metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1,10-phenanthroline-5,6-dione-κ2N,N′)zinc bis­­(perchlorate) aceto­nitrile monosolvate

aChangchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, bInstrumental Analysis Center, Hebei Normal University, Shijiazhuang 050016, People's Republic of China, cDepartment of Applied Chemistry, Hengshui University, Hengshui 053000, People's Republic of China, and dCollege of Science, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: zhuguoyi@ciac.jl.cn

(Received 4 September 2011; accepted 13 September 2011; online 30 September 2011)

In the title compound, [Zn(C12H6N2O2)3](ClO4)2·CH3CN, the ZnII atom is coordinated by six N atoms from three chelating 1,10-phenanthroline-5,6-dione ligands in a distorted octa­hedral environment. In the crystal, inter­molecular C—H⋯O hydrogen bonds and O⋯π and N⋯π inter­actions [O⋯centroid distances = 2.907 (5) and 2.843 (7) Å; N⋯centroid distance = 2.861 (10) Å] link the complex cations, perchlorate anions and acetonitrile solvent mol­ecules into a three-dimensional network.

Related literature

For the coordination chemistry of 1,10-phenanthroline-5,6-dione, see: Brechin et al. (2008[Brechin, E. K., Calucci, L., Englert, U., Margheriti, L., Pampaloni, G., Pinzino, C. & Prescimone, A. (2008). Inorg. Chim. Acta, 361, 2375-2384.]); Khalaji et al. (2007[Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, m2848.]); Ma et al. (2010[Ma, Q., Zhu, M.-L., Yuan, C.-X., Feng, S.-S., Lu, L.-P. & Wang, Q.-M. (2010). Cryst. Growth Des. 10, 1706-1714.]); Rezvani et al. (2010[Rezvani, A. R., Saravani, H. & Hadadzadeh, H. (2010). J. Iran. Chem. Soc. 7, 825-833.]). For the biological and electrochemical properties of transition metal complexes with 1,10-phenanthroline-5,6-dione, see: Boghaei & Asl (2007[Boghaei, D. M. & Asl, F. B. (2007). J. Coord. Chem. 60, 1629-1635.]); Goss & Abruna (1985[Goss, C. A. & Abruna, H. D. (1985). Inorg. Chem. 24, 4263-4267.]); Kou et al. (2009[Kou, Y.-Y., Tian, J.-L., Li, D.-D., Liu, H., Gu, W. & Yan, S.-P. (2009). J. Coord. Chem. 62, 2182-2192.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H6N2O2)3](ClO4)2·C2H3N

  • Mr = 935.91

  • Orthorhombic, P 21 21 21

  • a = 13.446 (6) Å

  • b = 14.125 (6) Å

  • c = 20.483 (8) Å

  • V = 3890 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.30 × 0.12 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.785, Tmax = 0.905

  • 23200 measured reflections

  • 9569 independent reflections

  • 5533 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.220

  • S = 0.97

  • 9569 reflections

  • 562 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4095 Friedel pairs

  • Flack parameter: 0.12 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H14⋯O13i 0.93 2.51 3.238 (9) 135
C2—H15⋯O3ii 0.93 2.58 3.030 (13) 110
C10—H12⋯O7iii 0.93 2.59 3.513 (14) 170
C25—H17⋯O4ii 0.93 2.51 3.136 (15) 125
C24—H26⋯O2iv 0.93 2.36 3.036 (10) 129
C34—H7⋯O9v 0.93 2.47 3.302 (12) 150
C38—H38A⋯O3vi 0.96 2.51 2.995 (16) 112
C38—H38B⋯O13vii 0.96 2.51 3.436 (19) 163
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (iv) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of the chelating ligand 1,10-phenanthroline-5,6-dione has been examined in several studies (Khalaji et al., 2007; Ma et al., 2010; Rezvani et al., 2010). Carrying an O-quinone and N-pyridine moiety to form stable complexes with a wide variety of metal ions, this ligand is considered to have many interesting biological and electrochemical properties (Boghaei & Asl, 2007; Goss & Abruna, 1985; Kou et al., 2009). As far as we know, 1,10-phenanthroline-5,6-dione usually binds to metals through its imine N atoms, in some cases both the N and O donors are used simultaneously (Brechin et al., 2008). In this paper, we report the crystal structure of the title compound in the hope of exploring some spectroscopic properties of d10 metal complexes.

The title compound consists of a [Zn(C12H6N2O2)3]2+ complex cations, two perchlorate anions and an acetonitrile solvent molecule. As shown in Fig. 1, three bidentate 1,10-phenanthroline-5,6-dione ligands are coordinated to the ZnII atom solely via two N atoms. The coordination geometry around the ZnII atom is distorted octahedral, with bite angles of 76.88 (18)–77.9 (2)° for the three bidentate ligands. The cis bond angles at the ZnII atom fall in the range of 76.85 (18)–100.0 (2)° and the trans bond angles are 164.96 (17), 170.57 (18) and 173.9 (2)°, suggesting a significant deviation from a perfect octahedral coordination. The Zn—N bond lengths range from 2.117 (5) to 2.202 (5) Å, with an average of 2.158 (5) Å. There is no strong hydrogen bond in the crystal, as shown in Fig. 2. Weak intermolecular C—H···O hydrogen bonds (Table 1) and O···π and N···π interactions [O···centroid distances = 2.907 (5) and 2.843 (7) Å, N···centroid distance = 2.861 (10) Å] link the complex molecules, perchlorate anions and acetonitrile solvent molecules into a three-dimensional network.

Related literature top

For the coordination chemistry of 1,10-phenanthroline-5,6-dione, see: Brechin et al. (2008); Khalaji et al. (2007); Ma et al. (2010); Rezvani et al. (2010). For the biological and electrochemical properties of transition metal complexes with 1,10-phenanthroline-5,6-dione, see: Boghaei & Asl (2007); Goss & Abruna (1985); Kou et al. (2009).

Experimental top

The title compound was prepared by adding a solution of Zn(ClO4)2.2H2O (28.2 mg, 0.1 mmol) in 3 ml acetonitrile to a solution containing 1,10-phenanthroline-5,6-dione (63.1 mg, 0.3 mmol) in 12 ml acetonitrile. The mixture was stirred at room temperature for 5 h and then filtered. Yellow crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent after two days. They were collected by filtration, washed with diethyl ether and dried in air.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found at 2.62 Å from H32 atom and the deepest hole at 0.36 Å from Cl1 atom.

Structure description top

The coordination chemistry of the chelating ligand 1,10-phenanthroline-5,6-dione has been examined in several studies (Khalaji et al., 2007; Ma et al., 2010; Rezvani et al., 2010). Carrying an O-quinone and N-pyridine moiety to form stable complexes with a wide variety of metal ions, this ligand is considered to have many interesting biological and electrochemical properties (Boghaei & Asl, 2007; Goss & Abruna, 1985; Kou et al., 2009). As far as we know, 1,10-phenanthroline-5,6-dione usually binds to metals through its imine N atoms, in some cases both the N and O donors are used simultaneously (Brechin et al., 2008). In this paper, we report the crystal structure of the title compound in the hope of exploring some spectroscopic properties of d10 metal complexes.

The title compound consists of a [Zn(C12H6N2O2)3]2+ complex cations, two perchlorate anions and an acetonitrile solvent molecule. As shown in Fig. 1, three bidentate 1,10-phenanthroline-5,6-dione ligands are coordinated to the ZnII atom solely via two N atoms. The coordination geometry around the ZnII atom is distorted octahedral, with bite angles of 76.88 (18)–77.9 (2)° for the three bidentate ligands. The cis bond angles at the ZnII atom fall in the range of 76.85 (18)–100.0 (2)° and the trans bond angles are 164.96 (17), 170.57 (18) and 173.9 (2)°, suggesting a significant deviation from a perfect octahedral coordination. The Zn—N bond lengths range from 2.117 (5) to 2.202 (5) Å, with an average of 2.158 (5) Å. There is no strong hydrogen bond in the crystal, as shown in Fig. 2. Weak intermolecular C—H···O hydrogen bonds (Table 1) and O···π and N···π interactions [O···centroid distances = 2.907 (5) and 2.843 (7) Å, N···centroid distance = 2.861 (10) Å] link the complex molecules, perchlorate anions and acetonitrile solvent molecules into a three-dimensional network.

For the coordination chemistry of 1,10-phenanthroline-5,6-dione, see: Brechin et al. (2008); Khalaji et al. (2007); Ma et al. (2010); Rezvani et al. (2010). For the biological and electrochemical properties of transition metal complexes with 1,10-phenanthroline-5,6-dione, see: Boghaei & Asl (2007); Goss & Abruna (1985); Kou et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram viewed along the a axis.
Tris(1,10-phenanthroline-5,6-dione-κ2N,N')zinc bis(perchlorate) acetonitrile monosolvate top
Crystal data top
[Zn(C12H6N2O2)3](ClO4)2·C2H3NF(000) = 1896
Mr = 935.91Dx = 1.598 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5261 reflections
a = 13.446 (6) Åθ = 2.3–22.5°
b = 14.125 (6) ŵ = 0.85 mm1
c = 20.483 (8) ÅT = 296 K
V = 3890 (3) Å3Prism, yellow
Z = 40.30 × 0.12 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
9569 independent reflections
Radiation source: fine-focus sealed tube5533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
φ and ω scansθmax = 28.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 817
Tmin = 0.785, Tmax = 0.905k = 1818
23200 measured reflectionsl = 2724
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.075 w = 1/[σ2(Fo2) + (0.1231P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.220(Δ/σ)max = 0.001
S = 0.97Δρmax = 1.16 e Å3
9569 reflectionsΔρmin = 0.39 e Å3
562 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0031 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 4095 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.12 (2)
Crystal data top
[Zn(C12H6N2O2)3](ClO4)2·C2H3NV = 3890 (3) Å3
Mr = 935.91Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 13.446 (6) ŵ = 0.85 mm1
b = 14.125 (6) ÅT = 296 K
c = 20.483 (8) Å0.30 × 0.12 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
9569 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5533 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.905Rint = 0.079
23200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.220Δρmax = 1.16 e Å3
S = 0.97Δρmin = 0.39 e Å3
9569 reflectionsAbsolute structure: Flack (1983), 4095 Friedel pairs
562 parametersAbsolute structure parameter: 0.12 (2)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.30685 (6)0.98904 (5)0.06979 (3)0.0455 (2)
Cl10.67594 (16)0.99782 (14)0.20658 (10)0.0753 (6)
Cl20.34979 (14)0.98420 (14)0.80652 (8)0.0625 (5)
C10.0895 (6)0.9679 (5)0.1240 (3)0.064 (2)
H140.11710.92590.15400.077*
C20.0107 (6)0.9882 (7)0.1292 (4)0.072 (2)
H150.04950.96190.16210.086*
C30.0496 (7)1.0470 (6)0.0851 (3)0.068 (2)
H340.11731.06040.08640.082*
C40.0077 (6)1.0874 (5)0.0385 (3)0.0545 (16)
C50.1094 (5)1.0680 (4)0.0373 (3)0.0454 (15)
C60.0314 (6)1.1548 (6)0.0103 (3)0.0589 (18)
C70.0375 (6)1.2115 (5)0.0490 (4)0.0607 (19)
C80.1777 (5)1.1146 (4)0.0073 (3)0.0434 (14)
C90.1438 (6)1.1861 (4)0.0494 (3)0.0500 (16)
C100.2105 (7)1.2283 (5)0.0905 (3)0.061 (2)
H120.18991.27560.11910.073*
C110.3100 (7)1.1998 (5)0.0890 (3)0.0560 (16)
H90.35671.22670.11690.067*
C120.3362 (6)1.1323 (5)0.0463 (3)0.0537 (17)
H230.40261.11380.04530.064*
C130.2120 (8)0.8282 (5)0.0163 (3)0.073 (3)
H320.15320.84210.00560.088*
C140.2102 (9)0.7601 (5)0.0669 (4)0.082 (3)
H210.15180.72810.07730.098*
C150.2969 (11)0.7423 (5)0.1005 (4)0.092 (4)
H250.29840.69830.13430.111*
C160.3771 (8)0.7886 (5)0.0837 (3)0.069 (2)
C170.3754 (7)0.8544 (4)0.0322 (3)0.055 (2)
C180.4704 (11)0.7718 (7)0.1200 (5)0.098 (4)
C190.5643 (12)0.8214 (10)0.0980 (5)0.121 (5)
C200.4652 (6)0.9057 (5)0.0147 (3)0.0535 (17)
C210.5537 (8)0.8898 (6)0.0445 (4)0.078 (2)
C220.6343 (8)0.9412 (9)0.0293 (5)0.104 (3)
H330.69350.93440.05230.124*
C230.6262 (7)1.0052 (8)0.0220 (5)0.094 (3)
H360.68091.03970.03630.113*
C240.5360 (6)1.0154 (6)0.0506 (4)0.0677 (19)
H260.53041.05830.08490.081*
C250.3351 (6)0.8160 (5)0.1594 (3)0.0554 (18)
H170.31060.78020.12490.067*
C260.3698 (7)0.7699 (5)0.2160 (4)0.067 (2)
H270.36890.70420.21820.080*
C270.4033 (6)0.8194 (5)0.2656 (3)0.0543 (17)
H200.42610.78880.30290.065*
C280.4046 (5)0.9162 (5)0.2621 (3)0.0463 (15)
C290.3698 (5)0.9579 (4)0.2062 (3)0.0421 (14)
C300.4395 (6)0.9750 (5)0.3177 (3)0.0555 (17)
C310.4307 (6)1.0827 (6)0.3127 (3)0.0597 (19)
C320.3645 (5)1.0629 (4)0.1986 (3)0.0410 (13)
C330.3887 (5)1.1216 (5)0.2506 (3)0.0484 (15)
C340.3719 (7)1.2171 (5)0.2433 (3)0.062 (2)
H70.38641.25860.27720.075*
C350.3347 (6)1.2500 (5)0.1872 (3)0.061 (2)
H240.32021.31400.18230.073*
C360.3182 (6)1.1875 (4)0.1369 (3)0.0540 (17)
H80.29521.21080.09720.065*
C370.5814 (10)0.1897 (9)0.8669 (5)0.113 (4)
C380.5824 (12)0.1612 (15)0.8005 (6)0.193 (9)
H38A0.60890.21140.77410.289*
H38B0.51590.14700.78660.289*
H38C0.62330.10580.79580.289*
N10.1489 (4)1.0048 (4)0.0788 (2)0.0461 (11)
N20.2743 (4)1.0902 (3)0.0054 (2)0.0449 (12)
N30.2912 (6)0.8710 (4)0.0003 (2)0.0595 (17)
N40.4580 (5)0.9700 (4)0.0335 (2)0.0522 (14)
N50.3368 (5)0.9083 (3)0.1546 (2)0.0467 (14)
N60.3339 (4)1.0955 (3)0.1430 (2)0.0436 (13)
N70.5798 (8)0.2050 (7)0.9193 (4)0.105 (3)
O10.1211 (5)1.1624 (5)0.0184 (3)0.0876 (18)
O20.0074 (5)1.2760 (4)0.0809 (3)0.0803 (17)
O30.4753 (8)0.7195 (6)0.1651 (4)0.140 (4)
O40.6416 (9)0.7953 (10)0.1217 (5)0.203 (6)
O50.4748 (5)0.9415 (4)0.3661 (2)0.0744 (16)
O60.4577 (5)1.1315 (4)0.3557 (2)0.0781 (17)
O70.652 (2)1.0724 (6)0.1856 (7)0.351 (17)
O80.7584 (9)0.966 (2)0.1956 (13)0.42 (2)
O90.6192 (12)0.9199 (6)0.1767 (7)0.200 (6)
O100.6744 (18)0.9940 (10)0.2718 (6)0.312 (12)
O110.3492 (6)0.9109 (5)0.7595 (3)0.105 (2)
O120.2624 (5)0.9759 (4)0.8471 (3)0.0815 (16)
O130.3483 (6)1.0713 (4)0.7743 (3)0.094 (2)
O140.4366 (5)0.9798 (5)0.8447 (3)0.096 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0575 (4)0.0389 (3)0.0400 (3)0.0035 (3)0.0038 (3)0.0016 (3)
Cl10.0823 (14)0.0599 (11)0.0837 (11)0.0149 (10)0.0214 (10)0.0215 (9)
Cl20.0698 (11)0.0661 (11)0.0515 (7)0.0053 (10)0.0100 (8)0.0028 (8)
C10.071 (5)0.074 (5)0.049 (3)0.011 (4)0.004 (4)0.020 (3)
C20.068 (5)0.085 (5)0.062 (4)0.000 (5)0.015 (4)0.010 (4)
C30.061 (5)0.089 (5)0.054 (4)0.008 (4)0.007 (4)0.004 (3)
C40.059 (4)0.060 (4)0.045 (3)0.001 (3)0.005 (3)0.004 (3)
C50.061 (4)0.041 (3)0.034 (3)0.005 (3)0.005 (3)0.001 (2)
C60.056 (5)0.071 (5)0.049 (3)0.018 (4)0.003 (3)0.000 (3)
C70.070 (5)0.045 (4)0.067 (4)0.002 (4)0.013 (4)0.004 (3)
C80.057 (4)0.036 (3)0.038 (3)0.002 (3)0.003 (3)0.003 (2)
C90.065 (5)0.039 (3)0.045 (3)0.003 (3)0.010 (3)0.002 (2)
C100.098 (7)0.046 (3)0.039 (3)0.000 (4)0.002 (4)0.012 (2)
C110.066 (5)0.050 (4)0.052 (3)0.008 (4)0.001 (4)0.010 (2)
C120.061 (5)0.058 (4)0.043 (3)0.002 (3)0.007 (3)0.001 (3)
C130.111 (8)0.056 (4)0.052 (4)0.019 (5)0.003 (5)0.002 (3)
C140.119 (9)0.057 (4)0.069 (5)0.015 (5)0.032 (6)0.001 (4)
C150.171 (12)0.045 (4)0.061 (4)0.022 (6)0.003 (7)0.006 (3)
C160.108 (7)0.046 (4)0.054 (4)0.014 (4)0.013 (4)0.005 (3)
C170.094 (6)0.035 (3)0.037 (3)0.016 (3)0.007 (4)0.000 (2)
C180.145 (11)0.069 (6)0.081 (6)0.035 (7)0.003 (7)0.002 (5)
C190.141 (12)0.154 (11)0.068 (5)0.079 (10)0.003 (7)0.022 (6)
C200.071 (5)0.044 (3)0.045 (3)0.022 (3)0.002 (3)0.006 (3)
C210.087 (6)0.072 (5)0.075 (5)0.039 (5)0.003 (5)0.006 (4)
C220.067 (6)0.148 (10)0.097 (7)0.048 (6)0.002 (6)0.020 (7)
C230.063 (5)0.112 (8)0.108 (7)0.002 (6)0.001 (5)0.008 (7)
C240.071 (5)0.060 (4)0.072 (4)0.001 (4)0.017 (4)0.005 (3)
C250.068 (5)0.044 (4)0.054 (3)0.004 (3)0.001 (3)0.008 (3)
C260.093 (6)0.045 (4)0.062 (4)0.019 (4)0.014 (4)0.018 (3)
C270.062 (5)0.059 (4)0.042 (3)0.010 (3)0.001 (3)0.012 (3)
C280.050 (4)0.053 (4)0.036 (3)0.005 (3)0.006 (3)0.004 (2)
C290.048 (4)0.040 (3)0.039 (3)0.001 (2)0.006 (3)0.004 (2)
C300.059 (4)0.067 (5)0.041 (3)0.000 (4)0.003 (3)0.010 (3)
C310.060 (5)0.077 (5)0.041 (3)0.015 (4)0.002 (3)0.001 (3)
C320.046 (4)0.035 (3)0.042 (3)0.002 (2)0.005 (3)0.002 (2)
C330.051 (4)0.050 (4)0.045 (3)0.004 (3)0.003 (3)0.010 (3)
C340.087 (6)0.049 (4)0.051 (4)0.012 (4)0.008 (4)0.012 (3)
C350.077 (6)0.040 (3)0.066 (4)0.001 (3)0.008 (4)0.005 (3)
C360.075 (5)0.041 (3)0.046 (3)0.003 (3)0.004 (4)0.003 (2)
C370.123 (10)0.134 (10)0.083 (6)0.054 (8)0.016 (7)0.012 (6)
C380.132 (12)0.35 (3)0.098 (8)0.110 (16)0.031 (9)0.062 (12)
N10.047 (3)0.045 (3)0.046 (2)0.005 (2)0.006 (2)0.011 (2)
N20.058 (4)0.044 (3)0.034 (2)0.003 (2)0.002 (2)0.0067 (19)
N30.096 (5)0.040 (3)0.042 (3)0.011 (3)0.012 (3)0.001 (2)
N40.067 (4)0.047 (3)0.043 (2)0.001 (3)0.001 (3)0.006 (2)
N50.067 (4)0.032 (2)0.041 (2)0.006 (2)0.001 (3)0.0039 (18)
N60.056 (4)0.035 (2)0.039 (2)0.002 (2)0.007 (2)0.0011 (18)
N70.114 (7)0.123 (7)0.079 (5)0.009 (6)0.007 (6)0.028 (5)
O10.072 (4)0.116 (5)0.075 (3)0.020 (4)0.001 (3)0.012 (3)
O20.081 (4)0.061 (3)0.098 (4)0.017 (3)0.024 (4)0.011 (3)
O30.208 (11)0.110 (6)0.102 (5)0.059 (6)0.006 (6)0.050 (4)
O40.146 (9)0.318 (15)0.146 (8)0.132 (10)0.013 (7)0.111 (9)
O50.084 (4)0.091 (4)0.049 (2)0.005 (3)0.012 (3)0.017 (2)
O60.094 (5)0.091 (4)0.049 (2)0.007 (4)0.013 (3)0.011 (3)
O70.70 (5)0.064 (6)0.291 (15)0.024 (12)0.32 (2)0.017 (7)
O80.087 (8)0.65 (5)0.54 (4)0.020 (16)0.048 (14)0.36 (4)
O90.290 (17)0.062 (5)0.249 (12)0.044 (7)0.061 (12)0.011 (6)
O100.59 (4)0.191 (12)0.152 (9)0.00 (2)0.128 (16)0.040 (9)
O110.101 (5)0.098 (5)0.115 (5)0.006 (4)0.002 (5)0.047 (4)
O120.098 (4)0.085 (4)0.061 (3)0.004 (3)0.003 (3)0.006 (3)
O130.128 (6)0.084 (4)0.070 (3)0.009 (4)0.007 (4)0.031 (3)
O140.081 (4)0.119 (5)0.088 (4)0.012 (4)0.030 (3)0.034 (4)
Geometric parameters (Å, º) top
Zn1—N52.117 (5)C16—C181.478 (15)
Zn1—N12.143 (5)C17—N31.334 (10)
Zn1—N22.146 (5)C17—C201.453 (11)
Zn1—N62.154 (5)C18—O31.184 (11)
Zn1—N42.181 (6)C18—C191.514 (19)
Zn1—N32.202 (5)C19—O41.204 (15)
Cl1—O71.180 (10)C19—C211.468 (13)
Cl1—O81.219 (14)C20—N41.345 (8)
Cl1—O101.338 (12)C20—C211.357 (12)
Cl1—O91.472 (12)C21—C221.341 (16)
Cl2—O131.396 (6)C22—C231.391 (15)
Cl2—O141.407 (6)C22—H330.9300
Cl2—O111.415 (6)C23—C241.355 (12)
Cl2—O121.444 (6)C23—H360.9300
C1—N11.330 (8)C24—N41.277 (9)
C1—C21.382 (12)C24—H260.9300
C1—H140.9300C25—N51.307 (8)
C2—C31.334 (11)C25—C261.409 (9)
C2—H150.9300C25—H170.9300
C3—C41.353 (10)C26—C271.312 (11)
C3—H340.9300C26—H270.9300
C4—C51.395 (10)C27—C281.369 (9)
C4—C61.476 (10)C27—H200.9300
C5—N11.342 (7)C28—C291.370 (8)
C5—C81.453 (9)C28—C301.485 (9)
C6—O11.221 (10)C29—N51.343 (8)
C6—C71.460 (11)C29—C321.492 (8)
C7—O21.191 (8)C30—O51.197 (8)
C7—C91.473 (11)C30—C311.529 (11)
C8—N21.345 (9)C31—O61.176 (8)
C8—C91.404 (8)C31—C331.495 (10)
C9—C101.366 (10)C32—N61.296 (7)
C10—C111.398 (13)C32—C331.389 (8)
C10—H120.9300C33—C341.376 (10)
C11—C121.342 (9)C34—C351.336 (10)
C11—H90.9300C34—H70.9300
C12—N21.321 (8)C35—C361.375 (9)
C12—H230.9300C35—H240.9300
C13—N31.271 (11)C36—N61.323 (8)
C13—C141.414 (11)C36—H80.9300
C13—H320.9300C37—N71.096 (12)
C14—C151.377 (16)C37—C381.419 (15)
C14—H210.9300C38—H38A0.9600
C15—C161.307 (14)C38—H38B0.9600
C15—H250.9300C38—H38C0.9600
C16—C171.406 (9)
N5—Zn1—N1100.0 (2)C16—C18—C19118.9 (8)
N5—Zn1—N2170.57 (18)O4—C19—C21125.8 (15)
N1—Zn1—N277.9 (2)O4—C19—C18117.3 (12)
N5—Zn1—N676.85 (18)C21—C19—C18116.5 (11)
N1—Zn1—N692.0 (2)N4—C20—C21120.3 (8)
N2—Zn1—N693.96 (18)N4—C20—C17117.3 (6)
N5—Zn1—N492.1 (2)C21—C20—C17122.4 (7)
N1—Zn1—N4164.96 (17)C22—C21—C20121.0 (9)
N2—Zn1—N491.6 (2)C22—C21—C19116.8 (11)
N6—Zn1—N499.5 (2)C20—C21—C19122.0 (11)
N5—Zn1—N398.09 (19)C21—C22—C23117.6 (10)
N1—Zn1—N392.3 (2)C21—C22—H33121.2
N2—Zn1—N391.20 (19)C23—C22—H33121.2
N6—Zn1—N3173.9 (2)C24—C23—C22117.8 (10)
N4—Zn1—N377.0 (2)C24—C23—H36121.1
O7—Cl1—O8120 (2)C22—C23—H36121.1
O7—Cl1—O10113.3 (10)N4—C24—C23124.3 (8)
O8—Cl1—O10100.6 (16)N4—C24—H26117.9
O7—Cl1—O9112.2 (9)C23—C24—H26117.9
O8—Cl1—O996.8 (12)N5—C25—C26121.1 (7)
O10—Cl1—O9112.1 (10)N5—C25—H17119.4
O13—Cl2—O14108.3 (5)C26—C25—H17119.4
O13—Cl2—O11108.8 (4)C27—C26—C25120.3 (7)
O14—Cl2—O11110.6 (5)C27—C26—H27119.8
O13—Cl2—O12109.4 (4)C25—C26—H27119.8
O14—Cl2—O12110.6 (3)C26—C27—C28119.7 (6)
O11—Cl2—O12109.1 (4)C26—C27—H20120.1
N1—C1—C2123.9 (7)C28—C27—H20120.1
N1—C1—H14118.1C27—C28—C29118.0 (6)
C2—C1—H14118.1C27—C28—C30121.5 (6)
C3—C2—C1117.4 (7)C29—C28—C30120.5 (6)
C3—C2—H15121.3N5—C29—C28123.0 (5)
C1—C2—H15121.3N5—C29—C32114.9 (5)
C2—C3—C4121.1 (8)C28—C29—C32122.1 (6)
C2—C3—H34119.4O5—C30—C28122.6 (7)
C4—C3—H34119.4O5—C30—C31118.7 (7)
C3—C4—C5119.2 (7)C28—C30—C31118.7 (6)
C3—C4—C6123.1 (7)O6—C31—C33122.5 (7)
C5—C4—C6117.6 (6)O6—C31—C30120.6 (7)
N1—C5—C4120.5 (6)C33—C31—C30116.9 (6)
N1—C5—C8116.7 (6)N6—C32—C33122.5 (5)
C4—C5—C8122.8 (6)N6—C32—C29117.4 (5)
O1—C6—C7120.3 (7)C33—C32—C29120.1 (6)
O1—C6—C4120.1 (8)C34—C33—C32117.6 (6)
C7—C6—C4119.7 (7)C34—C33—C31121.0 (6)
O2—C7—C6120.1 (8)C32—C33—C31121.4 (6)
O2—C7—C9120.8 (8)C35—C34—C33119.8 (6)
C6—C7—C9119.1 (6)C35—C34—H7120.1
N2—C8—C9121.1 (6)C33—C34—H7120.1
N2—C8—C5118.4 (5)C34—C35—C36118.7 (6)
C9—C8—C5120.5 (6)C34—C35—H24120.6
C10—C9—C8118.6 (7)C36—C35—H24120.6
C10—C9—C7122.3 (6)N6—C36—C35122.3 (6)
C8—C9—C7119.1 (6)N6—C36—H8118.8
C9—C10—C11119.3 (6)C35—C36—H8118.8
C9—C10—H12120.3N7—C37—C38174.8 (16)
C11—C10—H12120.3C37—C38—H38A109.5
C12—C11—C10118.1 (7)C37—C38—H38B109.5
C12—C11—H9121.0H38A—C38—H38B109.5
C10—C11—H9121.0C37—C38—H38C109.5
N2—C12—C11124.6 (7)H38A—C38—H38C109.5
N2—C12—H23117.7H38B—C38—H38C109.5
C11—C12—H23117.7C1—N1—C5117.7 (6)
N3—C13—C14122.3 (10)C1—N1—Zn1127.9 (5)
N3—C13—H32118.9C5—N1—Zn1114.0 (4)
C14—C13—H32118.9C12—N2—C8118.4 (5)
C15—C14—C13118.4 (9)C12—N2—Zn1128.7 (5)
C15—C14—H21120.8C8—N2—Zn1112.8 (4)
C13—C14—H21120.8C13—N3—C17119.6 (6)
C16—C15—C14118.4 (8)C13—N3—Zn1127.8 (6)
C16—C15—H25120.8C17—N3—Zn1112.0 (5)
C14—C15—H25120.8C24—N4—C20118.8 (7)
C15—C16—C17121.0 (10)C24—N4—Zn1127.6 (5)
C15—C16—C18119.1 (9)C20—N4—Zn1113.5 (5)
C17—C16—C18119.9 (9)C25—N5—C29117.9 (5)
N3—C17—C16120.3 (8)C25—N5—Zn1126.5 (4)
N3—C17—C20119.6 (6)C29—N5—Zn1115.3 (4)
C16—C17—C20120.1 (8)C32—N6—C36118.9 (5)
O3—C18—C16122.7 (13)C32—N6—Zn1114.7 (4)
O3—C18—C19118.4 (12)C36—N6—Zn1126.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H14···O13i0.932.513.238 (9)135
C2—H15···O3ii0.932.583.030 (13)110
C10—H12···O7iii0.932.593.513 (14)170
C25—H17···O4ii0.932.513.136 (15)125
C24—H26···O2iv0.932.363.036 (10)129
C34—H7···O9v0.932.473.302 (12)150
C38—H38A···O3vi0.962.512.995 (16)112
C38—H38B···O13vii0.962.513.436 (19)163
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x1/2, y+3/2, z; (iii) x1/2, y+5/2, z; (iv) x+1/2, y+5/2, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C12H6N2O2)3](ClO4)2·C2H3N
Mr935.91
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)13.446 (6), 14.125 (6), 20.483 (8)
V3)3890 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.30 × 0.12 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.785, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
23200, 9569, 5533
Rint0.079
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.220, 0.97
No. of reflections9569
No. of parameters562
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 0.39
Absolute structureFlack (1983), 4095 Friedel pairs
Absolute structure parameter0.12 (2)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H14···O13i0.932.513.238 (9)135
C2—H15···O3ii0.932.583.030 (13)110
C10—H12···O7iii0.932.593.513 (14)170
C25—H17···O4ii0.932.513.136 (15)125
C24—H26···O2iv0.932.363.036 (10)129
C34—H7···O9v0.932.473.302 (12)150
C38—H38A···O3vi0.962.512.995 (16)112
C38—H38B···O13vii0.962.513.436 (19)163
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x1/2, y+3/2, z; (iii) x1/2, y+5/2, z; (iv) x+1/2, y+5/2, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y1, z.
 

Acknowledgements

This work was supported by the Youth Foundation of Hebei Normal University (No. L2006Q20).

References

First citationBoghaei, D. M. & Asl, F. B. (2007). J. Coord. Chem. 60, 1629–1635.  Web of Science CrossRef CAS Google Scholar
First citationBrechin, E. K., Calucci, L., Englert, U., Margheriti, L., Pampaloni, G., Pinzino, C. & Prescimone, A. (2008). Inorg. Chim. Acta, 361, 2375–2384.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoss, C. A. & Abruna, H. D. (1985). Inorg. Chem. 24, 4263–4267.  CrossRef CAS Web of Science Google Scholar
First citationKhalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, m2848.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKou, Y.-Y., Tian, J.-L., Li, D.-D., Liu, H., Gu, W. & Yan, S.-P. (2009). J. Coord. Chem. 62, 2182–2192.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Q., Zhu, M.-L., Yuan, C.-X., Feng, S.-S., Lu, L.-P. & Wang, Q.-M. (2010). Cryst. Growth Des. 10, 1706–1714.  Web of Science CSD CrossRef CAS Google Scholar
First citationRezvani, A. R., Saravani, H. & Hadadzadeh, H. (2010). J. Iran. Chem. Soc. 7, 825–833.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds