organic compounds
1-{3-[1-(Hydroxyimino)ethyl]-4-methyl-1H-pyrazol-5-yl}ethanone
aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine, and bUniversity of Joensuu, Department of Chemistry, PO Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: malinachem@mail.ru
In the title compound, C8H11N3O2, the oxime and the acetyl groups adopt a while the pyrazole H atom is localized in the proximity of the acetyl group and is cis with respect to the acetyl O atom. In the crystal, dimers are formed as the result of hydrogen-bonding interactions involving the pyrazole NH group of one molecule and the carbonyl O atom of another. The dimers are associated into sheets via O—H⋯N hydrogen bonds involving the oxime hydroxyl and the unprotonated pyrazole N atom, generating a macrocyclic motif with six molecules.
Related literature
For details and applications of related pyrazoles, see: Kovbasyuk et al. (2004); Krämer & Fritsky (2000); Sachse et al. (2008). For the use of azomethine-functionalized pyrazoles in coordination chemistry and catalysis, see: De Geest et al. (2007); Roy et al. (2008). For the use of the oxime substituents in the synthesis of polynucleative ligands, see: Kanderal et al. (2005); Moroz et al. (2010). For related structures, see: Fritsky et al. (1998); Mokhir et al. (2002); Petrusenko et al. (1997); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Wörl et al. (2005a,b). For the preparation of related ligands, see: Wolff (1902).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811036518/hy2464sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811036518/hy2464Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811036518/hy2464Isup3.cml
3,5-Di-acetyl-4-methyl-1H-pyrazole (Wolff, 1902) (0,30 g, 1.81 mmol), NH2OH.HCl (0.09 g, 1.3 mmol) and sodium acetate (0.14 g, 1.3 mmol) were dissolved in water (10 ml). The mixture was stirred for 2 h, and the pH value was adjusted to 4 by slow addition of aqueous HCl (1:1). The formed precipitate was separated by filtration and purified by recrystallization from water/methanol (v/v, 1:1). Yield: 0.10 g (30 %). Analysis, calculated for C8H11N3O2: C 53.03, H 6.12, N 23.19%; found: C 52.72, H 6.32, N 23.25%. The water solution of the title compound was allowed to evaporate slowly over several days. Yellow crystals suitable for single-crystal X-ray diffraction were collected.
The
was refined with two twin components (twin matrices: 1 0 0.537 0 -1 0 0 0 -1 and 1.008 0 0.502 0 -1 0 -0.033 0 -1.008). BASF values were refined to 0.241 and 0.069, respectively. H atoms bonded to N and O atoms were located from a difference Fourier map but constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). H atoms of the methyl groups were positioned geometrically and refined as riding atoms, with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(C).Pyrazole-based ligands have attracted considerable attention due to their bridging nature and possibility for easy functionalization with various additional donor groups (Kovbasyuk et al., 2004; Krämer & Fritsky, 2000; Sachse et al., 2008). In particular, azomethine-functionalized pyrazoles have been used extensively as ligands in the field of coordination chemistry and catalysis (De Geest et al., 2007; Roy et al., 2008). Furthermore, introduction of the potentially bridging oxime group into the ligands already having bridging moieties (such as pyrazoles) may result in significant increase of coordination versatility of such ligands and afford the formation of metal complexes of high nuclearity and coordination polymers (Kanderal et al., 2005; Moroz et al., 2010). The title compound, having different substituents in the 3- and 5-positions of the pyrazole ring (the oxime and the acetyl groups) was synthesized as a part of our study of the abovementioned ligands and we report herein its crystal structure.
In the title compound (Fig. 1), the oxime and acetyl groups are in the
in reference to one another, while the pyrazole proton is localized in the proximity of the acetyl group and is cis with respect to the acetyl O atom. The molecule is virtually planar, with the maximal deviation from the mean plane defined by the non-hydrogen atoms not exceeding 0.047 (5) Å for the methyl C5. The C—C, C—N and N—N bond lengths in the pyrazole ring are normal for the 3,5-disubstituted pyrazoles (Petrusenko et al., 1997, Wörl et al., 2005a,b). The bond lengths and angles within the acetyl and oxime groups are normal and comparable to those in the related structures (Fritsky et al., 1998; Mokhir et al., 2002; Świątek-Kozłowska et al., 2000). The C, N, O atoms of the oxime group exist in the nitroso-form (Mokhir et al., 2002; Sliva et al., 1997).The crystal of the title compound has a layer structure formed entirely by hydrogen bonds between the molecules. The approximately planar dimers form as the result of hydrogen-bonding interactions (Table 1) involving the pyrazole NH group of one molecule and the carbonyl O atom of another. The dimers are associated into planar sheets via O—H···N hydrogen bonds involving the unprotonated pyrazole N atom and the oxime hydroxyl, generating a macrocyclic motif with six molecules (Fig. 2).
For details and applications of related pyrazoles, see: Kovbasyuk et al. (2004); Krämer & Fritsky (2000); Sachse et al. (2008). For the use of azomethine-functionalized pyrazoles in coordination chemistry and catalysis, see: De Geest et al. (2007); Roy et al. (2008). For the use of the oxime substituents in the synthesis of polynucleative ligands, see: Kanderal et al. (2005); Moroz et al. (2010). For related structures, see: Fritsky et al. (1998); Mokhir et al. (2002); Petrusenko et al. (1997); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Wörl et al. (2005a,b). For the preparation of related ligands, see: Wolff (1902).
Data collection: COLLECT (Nonius, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C8H11N3O2 | F(000) = 384 |
Mr = 181.20 | Dx = 1.419 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1467 reflections |
a = 9.0721 (2) Å | θ = 3.0–27.5° |
b = 11.7030 (7) Å | µ = 0.11 mm−1 |
c = 8.2401 (9) Å | T = 120 K |
β = 104.124 (3)° | Block, yellow |
V = 848.41 (11) Å3 | 0.46 × 0.33 × 0.13 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1925 independent reflections |
Radiation source: fine-focus sealed tube | 1486 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.061 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
φ and ω scans with κ offset | h = −11→11 |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | k = −14→15 |
Tmin = 0.955, Tmax = 0.987 | l = −10→10 |
8532 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.115 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.346 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.1523P)2 + 2.4348P] where P = (Fo2 + 2Fc2)/3 |
1925 reflections | (Δ/σ)max = 0.001 |
125 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
C8H11N3O2 | V = 848.41 (11) Å3 |
Mr = 181.20 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.0721 (2) Å | µ = 0.11 mm−1 |
b = 11.7030 (7) Å | T = 120 K |
c = 8.2401 (9) Å | 0.46 × 0.33 × 0.13 mm |
β = 104.124 (3)° |
Nonius KappaCCD diffractometer | 1925 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 1486 reflections with I > 2σ(I) |
Tmin = 0.955, Tmax = 0.987 | Rint = 0.061 |
8532 measured reflections |
R[F2 > 2σ(F2)] = 0.115 | 0 restraints |
wR(F2) = 0.346 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.57 e Å−3 |
1925 reflections | Δρmin = −0.50 e Å−3 |
125 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | −0.1219 (4) | 0.1464 (4) | 0.8109 (6) | 0.0463 (11) | |
H1O | −0.1354 | 0.0584 | 0.8303 | 0.069* | |
O2 | 0.5690 (4) | 0.3709 (3) | 0.4582 (5) | 0.0401 (10) | |
N1 | 0.0051 (5) | 0.1629 (3) | 0.7433 (6) | 0.0307 (10) | |
N2 | 0.1958 (4) | 0.4074 (3) | 0.6374 (5) | 0.0293 (9) | |
N3 | 0.3189 (4) | 0.4064 (3) | 0.5780 (5) | 0.0280 (9) | |
H3N | 0.3551 | 0.4681 | 0.5396 | 0.034* | |
C1 | 0.0281 (5) | 0.2679 (4) | 0.7208 (6) | 0.0272 (10) | |
C2 | −0.0687 (6) | 0.3628 (4) | 0.7597 (8) | 0.0377 (12) | |
H2A | −0.1725 | 0.3547 | 0.6903 | 0.056* | |
H2B | −0.0268 | 0.4364 | 0.7360 | 0.056* | |
H2C | −0.0700 | 0.3594 | 0.8781 | 0.056* | |
C3 | 0.1637 (5) | 0.2962 (4) | 0.6571 (6) | 0.0269 (10) | |
C4 | 0.2704 (5) | 0.2239 (4) | 0.6090 (6) | 0.0267 (10) | |
C5 | 0.2749 (6) | 0.0955 (4) | 0.6118 (7) | 0.0337 (11) | |
H5A | 0.1801 | 0.0661 | 0.6327 | 0.050* | |
H5B | 0.3610 | 0.0697 | 0.7009 | 0.050* | |
H5C | 0.2865 | 0.0671 | 0.5037 | 0.050* | |
C6 | 0.3685 (5) | 0.2991 (4) | 0.5583 (6) | 0.0273 (10) | |
C7 | 0.5069 (6) | 0.2844 (4) | 0.4959 (7) | 0.0320 (11) | |
C8 | 0.5688 (6) | 0.1672 (4) | 0.4798 (7) | 0.0367 (12) | |
H8A | 0.6503 | 0.1722 | 0.4210 | 0.055* | |
H8B | 0.4873 | 0.1181 | 0.4165 | 0.055* | |
H8C | 0.6091 | 0.1348 | 0.5915 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.043 (2) | 0.042 (2) | 0.059 (3) | −0.0029 (16) | 0.0225 (19) | 0.0047 (19) |
O2 | 0.0369 (19) | 0.0322 (19) | 0.055 (2) | −0.0066 (15) | 0.0191 (17) | 0.0020 (17) |
N1 | 0.0314 (19) | 0.0256 (19) | 0.040 (2) | −0.0020 (15) | 0.0179 (16) | −0.0007 (16) |
N2 | 0.035 (2) | 0.0204 (19) | 0.035 (2) | 0.0004 (15) | 0.0147 (17) | 0.0016 (15) |
N3 | 0.0322 (19) | 0.0196 (18) | 0.034 (2) | −0.0034 (14) | 0.0121 (16) | 0.0008 (15) |
C1 | 0.0224 (19) | 0.027 (2) | 0.032 (2) | 0.0001 (16) | 0.0058 (17) | 0.0007 (18) |
C2 | 0.037 (3) | 0.025 (2) | 0.055 (3) | 0.0029 (19) | 0.020 (2) | 0.000 (2) |
C3 | 0.032 (2) | 0.021 (2) | 0.029 (2) | 0.0015 (16) | 0.0111 (18) | 0.0023 (17) |
C4 | 0.028 (2) | 0.022 (2) | 0.032 (2) | 0.0019 (16) | 0.0101 (17) | 0.0022 (18) |
C5 | 0.042 (3) | 0.019 (2) | 0.045 (3) | 0.0005 (18) | 0.021 (2) | 0.004 (2) |
C6 | 0.029 (2) | 0.021 (2) | 0.032 (2) | 0.0013 (16) | 0.0086 (18) | 0.0032 (18) |
C7 | 0.034 (2) | 0.027 (2) | 0.038 (3) | −0.0040 (18) | 0.016 (2) | 0.000 (2) |
C8 | 0.031 (2) | 0.031 (3) | 0.052 (3) | 0.0032 (19) | 0.018 (2) | 0.002 (2) |
O1—N1 | 1.410 (5) | C2—H2C | 0.9800 |
O1—H1O | 1.0542 | C3—C4 | 1.413 (6) |
O2—C7 | 1.234 (6) | C4—C6 | 1.386 (6) |
N1—C1 | 1.267 (6) | C4—C5 | 1.503 (6) |
N2—N3 | 1.324 (5) | C5—H5A | 0.9800 |
N2—C3 | 1.353 (6) | C5—H5B | 0.9800 |
N3—C6 | 1.357 (6) | C5—H5C | 0.9800 |
N3—H3N | 0.8839 | C6—C7 | 1.479 (6) |
C1—C3 | 1.487 (6) | C7—C8 | 1.500 (7) |
C1—C2 | 1.498 (6) | C8—H8A | 0.9800 |
C2—H2A | 0.9800 | C8—H8B | 0.9800 |
C2—H2B | 0.9800 | C8—H8C | 0.9800 |
N1—O1—H1O | 109.3 | C3—C4—C5 | 127.7 (4) |
C1—N1—O1 | 111.7 (4) | C4—C5—H5A | 109.5 |
N3—N2—C3 | 105.2 (4) | C4—C5—H5B | 109.5 |
N2—N3—C6 | 112.8 (4) | H5A—C5—H5B | 109.5 |
N2—N3—H3N | 123.1 | C4—C5—H5C | 109.5 |
C6—N3—H3N | 123.4 | H5A—C5—H5C | 109.5 |
N1—C1—C3 | 116.5 (4) | H5B—C5—H5C | 109.5 |
N1—C1—C2 | 124.1 (4) | N3—C6—C4 | 107.2 (4) |
C3—C1—C2 | 119.3 (4) | N3—C6—C7 | 118.9 (4) |
C1—C2—H2A | 109.5 | C4—C6—C7 | 133.9 (4) |
C1—C2—H2B | 109.5 | O2—C7—C6 | 118.1 (4) |
H2A—C2—H2B | 109.5 | O2—C7—C8 | 121.6 (4) |
C1—C2—H2C | 109.5 | C6—C7—C8 | 120.3 (4) |
H2A—C2—H2C | 109.5 | C7—C8—H8A | 109.5 |
H2B—C2—H2C | 109.5 | C7—C8—H8B | 109.5 |
N2—C3—C4 | 111.1 (4) | H8A—C8—H8B | 109.5 |
N2—C3—C1 | 118.5 (4) | C7—C8—H8C | 109.5 |
C4—C3—C1 | 130.4 (4) | H8A—C8—H8C | 109.5 |
C6—C4—C3 | 103.8 (4) | H8B—C8—H8C | 109.5 |
C6—C4—C5 | 128.5 (4) | ||
C3—N2—N3—C6 | −0.1 (5) | C1—C3—C4—C5 | −0.7 (9) |
O1—N1—C1—C3 | 177.3 (4) | N2—N3—C6—C4 | −0.1 (6) |
O1—N1—C1—C2 | −0.6 (7) | N2—N3—C6—C7 | −178.9 (4) |
N3—N2—C3—C4 | 0.2 (5) | C3—C4—C6—N3 | 0.2 (5) |
N3—N2—C3—C1 | −179.2 (4) | C5—C4—C6—N3 | 179.9 (5) |
N1—C1—C3—N2 | −177.5 (4) | C3—C4—C6—C7 | 178.7 (5) |
C2—C1—C3—N2 | 0.5 (7) | C5—C4—C6—C7 | −1.6 (9) |
N1—C1—C3—C4 | 3.2 (8) | N3—C6—C7—O2 | −2.6 (8) |
C2—C1—C3—C4 | −178.8 (5) | C4—C6—C7—O2 | 179.0 (5) |
N2—C3—C4—C6 | −0.3 (5) | N3—C6—C7—C8 | 177.3 (5) |
C1—C3—C4—C6 | 179.0 (5) | C4—C6—C7—C8 | −1.0 (9) |
N2—C3—C4—C5 | −180.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N2i | 1.05 | 1.89 | 2.932 (6) | 170 |
N3—H3N···O2ii | 0.88 | 2.00 | 2.840 (5) | 157 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H11N3O2 |
Mr | 181.20 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 9.0721 (2), 11.7030 (7), 8.2401 (9) |
β (°) | 104.124 (3) |
V (Å3) | 848.41 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.46 × 0.33 × 0.13 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.955, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8532, 1925, 1486 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.115, 0.346, 1.12 |
No. of reflections | 1925 |
No. of parameters | 125 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −0.50 |
Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N2i | 1.05 | 1.89 | 2.932 (6) | 170 |
N3—H3N···O2ii | 0.88 | 2.00 | 2.840 (5) | 157 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
De Geest, D. J., Noble, A., Moubaraki, B., Murray, K. S., Larsen, D. S. & Brooker, S. (2007). Dalton Trans. pp. 467–475. CSD CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274. Web of Science CSD CrossRef Google Scholar
Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. Web of Science CrossRef PubMed Google Scholar
Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881. Web of Science CrossRef Google Scholar
Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510. Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274. CSD CrossRef CAS Web of Science Google Scholar
Roy, S., Mandal, T. N., Barik, A. K., Gupta, S., Butcher, R. J., El Fallah, M. S., Tercero, J. & Kar, S. K. (2008). Polyhedron, 27, 105–112. Web of Science CSD CrossRef CAS Google Scholar
Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068. Google Scholar
Wolff, L. (1902). Liebigs Ann. Chem. 325, 185–192. CrossRef Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27–29. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazole-based ligands have attracted considerable attention due to their bridging nature and possibility for easy functionalization with various additional donor groups (Kovbasyuk et al., 2004; Krämer & Fritsky, 2000; Sachse et al., 2008). In particular, azomethine-functionalized pyrazoles have been used extensively as ligands in the field of coordination chemistry and catalysis (De Geest et al., 2007; Roy et al., 2008). Furthermore, introduction of the potentially bridging oxime group into the ligands already having bridging moieties (such as pyrazoles) may result in significant increase of coordination versatility of such ligands and afford the formation of metal complexes of high nuclearity and coordination polymers (Kanderal et al., 2005; Moroz et al., 2010). The title compound, having different substituents in the 3- and 5-positions of the pyrazole ring (the oxime and the acetyl groups) was synthesized as a part of our study of the abovementioned ligands and we report herein its crystal structure.
In the title compound (Fig. 1), the oxime and acetyl groups are in the transoid conformation in reference to one another, while the pyrazole proton is localized in the proximity of the acetyl group and is cis with respect to the acetyl O atom. The molecule is virtually planar, with the maximal deviation from the mean plane defined by the non-hydrogen atoms not exceeding 0.047 (5) Å for the methyl C5. The C—C, C—N and N—N bond lengths in the pyrazole ring are normal for the 3,5-disubstituted pyrazoles (Petrusenko et al., 1997, Wörl et al., 2005a,b). The bond lengths and angles within the acetyl and oxime groups are normal and comparable to those in the related structures (Fritsky et al., 1998; Mokhir et al., 2002; Świątek-Kozłowska et al., 2000). The C, N, O atoms of the oxime group exist in the nitroso-form (Mokhir et al., 2002; Sliva et al., 1997).
The crystal of the title compound has a layer structure formed entirely by hydrogen bonds between the molecules. The approximately planar dimers form as the result of hydrogen-bonding interactions (Table 1) involving the pyrazole NH group of one molecule and the carbonyl O atom of another. The dimers are associated into planar sheets via O—H···N hydrogen bonds involving the unprotonated pyrazole N atom and the oxime hydroxyl, generating a macrocyclic motif with six molecules (Fig. 2).