)0.0029 (19)0.020 (2)0.000 (2)
C30.032 (2)0.021 (2)0.029 (2)0.0015 (16)0.0111 (18)0.0023 (17)
C40.028 (2)0.022 (2)0.032 (2)0.0019 (16)0.0101 (17)0.0022 (18)
C50.042 (3)0.019 (2)0.045 (3)0.0005 (18)0.021 (2)0.004 (2)
C60.029 (2)0.021 (2)0.032 (2)0.0013 (16)0.0086 (18)0.0032 (18)
C70.034 (2)0.027 (2)0.038 (3)0.0040 (18)0.016 (2)0.000 (2)
C80.031 (2)0.031 (3)0.052 (3)0.0032 (19)0.018 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—N11.410 (5)C2—H2C0.9800
O1—H1O1.0542C3—C41.413 (6)
O2—C71.234 (6)C4—C61.386 (6)
N1—C11.267 (6)C4—C51.503 (6)
N2—N31.324 (5)C5—H5A0.9800
N2—C31.353 (6)C5—H5B0.9800
N3—C61.357 (6)C5—H5C0.9800
N3—H3N0.8839C6—C71.479 (6)
C1—C31.487 (6)C7—C81.500 (7)
C1—C21.498 (6)C8—H8A0.9800
C2—H2A0.9800C8—H8B0.9800
C2—H2B0.9800C8—H8C0.9800
N1—O1—H1O109.3C3—C4—C5127.7 (4)
C1—N1—O1111.7 (4)C4—C5—H5A109.5
N3—N2—C3105.2 (4)C4—C5—H5B109.5
N2—N3—C6112.8 (4)H5A—C5—H5B109.5
N2—N3—H3N123.1C4—C5—H5C109.5
C6—N3—H3N123.4H5A—C5—H5C109.5
N1—C1—C3116.5 (4)H5B—C5—H5C109.5
N1—C1—C2124.1 (4)N3—C6—C4107.2 (4)
C3—C1—C2119.3 (4)N3—C6—C7118.9 (4)
C1—C2—H2A109.5C4—C6—C7133.9 (4)
C1—C2—H2B109.5O2—C7—C6118.1 (4)
H2A—C2—H2B109.5O2—C7—C8121.6 (4)
C1—C2—H2C109.5C6—C7—C8120.3 (4)
H2A—C2—H2C109.5C7—C8—H8A109.5
H2B—C2—H2C109.5C7—C8—H8B109.5
N2—C3—C4111.1 (4)H8A—C8—H8B109.5
N2—C3—C1118.5 (4)C7—C8—H8C109.5
C4—C3—C1130.4 (4)H8A—C8—H8C109.5
C6—C4—C3103.8 (4)H8B—C8—H8C109.5
C6—C4—C5128.5 (4)
C3—N2—N3—C60.1 (5)C1—C3—C4—C50.7 (9)
O1—N1—C1—C3177.3 (4)N2—N3—C6—C40.1 (6)
O1—N1—C1—C20.6 (7)N2—N3—C6—C7178.9 (4)
N3—N2—C3—C40.2 (5)C3—C4—C6—N30.2 (5)
N3—N2—C3—C1179.2 (4)C5—C4—C6—N3179.9 (5)
N1—C1—C3—N2177.5 (4)C3—C4—C6—C7178.7 (5)
C2—C1—C3—N20.5 (7)C5—C4—C6—C71.6 (9)
N1—C1—C3—C43.2 (8)N3—C6—C7—O22.6 (8)
C2—C1—C3—C4178.8 (5)C4—C6—C7—O2179.0 (5)
N2—C3—C4—C60.3 (5)N3—C6—C7—C8177.3 (5)
C1—C3—C4—C6179.0 (5)C4—C6—C7—C81.0 (9)
N2—C3—C4—C5180.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2i1.051.892.932 (6)170
N3—H3N···O2ii0.882.002.840 (5)157
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H11N3O2
Mr181.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.0721 (2), 11.7030 (7), 8.2401 (9)
β (°) 104.124 (3)
V3)848.41 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.46 × 0.33 × 0.13
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.955, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8532, 1925, 1486
Rint0.061
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.115, 0.346, 1.12
No. of reflections1925
No. of parameters125
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.50

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2i1.051.892.932 (6)170
N3—H3N···O2ii0.882.002.840 (5)157
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDe Geest, D. J., Noble, A., Moubaraki, B., Murray, K. S., Larsen, D. S. & Brooker, S. (2007). Dalton Trans. pp. 467–475.  CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationRoy, S., Mandal, T. N., Barik, A. K., Gupta, S., Butcher, R. J., El Fallah, M. S., Tercero, J. & Kar, S. K. (2008). Polyhedron, 27, 105–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationWolff, L. (1902). Liebigs Ann. Chem. 325, 185–192.  CrossRef Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds