metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(η4-cyclo­octa-1,5-diene)bis­­(propane­nitrile-κN)ruthenium(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
*Correspondence e-mail: harrychiririwa@yahoo.com

(Received 16 August 2011; accepted 30 August 2011; online 14 September 2011)

In the title complex, [RuCl2(C8H12)(C3H5N)2], the metal ion is coordinated to both double bonds of the cyclo­octa-1,5-diene ligand, two chloride ions (in cis positions) and two N-atom donors from two propane­nitrile mol­ecules that complete the coordination sphere for the neutral complex. The coordination around the RuII atom can thus be considered as octa­hedral with slight trigonal distortion.

Related literature

For the structure of the acetonitrile derivative, see: Ashworth et al. (1987[Ashworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40(3), 183-188.]); Chiririwa et al. (2011[Chiririwa, H., Meijboom, R., Owalude, S. O., Eke, U. B. & Arderne, C. (2011). Acta Cryst. E67, m1096.]). For the synthesis of starting materials, see: Ashworth et al. (1987[Ashworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40(3), 183-188.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C8H12)(C3H5N)2]

  • Mr = 390.31

  • Triclinic, [P \overline 1]

  • a = 7.593 (5) Å

  • b = 8.800 (5) Å

  • c = 12.658 (5) Å

  • α = 108.156 (5)°

  • β = 96.281 (5)°

  • γ = 90.536 (5)°

  • V = 798.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 100 K

  • 0.29 × 0.28 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 15438 measured reflections

  • 3949 independent reflections

  • 3911 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.043

  • S = 1.07

  • 3949 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The present ruthenium complex, Fig.1, has been synthesized in a similar way as done earlier for the acetonitrile derivative (Chiririwa et al. 2011). Organonitrile solvate complexes are widely useful for synthesis of organometallic compounds because of facile substitution at the solvate coordination sites. Similarly, 1,5-cyclooctadiene complexes have found considerable use in organometallic chemistry as well.

The two propanenitrile ligands are trans to each other, although the N(2)—Ru(1)—N(1) angle is widened to 164.95 (5)° due to repulsion by the alkene bonds of the COD ligand. The corresponding angle is 163.15 (6)° in the acetonitrile derivative. One of the propanenitrile ligands is slightly bent as we observed earlier in the acetonitrile derivative. The N(2)—C(21)—C(22) bond angle is 176.8 (2)°. The C(21)—C(22)—C(23) and C(11)—C(12)—C(13) bond angles are slightly bigger than the ideal tetrahedral angle and are almost similar with values of 111.3 (1)° and 111.8 (1)° respectively.

Related literature top

For the structure of the acetonitrile derivative, see: Ashworth et al. (1987); Chiririwa et al. (2011). For the synthesis of starting materials, see: Ashworth et al. (1987).

Experimental top

A suspension of [{RuCl2(COD)}x] (0.5 g) in propanenitrile (30 ml) was refluxed for 8 h. The orange solution was filtered hot and concentrated on a steam bath to ca. half volume. Cooling to 0 °C overnight afforded orange crystals suitable for X-ray diffraction studies in 50% yield.

Refinement top

The methylene and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively.

Structure description top

The present ruthenium complex, Fig.1, has been synthesized in a similar way as done earlier for the acetonitrile derivative (Chiririwa et al. 2011). Organonitrile solvate complexes are widely useful for synthesis of organometallic compounds because of facile substitution at the solvate coordination sites. Similarly, 1,5-cyclooctadiene complexes have found considerable use in organometallic chemistry as well.

The two propanenitrile ligands are trans to each other, although the N(2)—Ru(1)—N(1) angle is widened to 164.95 (5)° due to repulsion by the alkene bonds of the COD ligand. The corresponding angle is 163.15 (6)° in the acetonitrile derivative. One of the propanenitrile ligands is slightly bent as we observed earlier in the acetonitrile derivative. The N(2)—C(21)—C(22) bond angle is 176.8 (2)°. The C(21)—C(22)—C(23) and C(11)—C(12)—C(13) bond angles are slightly bigger than the ideal tetrahedral angle and are almost similar with values of 111.3 (1)° and 111.8 (1)° respectively.

For the structure of the acetonitrile derivative, see: Ashworth et al. (1987); Chiririwa et al. (2011). For the synthesis of starting materials, see: Ashworth et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Dichlorido(η4-cycloocta-1,5-diene)bis(propanenitrile-κN)ruthenium(II) top
Crystal data top
[RuCl2(C8H12)(C3H5N)2]Z = 2
Mr = 390.31F(000) = 396
Triclinic, P1Dx = 1.624 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.593 (5) ÅCell parameters from 9962 reflections
b = 8.800 (5) Åθ = 3.0–28.3°
c = 12.658 (5) ŵ = 1.31 mm1
α = 108.156 (5)°T = 100 K
β = 96.281 (5)°Block, orange
γ = 90.536 (5)°0.29 × 0.28 × 0.21 mm
V = 798.0 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3911 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.3°, θmin = 1.7°
φ and ω scansh = 1010
15438 measured reflectionsk = 1110
3949 independent reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0132P)2 + 0.6531P]
where P = (Fo2 + 2Fc2)/3
3949 reflections(Δ/σ)max = 0.002
174 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[RuCl2(C8H12)(C3H5N)2]γ = 90.536 (5)°
Mr = 390.31V = 798.0 (8) Å3
Triclinic, P1Z = 2
a = 7.593 (5) ÅMo Kα radiation
b = 8.800 (5) ŵ = 1.31 mm1
c = 12.658 (5) ÅT = 100 K
α = 108.156 (5)°0.29 × 0.28 × 0.21 mm
β = 96.281 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3911 reflections with I > 2σ(I)
15438 measured reflectionsRint = 0.029
3949 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.07Δρmax = 0.55 e Å3
3949 reflectionsΔρmin = 0.62 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11889 (18)0.24062 (16)0.86381 (11)0.0132 (2)
H10.07760.33940.91410.016*
C20.21829 (18)0.23779 (16)0.76462 (12)0.0134 (2)
H20.24270.33520.75320.016*
C30.28956 (19)0.08642 (17)0.67378 (12)0.0159 (3)
H3A0.33750.1140.60830.019*
H3B0.38620.040.69950.019*
C40.14983 (19)0.04040 (16)0.63958 (12)0.0147 (3)
H4A0.15370.11250.68380.018*
H4B0.18050.1030.56160.018*
C50.03841 (18)0.03064 (15)0.65508 (11)0.0121 (2)
H50.07830.06160.59760.015*
C60.15194 (18)0.05054 (15)0.75234 (11)0.0125 (2)
H60.26720.09060.75650.015*
C70.09657 (19)0.00994 (16)0.85206 (12)0.0151 (3)
H7A0.19290.04210.91260.018*
H7B0.07760.10520.83170.018*
C80.0737 (2)0.09040 (17)0.89491 (12)0.0161 (3)
H8A0.17280.01290.86560.019*
H8B0.06080.11790.97580.019*
C110.30431 (19)0.35812 (17)0.98608 (12)0.0154 (3)
C120.4147 (2)0.37569 (18)1.09193 (12)0.0177 (3)
H12A0.3390.37881.14940.021*
H12B0.48390.47621.11470.021*
C130.5395 (2)0.2387 (2)1.08180 (15)0.0295 (4)
H13A0.47160.14071.06870.044*
H13B0.61840.25991.14990.044*
H13C0.60720.22911.02050.044*
C210.12818 (18)0.32906 (16)0.52863 (11)0.0132 (2)
C220.2237 (2)0.37027 (19)0.43512 (12)0.0181 (3)
H22A0.16370.32770.36890.022*
H22B0.22280.48580.4530.022*
C230.4155 (2)0.3029 (2)0.41046 (14)0.0225 (3)
H23A0.41670.18810.3840.034*
H23B0.47810.3410.35430.034*
H23C0.4720.33740.47770.034*
N10.22016 (16)0.33593 (14)0.90225 (10)0.0129 (2)
N20.05984 (15)0.30029 (13)0.60433 (10)0.0119 (2)
Cl10.33515 (4)0.32622 (4)0.67591 (3)0.01333 (7)
Cl20.01618 (5)0.57453 (4)0.81456 (3)0.01527 (7)
Ru10.065082 (13)0.290208 (11)0.752556 (8)0.00846 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0144 (6)0.0121 (6)0.0140 (6)0.0003 (5)0.0058 (5)0.0043 (5)
C20.0118 (6)0.0124 (6)0.0170 (6)0.0000 (5)0.0043 (5)0.0051 (5)
C30.0133 (6)0.0147 (6)0.0187 (6)0.0016 (5)0.0014 (5)0.0041 (5)
C40.0167 (6)0.0120 (6)0.0144 (6)0.0016 (5)0.0013 (5)0.0026 (5)
C50.0153 (6)0.0089 (6)0.0128 (6)0.0013 (5)0.0028 (5)0.0036 (5)
C60.0158 (6)0.0088 (6)0.0139 (6)0.0016 (5)0.0025 (5)0.0047 (5)
C70.0200 (7)0.0128 (6)0.0144 (6)0.0010 (5)0.0016 (5)0.0073 (5)
C80.0226 (7)0.0146 (6)0.0142 (6)0.0005 (5)0.0056 (5)0.0077 (5)
C110.0175 (7)0.0137 (6)0.0153 (6)0.0010 (5)0.0027 (5)0.0047 (5)
C120.0179 (7)0.0207 (7)0.0129 (6)0.0012 (5)0.0017 (5)0.0041 (5)
C130.0230 (8)0.0353 (9)0.0248 (8)0.0108 (7)0.0039 (6)0.0039 (7)
C210.0141 (6)0.0112 (6)0.0147 (6)0.0006 (5)0.0019 (5)0.0044 (5)
C220.0171 (7)0.0238 (7)0.0169 (6)0.0001 (5)0.0019 (5)0.0129 (6)
C230.0172 (7)0.0272 (8)0.0218 (7)0.0018 (6)0.0044 (6)0.0084 (6)
N10.0158 (5)0.0117 (5)0.0119 (5)0.0009 (4)0.0018 (4)0.0045 (4)
N20.0128 (5)0.0101 (5)0.0130 (5)0.0004 (4)0.0019 (4)0.0039 (4)
Cl10.01152 (14)0.01657 (15)0.01382 (14)0.00017 (11)0.00207 (11)0.00737 (12)
Cl20.02060 (16)0.00875 (14)0.01670 (15)0.00064 (11)0.00411 (12)0.00369 (11)
Ru10.01012 (6)0.00786 (6)0.00801 (6)0.00031 (4)0.00092 (4)0.00342 (4)
Geometric parameters (Å, º) top
C1—C21.386 (2)C8—H8A0.97
C1—C81.524 (2)C8—H8B0.97
C1—Ru12.2197 (15)C11—N11.1368 (19)
C1—H10.93C11—C121.465 (2)
C2—C31.512 (2)C12—C131.523 (2)
C2—Ru12.2278 (19)C12—H12A0.97
C2—H20.93C12—H12B0.97
C3—C41.543 (2)C13—H13A0.96
C3—H3A0.97C13—H13B0.96
C3—H3B0.97C13—H13C0.96
C4—C51.522 (2)C21—N21.1387 (19)
C4—H4A0.97C21—C221.4639 (19)
C4—H4B0.97C22—C231.529 (2)
C5—C61.386 (2)C22—H22A0.97
C5—Ru12.2274 (17)C22—H22B0.97
C5—H50.93C23—H23A0.96
C6—C71.5140 (19)C23—H23B0.96
C6—Ru12.2150 (17)C23—H23C0.96
C6—H60.93N1—Ru12.0413 (14)
C7—C81.549 (2)N2—Ru12.0356 (14)
C7—H7A0.97Cl1—Ru12.4211 (13)
C7—H7B0.97Cl2—Ru12.4231 (14)
C2—C1—C8123.45 (12)C11—C12—H12B109.3
C2—C1—Ru172.16 (9)C13—C12—H12B109.3
C8—C1—Ru1112.17 (9)H12A—C12—H12B107.9
C2—C1—H1118.3C12—C13—H13A109.5
C8—C1—H1118.3C12—C13—H13B109.5
Ru1—C1—H185.7H13A—C13—H13B109.5
C1—C2—C3124.17 (13)C12—C13—H13C109.5
C1—C2—Ru171.53 (8)H13A—C13—H13C109.5
C3—C2—Ru1111.07 (9)H13B—C13—H13C109.5
C1—C2—H2117.9N2—C21—C22176.82 (15)
C3—C2—H2117.9C21—C22—C23111.33 (13)
Ru1—C2—H287.4C21—C22—H22A109.4
C2—C3—C4113.93 (12)C23—C22—H22A109.4
C2—C3—H3A108.8C21—C22—H22B109.4
C4—C3—H3A108.8C23—C22—H22B109.4
C2—C3—H3B108.8H22A—C22—H22B108
C4—C3—H3B108.8C22—C23—H23A109.5
H3A—C3—H3B107.7C22—C23—H23B109.5
C5—C4—C3113.59 (12)H23A—C23—H23B109.5
C5—C4—H4A108.8C22—C23—H23C109.5
C3—C4—H4A108.8H23A—C23—H23C109.5
C5—C4—H4B108.8H23B—C23—H23C109.5
C3—C4—H4B108.8C11—N1—Ru1178.21 (12)
H4A—C4—H4B107.7C21—N2—Ru1170.17 (11)
C6—C5—C4121.89 (12)N2—Ru1—N1164.95 (5)
C6—C5—Ru171.34 (8)N2—Ru1—C6115.27 (5)
C4—C5—Ru1113.47 (9)N1—Ru1—C676.54 (5)
C6—C5—H5119.1N2—Ru1—C1113.39 (6)
C4—C5—H5119.1N1—Ru1—C176.63 (6)
Ru1—C5—H585.4C6—Ru1—C180.71 (6)
C5—C6—C7122.86 (13)N2—Ru1—C579.67 (5)
C5—C6—Ru172.32 (8)N1—Ru1—C5112.85 (5)
C7—C6—Ru1111.05 (9)C6—Ru1—C536.35 (5)
C5—C6—H6118.6C1—Ru1—C587.81 (5)
C7—C6—H6118.6N2—Ru1—C277.11 (5)
Ru1—C6—H686.7N1—Ru1—C2112.46 (6)
C6—C7—C8114.14 (11)C6—Ru1—C294.63 (6)
C6—C7—H7A108.7C1—Ru1—C236.30 (5)
C8—C7—H7A108.7C5—Ru1—C279.57 (5)
C6—C7—H7B108.7N2—Ru1—Cl184.91 (5)
C8—C7—H7B108.7N1—Ru1—Cl186.21 (5)
H7A—C7—H7B107.6C6—Ru1—Cl188.31 (4)
C1—C8—C7115.40 (11)C1—Ru1—Cl1161.35 (4)
C1—C8—H8A108.4C5—Ru1—Cl192.24 (4)
C7—C8—H8A108.4C2—Ru1—Cl1161.29 (4)
C1—C8—H8B108.4N2—Ru1—Cl283.36 (4)
C7—C8—H8B108.4N1—Ru1—Cl285.00 (4)
H8A—C8—H8B107.5C6—Ru1—Cl2161.36 (4)
N1—C11—C12176.32 (15)C1—Ru1—Cl292.67 (4)
C11—C12—C13111.76 (13)C5—Ru1—Cl2161.68 (4)
C11—C12—H12A109.3C2—Ru1—Cl290.02 (4)
C13—C12—H12A109.3Cl1—Ru1—Cl293.06 (2)
C8—C1—C2—C31.8 (2)C8—C1—Ru1—C68.48 (10)
Ru1—C1—C2—C3103.38 (13)C2—C1—Ru1—C575.28 (9)
C8—C1—C2—Ru1105.22 (13)C8—C1—Ru1—C544.33 (10)
C1—C2—C3—C449.30 (18)C8—C1—Ru1—C2119.61 (13)
Ru1—C2—C3—C432.14 (15)C2—C1—Ru1—Cl1165.82 (9)
C2—C3—C4—C528.89 (17)C8—C1—Ru1—Cl146.21 (17)
C3—C4—C5—C693.14 (16)C2—C1—Ru1—Cl286.39 (8)
C3—C4—C5—Ru111.23 (15)C8—C1—Ru1—Cl2154.00 (9)
C4—C5—C6—C72.5 (2)C6—C5—Ru1—N2168.49 (9)
Ru1—C5—C6—C7104.06 (12)C4—C5—Ru1—N274.04 (10)
C4—C5—C6—Ru1106.56 (12)C6—C5—Ru1—N12.75 (9)
C5—C6—C7—C853.39 (18)C4—C5—Ru1—N1114.72 (10)
Ru1—C6—C7—C828.63 (14)C4—C5—Ru1—C6117.46 (13)
C2—C1—C8—C787.27 (17)C6—C5—Ru1—C177.26 (9)
Ru1—C1—C8—C74.58 (15)C4—C5—Ru1—C140.21 (10)
C6—C7—C8—C122.28 (17)C6—C5—Ru1—C2112.87 (9)
C5—C6—Ru1—N212.53 (9)C4—C5—Ru1—C24.60 (10)
C7—C6—Ru1—N2131.71 (10)C6—C5—Ru1—Cl184.08 (9)
C5—C6—Ru1—N1177.40 (9)C4—C5—Ru1—Cl1158.46 (9)
C7—C6—Ru1—N158.22 (10)C6—C5—Ru1—Cl2169.16 (9)
C5—C6—Ru1—C199.03 (9)C4—C5—Ru1—Cl251.69 (17)
C7—C6—Ru1—C120.15 (10)C1—C2—Ru1—N2177.67 (9)
C7—C6—Ru1—C5119.18 (14)C3—C2—Ru1—N261.93 (10)
C5—C6—Ru1—C265.39 (9)C1—C2—Ru1—N19.89 (9)
C7—C6—Ru1—C253.79 (10)C3—C2—Ru1—N1130.28 (10)
C5—C6—Ru1—Cl196.10 (8)C1—C2—Ru1—C667.44 (8)
C7—C6—Ru1—Cl1144.72 (9)C3—C2—Ru1—C652.95 (11)
C5—C6—Ru1—Cl2169.34 (9)C3—C2—Ru1—C1120.39 (14)
C7—C6—Ru1—Cl250.16 (18)C1—C2—Ru1—C5100.66 (9)
C2—C1—Ru1—N22.47 (9)C3—C2—Ru1—C519.73 (10)
C8—C1—Ru1—N2122.09 (10)C1—C2—Ru1—Cl1165.87 (9)
C2—C1—Ru1—N1170.61 (9)C3—C2—Ru1—Cl145.47 (18)
C8—C1—Ru1—N169.77 (10)C1—C2—Ru1—Cl294.49 (8)
C2—C1—Ru1—C6111.14 (9)C3—C2—Ru1—Cl2145.12 (10)

Experimental details

Crystal data
Chemical formula[RuCl2(C8H12)(C3H5N)2]
Mr390.31
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.593 (5), 8.800 (5), 12.658 (5)
α, β, γ (°)108.156 (5), 96.281 (5), 90.536 (5)
V3)798.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.29 × 0.28 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15438, 3949, 3911
Rint0.029
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.043, 1.07
No. of reflections3949
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.62

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged.

References

First citationAshworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40(3), 183–188.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiririwa, H., Meijboom, R., Owalude, S. O., Eke, U. B. & Arderne, C. (2011). Acta Cryst. E67, m1096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds