metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­chloridomercury(II)]-μ-1,4-bis­­[(pyridin-2-yl)meth­­oxy]benzene-κ2N:N′]

aDepartment of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, People's Republic of China, bModern Analysis, Test and Research Center, Heilongjiang Institute of Science and Technology, Harbin 150027, People's Republic of China, and cCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 2 September 2011; accepted 19 September 2011; online 30 September 2011)

In the title compound, [HgCl2(C18H16N2O2)]n, the HgII atom is four-coordinated in a distorted tetra­hedral environment defined by two Cl atoms and two N atoms from two 1,4-bis­(pyridin-2-ylmeth­oxy)benzene ligands. The ligand shows a non-coplanar conformation, in which the dihedral angles between the two terminal pyridine rings and the linking benzene ring are 7.275 (17) and 74.020 (14)°. The flexible ligands link the HgII atoms into a chain running along [010], with an Hg⋯Hg separation of 10.335 (5) Å, which is equal to the b axis. The chains are connected by C—H⋯O and C—H⋯Cl hydrogen bonds.

Related literature

For the synthesis of the ligand and general background to flexible pyridyl-based ligands, see: Liu et al. (2010a[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559-1568.],b[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630-632.]); Wang et al. (2007[Wang, S.-N., Xing, H., Li, Y.-Z., Bai, J., Scheer, M., Pan, Y. & You, X.-Z. (2007). Chem. Commun. pp. 2293-2295.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C18H16N2O2)]

  • Mr = 563.82

  • Triclinic, [P \overline 1]

  • a = 9.201 (5) Å

  • b = 10.335 (5) Å

  • c = 11.040 (6) Å

  • α = 86.11 (2)°

  • β = 66.51 (2)°

  • γ = 73.860 (18)°

  • V = 923.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.63 mm−1

  • T = 293 K

  • 0.19 × 0.17 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.288, Tmax = 0.325

  • 9080 measured reflections

  • 4179 independent reflections

  • 3688 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.122

  • S = 1.16

  • 4179 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 1.56 e Å−3

  • Δρmin = −1.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1i 0.93 2.82 3.692 (8) 157
C11—H11⋯O2ii 0.93 2.51 3.338 (9) 149
Symmetry codes: (i) -x+1, -y+3, -z; (ii) -x, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The metal-organic frameworks are determined by many factors, in which the organic ligands as building blocks and the kinds of metal ions are most important. Many pyridyl-containing ligands with strong coordination ability and functional characteristics have been studied over the recent years (Wang et al., 2007). The flexible bipyridyl ligands can react with transition metals to construct helical-like structures. Recently, as a continuation of previous studies (Liu et al., 2010a, b), we report here the crystal structure of the title compound.

In the title compound, the HgII atom is four-coordinated by two Cl atoms and two N atoms from two 1,4-bis(pyridin-2-ylmethoxy)benzene ligands, forming a tetrahedral geometry (Fig. 1). The Hg—Cl bond lengths are 2.398 (2) and 2.452 (2) Å, and Hg—N bond lengths are 2.282 (5) and 2.411 (5) Å. The angles around the Hg atom are in a range of 100.63 (13)–122.30 (12)°. The ligand shows a noncoplanar conformation, in which the dihedral angles between the two terminal pyridine rings and the linking benzene ring are 7.275 (17) and 74.020 (14)°. In the crystal, the flexible ligands link the HgII atoms into a chain running along [0 1 0], with an Hg···Hg separation of 10.335 (5)Å, which is equal to the b axis of the unit cell (Fig. 2). The chains are connected by C—H···O and C—H···Cl hydrogen bonds (Table 1).

Related literature top

For the synthesis of the ligand and general background to flexible pyridyl-based ligands, see: Liu et al. (2010a,b); Wang et al. (2007).

Experimental top

1,4-Bis(pyridin-2-ylmethoxy)benzene was synthesized as the literature method (Liu et al., 2010a,b). The title compound was produced by the reaction of ZnCl2 (0.50 mmol, 0.068 g) in water (5 ml) and 1,4-bis(pyridin-2-ylmethoxy)benzene (0.5 mmol, 0.146 g) in methanol (5 ml) under constant stirring. The mixture was filtered after stirring for about one hour. The filtate was maintained for about one week at room temperature to give colorless block-like crystals suitable for X-ray analysis.

Refinement top

The highest residual electron density was found at 0.87 Å from Hg1 atom and the deepest hole at 0.76 Å from Hg1 atom. H atoms were placed in calculated positions and treated as riding atoms, with C—H = 0.93 (aromatic) and 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(C).

Structure description top

The metal-organic frameworks are determined by many factors, in which the organic ligands as building blocks and the kinds of metal ions are most important. Many pyridyl-containing ligands with strong coordination ability and functional characteristics have been studied over the recent years (Wang et al., 2007). The flexible bipyridyl ligands can react with transition metals to construct helical-like structures. Recently, as a continuation of previous studies (Liu et al., 2010a, b), we report here the crystal structure of the title compound.

In the title compound, the HgII atom is four-coordinated by two Cl atoms and two N atoms from two 1,4-bis(pyridin-2-ylmethoxy)benzene ligands, forming a tetrahedral geometry (Fig. 1). The Hg—Cl bond lengths are 2.398 (2) and 2.452 (2) Å, and Hg—N bond lengths are 2.282 (5) and 2.411 (5) Å. The angles around the Hg atom are in a range of 100.63 (13)–122.30 (12)°. The ligand shows a noncoplanar conformation, in which the dihedral angles between the two terminal pyridine rings and the linking benzene ring are 7.275 (17) and 74.020 (14)°. In the crystal, the flexible ligands link the HgII atoms into a chain running along [0 1 0], with an Hg···Hg separation of 10.335 (5)Å, which is equal to the b axis of the unit cell (Fig. 2). The chains are connected by C—H···O and C—H···Cl hydrogen bonds (Table 1).

For the synthesis of the ligand and general background to flexible pyridyl-based ligands, see: Liu et al. (2010a,b); Wang et al. (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) x, 1+y, z.]
[Figure 2] Fig. 2. A view of the chain structure along the b axis. H atoms have been omitted for clarity.
catena-Poly[dichlorido{µ-1,4-bis[(pyridin-2-yl)methoxy]benzene-κ2N:N'}mercury(II)] top
Crystal data top
[HgCl2(C18H16N2O2)]Z = 2
Mr = 563.82F(000) = 536
Triclinic, P1Dx = 2.027 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.201 (5) ÅCell parameters from 8238 reflections
b = 10.335 (5) Åθ = 3.6–27.5°
c = 11.040 (6) ŵ = 8.63 mm1
α = 86.11 (2)°T = 293 K
β = 66.51 (2)°Block, colorless
γ = 73.860 (18)°0.19 × 0.17 × 0.17 mm
V = 923.8 (9) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4179 independent reflections
Radiation source: fine-focus sealed tube3688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scanθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1011
Tmin = 0.288, Tmax = 0.325k = 1313
9080 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0627P)2]
where P = (Fo2 + 2Fc2)/3
4179 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 1.56 e Å3
0 restraintsΔρmin = 1.74 e Å3
Crystal data top
[HgCl2(C18H16N2O2)]γ = 73.860 (18)°
Mr = 563.82V = 923.8 (9) Å3
Triclinic, P1Z = 2
a = 9.201 (5) ÅMo Kα radiation
b = 10.335 (5) ŵ = 8.63 mm1
c = 11.040 (6) ÅT = 293 K
α = 86.11 (2)°0.19 × 0.17 × 0.17 mm
β = 66.51 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4179 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3688 reflections with I > 2σ(I)
Tmin = 0.288, Tmax = 0.325Rint = 0.051
9080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.16Δρmax = 1.56 e Å3
4179 reflectionsΔρmin = 1.74 e Å3
226 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3961 (8)1.3384 (6)0.0220 (7)0.0444 (16)
H10.38961.41240.06920.053*
C20.5080 (10)1.3141 (7)0.1062 (7)0.0503 (18)
H20.57561.37050.14480.060*
C30.5187 (9)1.2054 (7)0.1767 (7)0.0505 (18)
H30.59391.18670.26400.061*
C40.4164 (9)1.1238 (7)0.1164 (7)0.0438 (15)
H40.42131.04970.16260.053*
C50.3057 (8)1.1542 (6)0.0148 (6)0.0343 (12)
C60.1907 (9)1.0703 (6)0.0877 (7)0.0414 (15)
H6A0.20401.04180.16910.050*
H6B0.07741.12290.11000.050*
C70.1385 (9)0.8632 (6)0.0600 (6)0.0370 (14)
C80.0193 (9)0.8735 (6)0.1867 (7)0.0468 (18)
H80.01100.94940.24120.056*
C90.0548 (9)0.7707 (6)0.2322 (7)0.0444 (16)
H90.13400.77710.31810.053*
C100.0126 (8)0.6587 (5)0.1515 (6)0.0321 (12)
C110.1058 (9)0.6489 (6)0.0227 (6)0.0407 (15)
H110.13450.57390.03260.049*
C120.1794 (9)0.7515 (7)0.0215 (7)0.0446 (16)
H120.25800.74570.10760.053*
C130.1985 (8)0.5549 (6)0.3153 (6)0.0374 (13)
H13A0.29480.62720.32080.045*
H13B0.16150.57460.38110.045*
C140.2419 (7)0.4243 (6)0.3415 (6)0.0324 (12)
C150.3957 (8)0.4143 (7)0.3561 (7)0.0401 (14)
H150.47100.48820.34170.048*
C160.4359 (8)0.2947 (7)0.3918 (7)0.0415 (15)
H160.53890.28740.40300.050*
C170.3210 (8)0.1850 (6)0.4111 (7)0.0413 (15)
H170.34470.10270.43390.050*
C180.1700 (8)0.2013 (6)0.3954 (7)0.0396 (14)
H180.09370.12900.41060.048*
Cl10.2047 (2)1.51507 (16)0.35012 (17)0.0436 (4)
Cl20.2358 (3)1.10739 (19)0.4104 (2)0.0581 (5)
Hg10.13517 (3)1.31748 (2)0.31567 (2)0.04162 (12)
N10.2955 (6)1.2612 (5)0.0831 (5)0.0361 (11)
N20.1291 (6)0.3179 (5)0.3590 (5)0.0328 (11)
O10.2274 (7)0.9563 (5)0.0059 (5)0.0490 (13)
O20.0724 (6)0.5467 (4)0.1880 (5)0.0450 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (4)0.033 (3)0.047 (4)0.016 (3)0.007 (3)0.005 (3)
C20.056 (4)0.044 (3)0.045 (4)0.027 (3)0.006 (3)0.006 (3)
C30.048 (4)0.051 (4)0.042 (4)0.016 (3)0.007 (3)0.006 (3)
C40.055 (4)0.041 (3)0.044 (4)0.023 (3)0.022 (3)0.005 (3)
C50.039 (3)0.028 (3)0.043 (3)0.014 (2)0.022 (3)0.008 (2)
C60.055 (4)0.035 (3)0.044 (3)0.025 (3)0.021 (3)0.005 (3)
C70.052 (4)0.029 (3)0.035 (3)0.018 (3)0.019 (3)0.004 (2)
C80.052 (4)0.029 (3)0.040 (3)0.011 (3)0.004 (3)0.015 (3)
C90.049 (4)0.036 (3)0.041 (3)0.019 (3)0.006 (3)0.003 (3)
C100.041 (3)0.026 (2)0.031 (3)0.009 (2)0.016 (2)0.005 (2)
C110.059 (4)0.034 (3)0.029 (3)0.018 (3)0.012 (3)0.009 (2)
C120.061 (4)0.049 (4)0.031 (3)0.028 (3)0.017 (3)0.005 (3)
C130.043 (3)0.030 (3)0.039 (3)0.013 (3)0.014 (3)0.006 (2)
C140.037 (3)0.030 (3)0.025 (3)0.006 (2)0.008 (2)0.002 (2)
C150.034 (3)0.046 (3)0.047 (4)0.018 (3)0.020 (3)0.011 (3)
C160.036 (3)0.044 (3)0.044 (3)0.017 (3)0.010 (3)0.004 (3)
C170.041 (3)0.040 (3)0.044 (3)0.022 (3)0.011 (3)0.005 (3)
C180.040 (3)0.029 (3)0.043 (3)0.008 (3)0.011 (3)0.003 (3)
Cl10.0489 (8)0.0469 (8)0.0472 (9)0.0256 (7)0.0236 (7)0.0053 (7)
Cl20.0738 (12)0.0447 (9)0.0561 (11)0.0065 (9)0.0337 (10)0.0111 (8)
Hg10.04200 (17)0.04003 (17)0.05152 (19)0.01992 (12)0.02262 (13)0.00908 (12)
N10.039 (3)0.028 (2)0.038 (3)0.011 (2)0.011 (2)0.002 (2)
N20.035 (2)0.030 (2)0.035 (3)0.012 (2)0.014 (2)0.001 (2)
O10.070 (3)0.042 (2)0.038 (2)0.034 (2)0.012 (2)0.001 (2)
O20.063 (3)0.040 (2)0.038 (2)0.031 (2)0.015 (2)0.0025 (19)
Geometric parameters (Å, º) top
C1—N11.338 (8)C10—C111.393 (8)
C1—C21.367 (9)C11—C121.374 (9)
C1—H10.9300C11—H110.9300
C2—C31.369 (10)C12—H120.9300
C2—H20.9300C13—O21.410 (8)
C3—C41.380 (9)C13—C141.491 (8)
C3—H30.9300C13—H13A0.9700
C4—C51.393 (9)C13—H13B0.9700
C4—H40.9300C14—N21.349 (8)
C5—N11.341 (8)C14—C151.391 (9)
C5—C61.502 (8)C15—C161.375 (9)
C6—O11.413 (7)C15—H150.9300
C6—H6A0.9700C16—C171.389 (10)
C6—H6B0.9700C16—H160.9300
C7—C81.380 (9)C17—C181.387 (9)
C7—C121.383 (9)C17—H170.9300
C7—O11.386 (7)C18—N21.349 (8)
C8—C91.379 (9)C18—H180.9300
C8—H80.9300Hg1—Cl12.3981 (18)
C9—C101.378 (8)Hg1—Cl22.452 (2)
C9—H90.9300Hg1—N2i2.282 (5)
C10—O21.385 (7)Hg1—N12.411 (5)
N1—C1—C2123.4 (6)C11—C12—H12119.5
N1—C1—H1118.3C7—C12—H12119.5
C2—C1—H1118.3O2—C13—C14109.4 (5)
C1—C2—C3118.8 (6)O2—C13—H13A109.8
C1—C2—H2120.6C14—C13—H13A109.8
C3—C2—H2120.6O2—C13—H13B109.8
C2—C3—C4119.1 (6)C14—C13—H13B109.8
C2—C3—H3120.4H13A—C13—H13B108.3
C4—C3—H3120.4N2—C14—C15121.4 (6)
C3—C4—C5119.0 (6)N2—C14—C13116.8 (6)
C3—C4—H4120.5C15—C14—C13121.6 (6)
C5—C4—H4120.5C16—C15—C14119.7 (6)
N1—C5—C4121.6 (6)C16—C15—H15120.1
N1—C5—C6116.1 (5)C14—C15—H15120.1
C4—C5—C6122.3 (6)C15—C16—C17119.3 (6)
O1—C6—C5108.7 (5)C15—C16—H16120.3
O1—C6—H6A109.9C17—C16—H16120.3
C5—C6—H6A109.9C18—C17—C16118.2 (6)
O1—C6—H6B109.9C18—C17—H17120.9
C5—C6—H6B109.9C16—C17—H17120.9
H6A—C6—H6B108.3N2—C18—C17122.7 (6)
C8—C7—C12119.7 (6)N2—C18—H18118.6
C8—C7—O1124.9 (5)C17—C18—H18118.6
C12—C7—O1115.4 (6)N2i—Hg1—Cl1122.30 (12)
C9—C8—C7119.8 (5)N2i—Hg1—N1107.69 (19)
C9—C8—H8120.1Cl1—Hg1—N1102.88 (13)
C7—C8—H8120.1N2i—Hg1—Cl2102.39 (14)
C10—C9—C8120.6 (6)Cl1—Hg1—Cl2118.53 (8)
C10—C9—H9119.7N1—Hg1—Cl2100.63 (13)
C8—C9—H9119.7C1—N1—C5118.0 (5)
C9—C10—O2125.7 (5)C1—N1—Hg1114.8 (4)
C9—C10—C11119.9 (5)C5—N1—Hg1126.7 (4)
O2—C10—C11114.3 (5)C14—N2—C18118.6 (5)
C12—C11—C10119.1 (5)C14—N2—Hg1ii123.9 (4)
C12—C11—H11120.4C18—N2—Hg1ii117.3 (4)
C10—C11—H11120.4C7—O1—C6116.8 (5)
C11—C12—C7121.0 (6)C10—O2—C13116.3 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1iii0.932.823.692 (8)157
C11—H11···O2iv0.932.513.338 (9)149
Symmetry codes: (iii) x+1, y+3, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[HgCl2(C18H16N2O2)]
Mr563.82
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.201 (5), 10.335 (5), 11.040 (6)
α, β, γ (°)86.11 (2), 66.51 (2), 73.860 (18)
V3)923.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)8.63
Crystal size (mm)0.19 × 0.17 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.288, 0.325
No. of measured, independent and
observed [I > 2σ(I)] reflections
9080, 4179, 3688
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.122, 1.16
No. of reflections4179
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.56, 1.74

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.932.823.692 (8)157
C11—H11···O2ii0.932.513.338 (9)149
Symmetry codes: (i) x+1, y+3, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Project of the Educational Commission of Heilongjiang Province of China (No. 12511472), Heilongjiang Institute of Technology and Heilongjiang University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559–1568.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630–632.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-N., Xing, H., Li, Y.-Z., Bai, J., Scheer, M., Pan, Y. & You, X.-Z. (2007). Chem. Commun. pp. 2293–2295.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds