metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aquabis(2,2′-bi­pyridine-κ2N,N′)(μ3-5-hydroxyisophthalato-κ5O1,O1′:O3,O3′:O3′)(μ3-5-hy­droxy­isophthalato-κ4O1,O1′:O3:O3′)(μ2-5-hydroxyisophthalato-κ3O1,O1′:O3)didysprosium(III)] dihydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zhangyl75@yahoo.com.cn

(Received 22 August 2011; accepted 23 September 2011; online 30 September 2011)

The polymeric title compound, {[Dy2(C8H4O5)3(C10H8N2)2(H2O)2]·2H2O}n, contains two independent DyIII ions, both of which are nine-coordinated in a distorted tricapped trigonal–prismatic geometry. One DyIII ion is coordinated by five 5-hy­droxy­isophthalate (hip) ligands and one 2,2′-bipyridine (bpy) ligand and the other by three hip ligands, one bpy ligand and two water mol­ecules. The DyIII ions are bridged by the carboxyl­ate groups of the hip ligands, forming a three-dimensional framework. O—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For related structures, see: Li et al. (2007[Li, X.-F., An, Y. & Yin, Y.-S. (2007). Acta Cryst. E63, m3117-m3118.]); Plater et al. (2001[Plater, M. J., Foreman, M. R. St J., Howie, R. A., Skakle, J. M. S., McWilliam, S. A., Coronado, E. & Gómez-García, C. J. (2001). Polyhedron, 20, 2293-2303.]); Zhuo et al. (2006a[Zhuo, X., Pan, Z.-R., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006a). Acta Cryst. E62, m1722-m1724.],b[Zhuo, X., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006b). Acta Cryst. E62, m785-m787.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy2(C8H4O5)3(C10H8N2)2(H2O)2]·2H2O

  • Mr = 1249.77

  • Triclinic, [P \overline 1]

  • a = 11.3736 (5) Å

  • b = 12.0349 (6) Å

  • c = 17.8360 (8) Å

  • α = 91.310 (1)°

  • β = 103.187 (1)°

  • γ = 106.505 (1)°

  • V = 2269.00 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.35 mm−1

  • T = 298 K

  • 0.25 × 0.24 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.488, Tmax = 0.540

  • 11732 measured reflections

  • 8024 independent reflections

  • 7052 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.06

  • 8024 reflections

  • 624 parameters

  • 252 restraints

  • H-atom parameters constrained

  • Δρmax = 2.65 e Å−3

  • Δρmin = −1.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4Wi 0.82 2.15 2.910 (11) 154
O10—H10A⋯O2ii 0.82 1.95 2.761 (6) 168
O15—H15⋯O1iii 0.82 1.92 2.718 (6) 163
O1W—H1WA⋯O8iv 0.85 1.84 2.609 (6) 150
O1W—H1WB⋯O3Wiii 0.85 2.01 2.717 (7) 141
O2W—H2WA⋯O11 0.85 2.15 2.676 (6) 120
O2W—H2WB⋯O7ii 0.85 1.86 2.689 (6) 164
O3W—H3WA⋯O4Wiii 0.85 1.99 2.744 (9) 147
O3W—H3WB⋯O8v 0.85 2.03 2.832 (9) 156
O4W—H4WA⋯O6vi 0.85 1.96 2.809 (8) 175
O4W—H4WB⋯O12 0.85 2.20 2.801 (8) 128
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, in situ metal/ligand reactions have been widely investigated for the discovery of new organic reactions and the elucidation of reaction mechanism, as well as the generation of novel coordination polymers. There is currently much interest in employing polycarboxylate ligands with O donors and bipyridine ligands with N donors to design metal coordination polymers with intriguing structures and potential applications. Particular attention has been paid to 5-hydroxyisophthalate and 2,2'-bipyridine ligands; they have five O coordination sites and two N coordination sites, respectively, and thus can potentially afford different coordination modes in multicoordinated ways with transition metal ions (Li et al., 2007; Plater et al., 2001; Zhuo et al., 2006a,b) to form new metal coordination polymers with various structures and interesting properties. In this paper, we report the crystal structure of the title compound, which was synthesized under hydrothermal conditions.

As shown in Fig. 1, both DyIII ions exhibit a distorted tricapped trigonal prismatic geometry. One DyIII ion is coordinated by five 5-hydroxyisophthalate (hip) ligands and one 2,2'-bipyridine (bpy) ligand and the other is by three hip ligands, one bpy ligand and two water molecules. The Dy—O bond lengths range from 2.287 (4) to 2.818 (4) Å and the Dy—N bond lengths range from 2.545 (5) to 2.628 (5) Å. In the crystal, the DyIII ions are bridged by the carboxylate groups of the hip ligands, forming a three-dimensional framework (Fig. 2). O—H···O hydrogen bonds are present (Table 1).

Related literature top

For related structures, see: Li et al. (2007); Plater et al. (2001); Zhuo et al. (2006a,b).

Experimental top

A mixture of Dy2O3 (0.363 g, 1 mmol), 5-hydroxyisophthalic acid (0.182 g, 1 mmol), 2,2'-bipyridine (0.132 g, 1 mmol) and water (10 ml) in the presence of HClO4 (0.039 g, 0.385 mmol) was stirred vigorously for 30 min and then sealed in a 20 ml Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 433 K for 50 h and then cooled to room temperature at 5 K h-1. Colorless block crystals were obtained.

Refinement top

H atoms of water molecules and hydroxyl groups were tentatively located in difference Fourier maps and refined as riding atoms, with O—H = 0.82 (hydroxyl) and 0.85 (water) Å and with Uiso(H) = 1.5Ueq(O). H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found at 2.58 Å from H33 atom and the deepest hole at 0.51 Å from O4W atom.

Structure description top

In recent years, in situ metal/ligand reactions have been widely investigated for the discovery of new organic reactions and the elucidation of reaction mechanism, as well as the generation of novel coordination polymers. There is currently much interest in employing polycarboxylate ligands with O donors and bipyridine ligands with N donors to design metal coordination polymers with intriguing structures and potential applications. Particular attention has been paid to 5-hydroxyisophthalate and 2,2'-bipyridine ligands; they have five O coordination sites and two N coordination sites, respectively, and thus can potentially afford different coordination modes in multicoordinated ways with transition metal ions (Li et al., 2007; Plater et al., 2001; Zhuo et al., 2006a,b) to form new metal coordination polymers with various structures and interesting properties. In this paper, we report the crystal structure of the title compound, which was synthesized under hydrothermal conditions.

As shown in Fig. 1, both DyIII ions exhibit a distorted tricapped trigonal prismatic geometry. One DyIII ion is coordinated by five 5-hydroxyisophthalate (hip) ligands and one 2,2'-bipyridine (bpy) ligand and the other is by three hip ligands, one bpy ligand and two water molecules. The Dy—O bond lengths range from 2.287 (4) to 2.818 (4) Å and the Dy—N bond lengths range from 2.545 (5) to 2.628 (5) Å. In the crystal, the DyIII ions are bridged by the carboxylate groups of the hip ligands, forming a three-dimensional framework (Fig. 2). O—H···O hydrogen bonds are present (Table 1).

For related structures, see: Li et al. (2007); Plater et al. (2001); Zhuo et al. (2006a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x+1, y, 1+z; (ii) -x, 2-y, 1-z; (iii) -x, 1-y, 1-z; (iv) -x, 1+y, z.]
[Figure 2] Fig. 2. A view of the three-dimensional framework. Hydrogen bonds are shown as dashed lines.
Poly[[diaquabis(2,2'-bipyridine-κ2N,N')(µ3-5- hydroxyisophthalato- κ5O1,O1':O3,O3':O3')(µ3- 5-hydroxyisophthalato- κ4O1,O1':O3:O3')(µ2-5- hydroxyisophthalato-κ3O1,O1':O3)didysprosium(III)] dihydrate] top
Crystal data top
[Dy2(C8H4O5)3(C10H8N2)2(H2O)2]·2H2OZ = 2
Mr = 1249.77F(000) = 1224
Triclinic, P1Dx = 1.829 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3736 (5) ÅCell parameters from 7036 reflections
b = 12.0349 (6) Åθ = 2.3–25.2°
c = 17.8360 (8) ŵ = 3.35 mm1
α = 91.310 (1)°T = 298 K
β = 103.187 (1)°Block, colourless
γ = 106.505 (1)°0.25 × 0.24 × 0.21 mm
V = 2269.00 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8024 independent reflections
Radiation source: fine-focus sealed tube7052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1113
Tmin = 0.488, Tmax = 0.540k = 1412
11732 measured reflectionsl = 2114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0438P)2 + 9.6294P]
where P = (Fo2 + 2Fc2)/3
8024 reflections(Δ/σ)max = 0.001
624 parametersΔρmax = 2.65 e Å3
252 restraintsΔρmin = 1.25 e Å3
Crystal data top
[Dy2(C8H4O5)3(C10H8N2)2(H2O)2]·2H2Oγ = 106.505 (1)°
Mr = 1249.77V = 2269.00 (18) Å3
Triclinic, P1Z = 2
a = 11.3736 (5) ÅMo Kα radiation
b = 12.0349 (6) ŵ = 3.35 mm1
c = 17.8360 (8) ÅT = 298 K
α = 91.310 (1)°0.25 × 0.24 × 0.21 mm
β = 103.187 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8024 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
7052 reflections with I > 2σ(I)
Tmin = 0.488, Tmax = 0.540Rint = 0.020
11732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035252 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 2.65 e Å3
8024 reflectionsΔρmin = 1.25 e Å3
624 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4251 (5)0.8899 (5)0.7503 (3)0.0251 (8)
C20.3246 (5)0.8628 (5)0.6840 (3)0.0239 (8)
H20.30930.79690.65080.029*
C30.2482 (5)0.9350 (5)0.6685 (3)0.0244 (8)
C40.2704 (5)1.0328 (5)0.7175 (3)0.0293 (9)
H40.21881.08090.70640.035*
C50.3692 (6)1.0599 (6)0.7831 (4)0.0322 (9)
C60.4462 (6)0.9871 (5)0.7995 (4)0.0302 (9)
H60.51201.00430.84400.036*
C70.5145 (5)0.8182 (5)0.7643 (3)0.0238 (10)
C80.1446 (5)0.9091 (5)0.5952 (3)0.0234 (9)
C90.0136 (5)0.8915 (5)0.1828 (3)0.0245 (8)
C100.1249 (5)0.9454 (5)0.1611 (3)0.0249 (8)
H100.19730.98600.19830.030*
C110.1270 (5)0.9381 (5)0.0836 (3)0.0249 (8)
C120.0188 (5)0.8775 (5)0.0280 (3)0.0249 (8)
H120.02040.87230.02380.030*
C130.0921 (5)0.8246 (5)0.0506 (3)0.0259 (8)
C140.0937 (5)0.8305 (5)0.1277 (3)0.0258 (8)
H140.16730.79320.14250.031*
C150.0150 (5)0.9011 (5)0.2669 (3)0.0241 (10)
C160.2103 (5)0.7609 (5)0.0104 (3)0.0274 (10)
C170.5160 (5)0.4159 (5)0.6023 (3)0.0211 (7)
C180.3978 (5)0.3324 (5)0.5900 (3)0.0212 (8)
H180.34850.33070.62530.025*
C190.3540 (5)0.2526 (5)0.5257 (3)0.0201 (7)
C200.4278 (5)0.2559 (5)0.4717 (3)0.0216 (8)
H200.40070.19980.42970.026*
C210.5417 (5)0.3438 (5)0.4819 (3)0.0222 (8)
C220.5862 (5)0.4218 (5)0.5472 (3)0.0229 (8)
H220.66380.47880.55440.028*
C230.2276 (5)0.1624 (5)0.5137 (3)0.0203 (9)
C240.5688 (5)0.4978 (5)0.6744 (3)0.0220 (9)
C251.0000 (8)0.7669 (10)0.8074 (5)0.0683 (16)
H250.97470.82910.78690.082*
C261.1267 (8)0.7756 (10)0.8224 (6)0.0719 (14)
H261.18560.84170.81290.086*
C271.1621 (9)0.6827 (10)0.8517 (6)0.0729 (13)
H271.24630.68400.86080.087*
C281.0729 (8)0.5862 (9)0.8679 (5)0.0685 (13)
H281.09700.52330.88830.082*
C290.9474 (8)0.5858 (8)0.8531 (5)0.0610 (12)
C300.8518 (8)0.4909 (8)0.8756 (5)0.0602 (12)
C310.8801 (9)0.3964 (8)0.9129 (5)0.0648 (12)
H310.96100.38860.92130.078*
C320.7869 (9)0.3161 (8)0.9366 (6)0.0685 (13)
H320.80570.25520.96310.082*
C330.6694 (9)0.3243 (8)0.9220 (5)0.0684 (14)
H330.60550.26970.93750.082*
C340.6460 (9)0.4171 (8)0.8831 (5)0.0661 (16)
H340.56380.42210.87190.079*
C350.3302 (6)0.9129 (6)0.3933 (4)0.0425 (12)
H350.35100.98440.42190.051*
C360.4133 (7)0.8951 (6)0.3514 (4)0.0439 (11)
H360.48970.95150.35350.053*
C370.3786 (7)0.7913 (6)0.3068 (4)0.0416 (10)
H370.42850.77790.27500.050*
C380.2695 (6)0.7073 (6)0.3096 (4)0.0380 (10)
H380.24610.63580.28070.046*
C390.1949 (6)0.7292 (5)0.3553 (4)0.0339 (9)
C400.0846 (6)0.6358 (6)0.3694 (4)0.0356 (9)
C410.0697 (7)0.5191 (6)0.3519 (4)0.0409 (10)
H410.12470.49720.32740.049*
C420.0277 (7)0.4353 (6)0.3710 (5)0.0464 (11)
H420.03910.35650.36010.056*
C430.1078 (7)0.4720 (6)0.4069 (5)0.0460 (11)
H430.17430.41820.42060.055*
C440.0871 (6)0.5902 (6)0.4219 (4)0.0422 (12)
H440.14190.61410.44570.051*
Dy10.04319 (2)0.89445 (2)0.429009 (13)0.01643 (8)
Dy20.67367 (2)0.67220 (2)0.800601 (14)0.01969 (8)
N10.9105 (5)0.6742 (5)0.8207 (3)0.0390 (13)
N20.7338 (6)0.4996 (5)0.8606 (3)0.0407 (13)
N30.0070 (4)0.6719 (4)0.4043 (3)0.0238 (10)
N40.2227 (5)0.8338 (4)0.3947 (3)0.0298 (11)
O10.4947 (4)0.7273 (4)0.7207 (2)0.0282 (9)
O20.6118 (4)0.8495 (3)0.8205 (2)0.0267 (9)
O30.0652 (4)0.9668 (4)0.5843 (3)0.0312 (10)
O40.1422 (4)0.8342 (4)0.5450 (2)0.0324 (10)
O50.3955 (6)1.1574 (5)0.8318 (3)0.072 (2)
H50.34611.19430.81500.108*
O60.0618 (4)0.8244 (4)0.2938 (2)0.0256 (9)
O70.0951 (4)0.9848 (4)0.3114 (2)0.0307 (9)
O80.3077 (5)0.7129 (6)0.0117 (3)0.0632 (18)
O90.2044 (4)0.7600 (4)0.0800 (2)0.0281 (9)
O100.2343 (4)0.9872 (4)0.0599 (2)0.0352 (10)
H10A0.28771.02990.09580.053*
O110.6748 (4)0.5741 (4)0.6827 (2)0.0324 (10)
O120.5103 (4)0.4909 (4)0.7272 (2)0.0283 (9)
O130.1492 (3)0.1884 (3)0.5452 (2)0.0263 (9)
O140.2080 (3)0.0689 (3)0.4735 (2)0.0247 (8)
O150.6135 (4)0.3572 (4)0.4296 (2)0.0368 (11)
H150.57060.32130.38810.055*
O1W0.5317 (4)0.6243 (4)0.8801 (2)0.0377 (11)
H1WA0.56040.65660.92610.057*
H1WB0.45150.60140.87120.057*
O2W0.7608 (4)0.8059 (4)0.7123 (2)0.0337 (10)
H2WA0.75790.75650.67650.051*
H2WB0.79320.87330.69960.051*
O3W0.6892 (5)0.5249 (5)0.1047 (4)0.0671 (17)
H3WA0.72420.57190.14520.101*
H3WB0.67800.56510.06660.101*
O4W0.2982 (7)0.3417 (7)0.7652 (4)0.106 (3)
H4WA0.22870.28840.74800.160*
H4WB0.33650.35330.72910.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (15)0.0297 (16)0.0218 (15)0.0061 (13)0.0008 (13)0.0021 (14)
C20.0201 (16)0.0278 (17)0.0217 (16)0.0068 (14)0.0016 (14)0.0009 (15)
C30.0198 (15)0.0278 (16)0.0231 (15)0.0061 (13)0.0017 (13)0.0006 (14)
C40.0235 (16)0.0319 (17)0.0287 (17)0.0084 (15)0.0007 (15)0.0053 (15)
C50.0252 (17)0.0354 (18)0.0304 (18)0.0085 (15)0.0025 (15)0.0083 (16)
C60.0234 (16)0.0344 (18)0.0274 (17)0.0074 (15)0.0021 (15)0.0064 (16)
C70.0196 (19)0.029 (2)0.0202 (19)0.0057 (17)0.0013 (17)0.0010 (17)
C80.0201 (19)0.026 (2)0.021 (2)0.0038 (17)0.0030 (17)0.0034 (17)
C90.0239 (15)0.0292 (16)0.0168 (15)0.0044 (13)0.0027 (13)0.0021 (14)
C100.0239 (16)0.0295 (17)0.0171 (16)0.0040 (15)0.0021 (14)0.0030 (15)
C110.0244 (17)0.0298 (17)0.0176 (16)0.0050 (15)0.0041 (14)0.0023 (15)
C120.0256 (16)0.0295 (17)0.0171 (16)0.0057 (14)0.0040 (14)0.0024 (15)
C130.0255 (15)0.0303 (16)0.0179 (15)0.0043 (14)0.0027 (13)0.0020 (14)
C140.0248 (16)0.0306 (17)0.0177 (16)0.0034 (14)0.0029 (14)0.0013 (15)
C150.0237 (19)0.028 (2)0.0172 (19)0.0051 (17)0.0024 (17)0.0017 (17)
C160.025 (2)0.032 (2)0.020 (2)0.0041 (17)0.0021 (17)0.0024 (18)
C170.0192 (14)0.0225 (15)0.0186 (15)0.0031 (13)0.0032 (13)0.0030 (13)
C180.0193 (15)0.0234 (16)0.0182 (16)0.0024 (14)0.0046 (13)0.0039 (14)
C190.0180 (14)0.0230 (15)0.0169 (14)0.0032 (13)0.0033 (12)0.0035 (13)
C200.0190 (15)0.0245 (16)0.0176 (16)0.0024 (14)0.0029 (14)0.0051 (14)
C210.0196 (16)0.0256 (17)0.0183 (16)0.0028 (14)0.0040 (14)0.0030 (14)
C220.0199 (16)0.0253 (17)0.0193 (16)0.0013 (14)0.0036 (14)0.0027 (14)
C230.0183 (18)0.0230 (19)0.0164 (18)0.0027 (16)0.0027 (16)0.0019 (17)
C240.0203 (19)0.0223 (19)0.0193 (19)0.0034 (16)0.0011 (16)0.0022 (17)
C250.043 (3)0.104 (4)0.063 (3)0.024 (3)0.019 (3)0.021 (3)
C260.047 (2)0.105 (3)0.067 (3)0.024 (2)0.018 (2)0.020 (3)
C270.050 (2)0.102 (3)0.070 (3)0.028 (2)0.015 (2)0.017 (2)
C280.052 (2)0.093 (3)0.068 (3)0.034 (2)0.012 (2)0.015 (2)
C290.052 (2)0.080 (3)0.061 (2)0.038 (2)0.011 (2)0.010 (2)
C300.058 (2)0.070 (3)0.061 (2)0.039 (2)0.007 (2)0.007 (2)
C310.066 (2)0.065 (3)0.067 (3)0.035 (2)0.002 (2)0.008 (2)
C320.073 (3)0.058 (3)0.070 (3)0.027 (2)0.001 (2)0.009 (2)
C330.074 (3)0.053 (3)0.068 (3)0.020 (2)0.003 (2)0.011 (2)
C340.073 (3)0.050 (3)0.066 (3)0.019 (3)0.003 (3)0.010 (3)
C350.037 (2)0.036 (2)0.060 (3)0.008 (2)0.026 (2)0.004 (2)
C360.039 (2)0.039 (2)0.058 (2)0.0082 (18)0.0248 (19)0.0066 (19)
C370.039 (2)0.038 (2)0.054 (2)0.0111 (17)0.0248 (18)0.0069 (18)
C380.0384 (19)0.0341 (19)0.048 (2)0.0124 (16)0.0220 (17)0.0056 (17)
C390.0349 (19)0.0294 (18)0.044 (2)0.0120 (16)0.0201 (17)0.0049 (17)
C400.0352 (19)0.0289 (18)0.047 (2)0.0100 (16)0.0192 (17)0.0001 (17)
C410.0390 (19)0.0305 (19)0.056 (2)0.0086 (16)0.0196 (18)0.0044 (18)
C420.042 (2)0.0324 (19)0.064 (2)0.0049 (17)0.0189 (19)0.0042 (18)
C430.039 (2)0.032 (2)0.066 (2)0.0034 (18)0.020 (2)0.001 (2)
C440.035 (2)0.030 (2)0.064 (3)0.005 (2)0.021 (2)0.001 (2)
Dy10.01444 (13)0.01919 (14)0.01331 (14)0.00240 (10)0.00243 (10)0.00233 (10)
Dy20.01911 (14)0.02153 (15)0.01423 (14)0.00364 (10)0.00064 (10)0.00393 (10)
N10.031 (3)0.056 (4)0.028 (3)0.014 (3)0.003 (2)0.008 (3)
N20.047 (3)0.036 (3)0.036 (3)0.015 (3)0.002 (3)0.002 (3)
N30.022 (2)0.021 (2)0.027 (3)0.0041 (19)0.007 (2)0.002 (2)
N40.025 (3)0.028 (3)0.039 (3)0.007 (2)0.015 (2)0.001 (2)
O10.028 (2)0.032 (2)0.020 (2)0.0113 (18)0.0043 (17)0.0067 (17)
O20.021 (2)0.031 (2)0.023 (2)0.0085 (17)0.0051 (16)0.0102 (17)
O30.023 (2)0.033 (2)0.038 (2)0.0123 (18)0.0013 (18)0.0082 (19)
O40.038 (2)0.034 (2)0.022 (2)0.016 (2)0.0039 (18)0.0002 (18)
O50.074 (4)0.069 (4)0.063 (4)0.047 (3)0.032 (3)0.047 (3)
O60.026 (2)0.033 (2)0.0132 (19)0.0030 (17)0.0032 (16)0.0001 (16)
O70.035 (2)0.032 (2)0.015 (2)0.0036 (18)0.0041 (17)0.0036 (17)
O80.033 (3)0.103 (5)0.024 (3)0.023 (3)0.005 (2)0.006 (3)
O90.028 (2)0.036 (2)0.0140 (19)0.0053 (18)0.0009 (16)0.0052 (17)
O100.027 (2)0.045 (3)0.027 (2)0.0024 (19)0.0107 (19)0.009 (2)
O110.028 (2)0.031 (2)0.028 (2)0.0036 (18)0.0046 (18)0.0111 (18)
O120.030 (2)0.029 (2)0.022 (2)0.0026 (17)0.0078 (17)0.0076 (17)
O130.0190 (19)0.027 (2)0.030 (2)0.0000 (16)0.0095 (17)0.0094 (17)
O140.0198 (19)0.023 (2)0.026 (2)0.0008 (16)0.0057 (16)0.0103 (17)
O150.024 (2)0.054 (3)0.024 (2)0.004 (2)0.0114 (18)0.012 (2)
O1W0.027 (2)0.049 (3)0.025 (2)0.006 (2)0.0046 (18)0.008 (2)
O2W0.042 (3)0.027 (2)0.028 (2)0.0007 (19)0.011 (2)0.0007 (18)
O3W0.062 (4)0.058 (4)0.064 (4)0.007 (3)0.014 (3)0.003 (3)
O4W0.095 (5)0.122 (7)0.056 (4)0.047 (5)0.030 (4)0.019 (4)
Geometric parameters (Å, º) top
C1—C61.377 (8)C30—C311.409 (12)
C1—C21.401 (8)C31—C321.371 (13)
C1—C71.494 (8)C31—H310.9300
C2—C31.383 (8)C32—C331.334 (13)
C2—H20.9300C32—H320.9300
C3—C41.377 (8)C33—C341.385 (12)
C3—C81.505 (8)C33—H330.9300
C4—C51.383 (8)C34—N21.336 (11)
C4—H40.9300C34—H340.9300
C5—O51.362 (8)C35—N41.325 (8)
C5—C61.397 (9)C35—C361.389 (9)
C6—H60.9300C35—H350.9300
C7—O11.263 (7)C36—C371.371 (10)
C7—O21.269 (7)C36—H360.9300
C8—O41.246 (7)C37—C381.372 (9)
C8—O31.272 (7)C37—H370.9300
C9—C141.381 (8)C38—C391.372 (9)
C9—C101.393 (8)C38—H380.9300
C9—C151.499 (7)C39—N41.345 (8)
C10—C111.390 (8)C39—C401.502 (9)
C10—H100.9300C40—N31.346 (7)
C11—O101.362 (7)C40—C411.386 (9)
C11—C121.388 (8)C41—C421.384 (10)
C12—C131.396 (8)C41—H410.9300
C12—H120.9300C42—C431.383 (10)
C13—C141.380 (8)C42—H420.9300
C13—C161.511 (8)C43—C441.384 (9)
C14—H140.9300C43—H430.9300
C15—O71.260 (7)C44—N31.335 (8)
C15—O61.265 (7)C44—H440.9300
C16—O81.249 (7)Dy1—O13i2.287 (4)
C16—O91.260 (7)Dy1—O3ii2.328 (4)
C17—C221.392 (7)Dy1—O42.355 (4)
C17—C181.397 (7)Dy1—O14iii2.358 (4)
C17—C241.497 (8)Dy1—O62.444 (4)
C18—C191.380 (7)Dy1—O72.496 (4)
C18—H180.9300Dy1—N42.545 (5)
C19—C201.409 (7)Dy1—N32.603 (5)
C19—C231.502 (7)Dy1—O32.818 (4)
C20—C211.391 (7)Dy2—O9iv2.300 (4)
C20—H200.9300Dy2—O1W2.346 (4)
C21—O151.359 (7)Dy2—O112.393 (4)
C21—C221.380 (8)Dy2—O2W2.444 (4)
C22—H220.9300Dy2—O12.470 (4)
C23—O141.257 (6)Dy2—O22.472 (4)
C23—O131.260 (6)Dy2—O122.527 (4)
C24—O121.262 (7)Dy2—N22.549 (6)
C24—O111.266 (7)Dy2—N12.628 (5)
C25—N11.346 (11)O5—H50.8200
C25—C261.377 (12)O10—H10A0.8200
C25—H250.9300O15—H150.8200
C26—C271.367 (14)O1W—H1WA0.8500
C26—H260.9300O1W—H1WB0.8500
C27—C281.394 (14)O2W—H2WA0.8501
C27—H270.9300O2W—H2WB0.8500
C28—C291.390 (11)O3W—H3WA0.8500
C28—H280.9300O3W—H3WB0.8501
C29—N11.347 (10)O4W—H4WA0.8500
C29—C301.470 (13)O4W—H4WB0.8500
C30—N21.343 (10)
C6—C1—C2119.8 (5)C42—C41—C40119.5 (6)
C6—C1—C7120.1 (5)C42—C41—H41120.2
C2—C1—C7120.0 (5)C40—C41—H41120.2
C3—C2—C1119.5 (5)C43—C42—C41118.2 (7)
C3—C2—H2120.2C43—C42—H42120.9
C1—C2—H2120.2C41—C42—H42120.9
C4—C3—C2120.5 (5)C42—C43—C44118.8 (7)
C4—C3—C8120.1 (5)C42—C43—H43120.6
C2—C3—C8119.3 (5)C44—C43—H43120.6
C3—C4—C5120.4 (6)N3—C44—C43123.6 (6)
C3—C4—H4119.8N3—C44—H44118.2
C5—C4—H4119.8C43—C44—H44118.2
O5—C5—C4121.8 (6)O13i—Dy1—O3ii72.52 (14)
O5—C5—C6118.7 (5)O13i—Dy1—O489.48 (15)
C4—C5—C6119.5 (6)O3ii—Dy1—O4127.26 (15)
C1—C6—C5120.3 (6)O13i—Dy1—O14iii134.77 (13)
C1—C6—H6119.8O3ii—Dy1—O14iii77.83 (14)
C5—C6—H6119.8O4—Dy1—O14iii82.03 (15)
O1—C7—O2119.7 (5)O13i—Dy1—O686.34 (13)
O1—C7—C1120.7 (5)O3ii—Dy1—O687.44 (14)
O2—C7—C1119.6 (5)O4—Dy1—O6141.71 (14)
O4—C8—O3121.5 (5)O14iii—Dy1—O6125.92 (13)
O4—C8—C3118.6 (5)O13i—Dy1—O7129.91 (14)
O3—C8—C3119.8 (5)O3ii—Dy1—O777.91 (15)
C14—C9—C10120.3 (5)O4—Dy1—O7140.19 (15)
C14—C9—C15121.7 (5)O14iii—Dy1—O773.56 (13)
C10—C9—C15118.1 (5)O6—Dy1—O752.45 (13)
C11—C10—C9119.6 (5)O13i—Dy1—N4139.44 (15)
C11—C10—H10120.2O3ii—Dy1—N4145.09 (16)
C9—C10—H10120.2O4—Dy1—N476.16 (16)
O10—C11—C12118.2 (5)O14iii—Dy1—N481.22 (15)
O10—C11—C10121.6 (5)O6—Dy1—N482.61 (15)
C12—C11—C10120.3 (5)O7—Dy1—N469.50 (16)
C11—C12—C13119.5 (5)O13i—Dy1—N376.12 (14)
C11—C12—H12120.2O3ii—Dy1—N3141.60 (15)
C13—C12—H12120.2O4—Dy1—N373.24 (15)
C14—C13—C12120.2 (5)O14iii—Dy1—N3140.54 (14)
C14—C13—C16120.5 (5)O6—Dy1—N368.80 (14)
C12—C13—C16119.3 (5)O7—Dy1—N3107.11 (14)
C13—C14—C9120.2 (5)N4—Dy1—N363.48 (15)
C13—C14—H14119.9O13i—Dy1—O373.04 (13)
C9—C14—H14119.9O3ii—Dy1—O378.01 (14)
O7—C15—O6119.7 (5)O4—Dy1—O349.26 (13)
O7—C15—C9119.8 (5)O14iii—Dy1—O367.89 (13)
O6—C15—C9120.4 (5)O6—Dy1—O3157.51 (12)
O8—C16—O9124.3 (5)O7—Dy1—O3137.87 (13)
O8—C16—C13117.8 (5)N4—Dy1—O3118.94 (14)
O9—C16—C13118.0 (5)N3—Dy1—O3113.26 (13)
C22—C17—C18119.5 (5)O9iv—Dy2—O1W76.99 (14)
C22—C17—C24119.6 (5)O9iv—Dy2—O11144.48 (14)
C18—C17—C24120.9 (5)O1W—Dy2—O11130.31 (14)
C19—C18—C17120.2 (5)O9iv—Dy2—O2W102.70 (15)
C19—C18—H18119.9O1W—Dy2—O2W147.49 (16)
C17—C18—H18119.9O11—Dy2—O2W67.17 (14)
C18—C19—C20120.1 (5)O9iv—Dy2—O1126.34 (14)
C18—C19—C23119.6 (5)O1W—Dy2—O180.60 (15)
C20—C19—C23120.3 (5)O11—Dy2—O184.89 (14)
C21—C20—C19119.3 (5)O2W—Dy2—O173.59 (14)
C21—C20—H20120.4O9iv—Dy2—O274.47 (14)
C19—C20—H20120.4O1W—Dy2—O274.31 (15)
O15—C21—C22117.2 (5)O11—Dy2—O2129.29 (14)
O15—C21—C20122.6 (5)O2W—Dy2—O274.37 (14)
C22—C21—C20120.3 (5)O1—Dy2—O252.60 (12)
C21—C22—C17120.5 (5)O9iv—Dy2—O12145.62 (14)
C21—C22—H22119.8O1W—Dy2—O1277.65 (14)
C17—C22—H22119.8O11—Dy2—O1252.71 (13)
O14—C23—O13125.5 (5)O2W—Dy2—O12111.16 (13)
O14—C23—C19118.4 (5)O1—Dy2—O1271.06 (14)
O13—C23—C19116.1 (5)O2—Dy2—O12119.80 (13)
O12—C24—O11119.8 (5)O9iv—Dy2—N279.69 (17)
O12—C24—C17121.1 (5)O1W—Dy2—N280.15 (18)
O11—C24—C17119.1 (5)O11—Dy2—N283.40 (17)
N1—C25—C26124.2 (10)O2W—Dy2—N2132.21 (18)
N1—C25—H25117.9O1—Dy2—N2142.38 (17)
C26—C25—H25117.9O2—Dy2—N2146.97 (16)
C27—C26—C25117.1 (10)O12—Dy2—N273.40 (16)
C27—C26—H26121.5O9iv—Dy2—N167.91 (15)
C25—C26—H26121.5O1W—Dy2—N1132.17 (17)
C26—C27—C28120.5 (9)O11—Dy2—N176.59 (15)
C26—C27—H27119.7O2W—Dy2—N173.89 (17)
C28—C27—H27119.7O1—Dy2—N1146.81 (16)
C29—C28—C27118.7 (9)O2—Dy2—N1122.85 (16)
C29—C28—H28120.6O12—Dy2—N1115.59 (16)
C27—C28—H28120.6N2—Dy2—N162.81 (19)
N1—C29—C28121.2 (9)C25—N1—C29118.1 (7)
N1—C29—C30118.0 (7)C25—N1—Dy2122.0 (5)
C28—C29—C30120.8 (8)C29—N1—Dy2119.5 (5)
N2—C30—C31120.4 (9)C34—N2—C30117.7 (7)
N2—C30—C29116.4 (7)C34—N2—Dy2118.8 (5)
C31—C30—C29123.1 (8)C30—N2—Dy2123.3 (5)
C32—C31—C30119.2 (9)C44—N3—C40117.4 (5)
C32—C31—H31120.4C44—N3—Dy1123.9 (4)
C30—C31—H31120.4C40—N3—Dy1118.7 (4)
C33—C32—C31120.7 (9)C35—N4—C39118.0 (5)
C33—C32—H32119.7C35—N4—Dy1120.5 (4)
C31—C32—H32119.7C39—N4—Dy1118.3 (4)
C32—C33—C34117.7 (10)C7—O1—Dy293.8 (3)
C32—C33—H33121.1C7—O2—Dy293.6 (3)
C34—C33—H33121.1C8—O3—Dy1ii168.2 (4)
N2—C34—C33124.2 (9)C8—O3—Dy181.1 (3)
N2—C34—H34117.9Dy1ii—O3—Dy1101.99 (14)
C33—C34—H34117.9C8—O4—Dy1103.3 (3)
N4—C35—C36123.6 (7)C5—O5—H5109.5
N4—C35—H35118.2C15—O6—Dy194.6 (3)
C36—C35—H35118.2C15—O7—Dy192.3 (3)
C37—C36—C35117.5 (6)C16—O9—Dy2v139.1 (4)
C37—C36—H36121.3C11—O10—H10A109.5
C35—C36—H36121.3C24—O11—Dy296.7 (3)
C36—C37—C38119.3 (6)C24—O12—Dy290.5 (3)
C36—C37—H37120.4C23—O13—Dy1i140.5 (4)
C38—C37—H37120.4C23—O14—Dy1vi138.4 (3)
C39—C38—C37119.8 (7)C21—O15—H15109.5
C39—C38—H38120.1Dy2—O1W—H1WA115.0
C37—C38—H38120.1Dy2—O1W—H1WB133.5
N4—C39—C38121.5 (6)H1WA—O1W—H1WB107.7
N4—C39—C40116.2 (5)Dy2—O2W—H2WA99.2
C38—C39—C40122.2 (6)Dy2—O2W—H2WB153.0
N3—C40—C41122.5 (6)H2WA—O2W—H2WB107.7
N3—C40—C39116.2 (5)H3WA—O3W—H3WB107.7
C41—C40—C39121.2 (6)H4WA—O4W—H4WB107.7
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x1, y, z1; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4Wiii0.822.152.910 (11)154
O10—H10A···O2vii0.821.952.761 (6)168
O15—H15···O1viii0.821.922.718 (6)163
O1W—H1WA···O8iv0.851.842.609 (6)150
O1W—H1WB···O3Wviii0.852.012.717 (7)141
O2W—H2WA···O110.852.152.676 (6)120
O2W—H2WB···O7vii0.851.862.689 (6)164
O3W—H3WA···O4Wviii0.851.992.744 (9)147
O3W—H3WB···O8ix0.852.032.832 (9)156
O4W—H4WA···O6i0.851.962.809 (8)175
O4W—H4WB···O120.852.202.801 (8)128
Symmetry codes: (i) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z+1; (vii) x+1, y+2, z+1; (viii) x+1, y+1, z+1; (ix) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Dy2(C8H4O5)3(C10H8N2)2(H2O)2]·2H2O
Mr1249.77
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.3736 (5), 12.0349 (6), 17.8360 (8)
α, β, γ (°)91.310 (1), 103.187 (1), 106.505 (1)
V3)2269.00 (18)
Z2
Radiation typeMo Kα
µ (mm1)3.35
Crystal size (mm)0.25 × 0.24 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.488, 0.540
No. of measured, independent and
observed [I > 2σ(I)] reflections
11732, 8024, 7052
Rint0.020
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.06
No. of reflections8024
No. of parameters624
No. of restraints252
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.65, 1.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4Wi0.822.152.910 (11)154
O10—H10A···O2ii0.821.952.761 (6)168
O15—H15···O1iii0.821.922.718 (6)163
O1W—H1WA···O8iv0.851.842.609 (6)150
O1W—H1WB···O3Wiii0.852.012.717 (7)141
O2W—H2WA···O110.852.152.676 (6)120
O2W—H2WB···O7ii0.851.862.689 (6)164
O3W—H3WA···O4Wiii0.851.992.744 (9)147
O3W—H3WB···O8v0.852.032.832 (9)156
O4W—H4WA···O6vi0.851.962.809 (8)175
O4W—H4WB···O120.852.202.801 (8)128
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y+1, z+1.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X.-F., An, Y. & Yin, Y.-S. (2007). Acta Cryst. E63, m3117–m3118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPlater, M. J., Foreman, M. R. St J., Howie, R. A., Skakle, J. M. S., McWilliam, S. A., Coronado, E. & Gómez-García, C. J. (2001). Polyhedron, 20, 2293–2303.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhuo, X., Pan, Z.-R., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006a). Acta Cryst. E62, m1722–m1724.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhuo, X., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006b). Acta Cryst. E62, m785–m787.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds