metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[silver(I)-μ-bis­­{2-[(E)-phenyl­diazen­yl]-1H-imidazol-1-yl}methane] tri­fluoro­methane­sulfonate]

aHubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi, 435002, People's Republic of China
*Correspondence e-mail: jincm1999@yahoo.com

(Received 20 August 2011; accepted 3 September 2011; online 30 September 2011)

The title compound, {[Ag(C19H16N8)](CF3SO3)}n, is a coordin­ation polymer with cationic chain motif. The Ag+ cation is coordinated by two unsubstituted imidazolyl N atoms of two independent 2-paBIM ligands [2-paBIM is bis­{2-[(E)-phenyl­diazen­yl]-1H-imidazol-1-yl}methane]. The shortest Ag⋯Ag separation in a cationic chain is 8.841 (2) Å and the dihedral angle between two 2-phenyl­diazenyl-imidazole planes in the same ligand is 74.7 (3)°. Weak C—H⋯O interactions are seen in the crystal.

Related literature

For background to metal-organic frameworks, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460-1494.]); Burrows (2011[Burrows, A. D. (2011). CrystEngComm, 13, 3623-3642.]); Leininger et al. (2000[Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-908.]); Tanabe & Cohen (2011[Tanabe, K. K. & Cohen, S. M. (2011). Chem. Soc. Rev. 40, 498-519.]). For examples of supra­molecular arrangements using multidentate N-donor spacer ligands, see: Custelcean (2010[Custelcean, R. (2010). Chem. Soc. Rev. 39, 3675-3685.]); Pschirer et al. (2002[Pschirer, N. G., Curtin, D. M., Smith, M. D., Bunz, W. H. F. & Zur Loye, H.-C. (2002). Angew. Chem. Int. Ed. Engl. 41, 583-585.]). For structures of related ligands, see: Hamilton & Ziegler (2004[Hamilton, B. H. & Ziegler, C. J. (2004). Inorg. Chem. 43, 4272-4277.]); Jin et al. (2009[Jin, C. M., Chen, Z. F., Mei, H. F. & Shi, X. K. (2009). J. Mol. Struct. 921, 58-62.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C19H16N8)](CF3SO3)

  • Mr = 613.34

  • Orthorhombic, P n a 21

  • a = 16.0251 (19) Å

  • b = 8.455 (1) Å

  • c = 17.293 (2) Å

  • V = 2343.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 298 K

  • 0.13 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.905

  • 11674 measured reflections

  • 4823 independent reflections

  • 4073 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.167

  • S = 1.13

  • 4823 reflections

  • 326 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1807 Friedel pairs

  • Flack parameter: 0.54 (5)

Table 1
Selected bond lengths (Å)

Ag1—N3 2.152 (5)
Ag1—N6i 2.174 (6)
Symmetry code: (i) [-x+1, -y+2, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.97 2.50 3.285 (10) 138
C8—H8⋯O2ii 0.93 2.31 3.021 (10) 133
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of functional metal-organic frameworks is of great interest due to their intriguing network topologies and their potential applications as microporous, magnetic or catalytically active species or in the fields of nonlinear optics, molecular separation, toxic materials adsorption and molecular sensors etc. (Batten & Robson, 1998; Burrows, 2011; Leininger et al., 2000; Tanabe & Cohen, 2011). Such molecular architectures have been successfully designed and synthesized by judicious combination of a metal 'node' and an organic ligands as 'spacer'. The roles of counter anions and different solvent molecules are also of significant effect on supramolecular self-assembly. More recently, the molecular geometry and flexibility of multidentate N-donor spacer ligands play key roles in the field of molecular materials and supramolecular self-assemble crystal engineering. For example, 4, 4'-bipyridine, 1, 2-bis(4-pyridyl)ethane and trans-bis(4-pyridyl)ethene as ligands can form a lot of coordination polymers with different structural features (Custelcean, 2010; Pschirer et al., 2002). The coordination polymer frameworks which were built by methylene C-bridged bipyridine, bitriazole and bisimidazole ligands have also been described widely (Hamilton & Ziegler, 2004; Jin et al., 2009). Bis[2-((E)-phenyldiazenyl)-1H-imidazol-1-yl- methane (2-paBIM) is a flexibie V-shaped N-donor ligand containing azo groups which is built up by two methylene C-bridged substituted imidazole rings. The title compound, [Ag(2-paBIM)SO3CF3]n, (I), with a one-dimensional zigzag cationic chain structural motif was formed by the addition of a solution of 2-paBIM to AgSO3CF3.

Single crystal X-ray diffraction analysis reveals that complex (I) consists of one-dimensional cationic polymeric chains and uncoordinated CF3SO3-. The Ag+ ions are coordinated by two imidazolyl unsubstituted nitrogen atoms of independent 2-paBIM ligands, which act as bridges between silver(I) centers (Fig.1). The Ag+ ions show a coordination mode that is bent out of linearity with the bond angles of N—Ag—N being 153.9 (2)°. Ag—N bond lengths are 2.157 (5) Å and 2.170 (6) Å, respectively. Adjacent Ag······Ag distances in the same cationic chain are 8.841 (2) Å and the dihedral angle of the two 2-phenyldiazenyl-imidazole planes in the same ligand is 74.7 (3)°. Non-coordinated CF3SO3- anions are filled in the voids of each zigzag cationic chain and show through the weak C—H······O hydrogen-bond interactions (Table 1).

Related literature top

For background to metal-organic frameworks, see: Batten & Robson (1998); Burrows (2011); Leininger et al. (2000); Tanabe & Cohen (2011). For examples of supramolecular arrangements using multidentate N-donor spacer ligands , see: Custelcean (2010); Pschirer et al. (2002). For structures of related ligands, see: Hamilton & Ziegler (2004); Jin et al. (2009).

Experimental top

An CH3CN solution (5 ml) of 2-paBIM (178 mg, 0.5 mmol) was slowly diffused into an aqueous solution (5 ml) of AgSO3CF3(128 mg, 0.5 mmol) in a test tube. Red crystals of [Ag(2-paBIM)SO3CF3]n were formed at the interface of solvent in two weeks and were obtained in 62% yield.

Refinement top

The structure was refined as a racemic twin using TWIN and BASF keywords. H atoms were positioned geometrically at distances of 0.93 (CH), and 0.97 (CH2) from the parent C atoms. A riding model was used during the refinement process. The Uiso values were constrained to be 1.2Ueq of the corresponding carrier atom.

Structure description top

The construction of functional metal-organic frameworks is of great interest due to their intriguing network topologies and their potential applications as microporous, magnetic or catalytically active species or in the fields of nonlinear optics, molecular separation, toxic materials adsorption and molecular sensors etc. (Batten & Robson, 1998; Burrows, 2011; Leininger et al., 2000; Tanabe & Cohen, 2011). Such molecular architectures have been successfully designed and synthesized by judicious combination of a metal 'node' and an organic ligands as 'spacer'. The roles of counter anions and different solvent molecules are also of significant effect on supramolecular self-assembly. More recently, the molecular geometry and flexibility of multidentate N-donor spacer ligands play key roles in the field of molecular materials and supramolecular self-assemble crystal engineering. For example, 4, 4'-bipyridine, 1, 2-bis(4-pyridyl)ethane and trans-bis(4-pyridyl)ethene as ligands can form a lot of coordination polymers with different structural features (Custelcean, 2010; Pschirer et al., 2002). The coordination polymer frameworks which were built by methylene C-bridged bipyridine, bitriazole and bisimidazole ligands have also been described widely (Hamilton & Ziegler, 2004; Jin et al., 2009). Bis[2-((E)-phenyldiazenyl)-1H-imidazol-1-yl- methane (2-paBIM) is a flexibie V-shaped N-donor ligand containing azo groups which is built up by two methylene C-bridged substituted imidazole rings. The title compound, [Ag(2-paBIM)SO3CF3]n, (I), with a one-dimensional zigzag cationic chain structural motif was formed by the addition of a solution of 2-paBIM to AgSO3CF3.

Single crystal X-ray diffraction analysis reveals that complex (I) consists of one-dimensional cationic polymeric chains and uncoordinated CF3SO3-. The Ag+ ions are coordinated by two imidazolyl unsubstituted nitrogen atoms of independent 2-paBIM ligands, which act as bridges between silver(I) centers (Fig.1). The Ag+ ions show a coordination mode that is bent out of linearity with the bond angles of N—Ag—N being 153.9 (2)°. Ag—N bond lengths are 2.157 (5) Å and 2.170 (6) Å, respectively. Adjacent Ag······Ag distances in the same cationic chain are 8.841 (2) Å and the dihedral angle of the two 2-phenyldiazenyl-imidazole planes in the same ligand is 74.7 (3)°. Non-coordinated CF3SO3- anions are filled in the voids of each zigzag cationic chain and show through the weak C—H······O hydrogen-bond interactions (Table 1).

For background to metal-organic frameworks, see: Batten & Robson (1998); Burrows (2011); Leininger et al. (2000); Tanabe & Cohen (2011). For examples of supramolecular arrangements using multidentate N-donor spacer ligands , see: Custelcean (2010); Pschirer et al. (2002). For structures of related ligands, see: Hamilton & Ziegler (2004); Jin et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of (I) showing the atom-numbering of one asymmetry unit. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
catena-Poly[[silver(I)-µ-bis{2-[(E)-phenyldiazenyl]- 1H-imidazol-1-yl}methane] trifluoromethanesulfonate] top
Crystal data top
[Ag(C19H16N8)](CF3SO3)F(000) = 1224
Mr = 613.34Dx = 1.739 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4016 reflections
a = 16.0251 (19) Åθ = 2.4–24.4°
b = 8.455 (1) ŵ = 1.01 mm1
c = 17.293 (2) ÅT = 298 K
V = 2343.0 (5) Å3Block, red
Z = 40.13 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4823 independent reflections
Radiation source: fine-focus sealed tube4073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
phi and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2116
Tmin = 0.879, Tmax = 0.905k = 1111
11674 measured reflectionsl = 2319
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0908P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.023
4823 reflectionsΔρmax = 1.08 e Å3
326 parametersΔρmin = 0.54 e Å3
1 restraintAbsolute structure: Flack (1983), 1807 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.54 (5)
Crystal data top
[Ag(C19H16N8)](CF3SO3)V = 2343.0 (5) Å3
Mr = 613.34Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.0251 (19) ŵ = 1.01 mm1
b = 8.455 (1) ÅT = 298 K
c = 17.293 (2) Å0.13 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4823 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4073 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.905Rint = 0.057
11674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.167Δρmax = 1.08 e Å3
S = 1.13Δρmin = 0.54 e Å3
4823 reflectionsAbsolute structure: Flack (1983), 1807 Friedel pairs
326 parametersAbsolute structure parameter: 0.54 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.47527 (3)0.90148 (7)0.39948 (4)0.0682 (2)
C10.3518 (4)1.2960 (8)0.3721 (3)0.0509 (14)
C20.3877 (5)1.3393 (13)0.4422 (5)0.078 (2)
H20.42391.27140.46800.093*
C30.3678 (5)1.4883 (12)0.4732 (5)0.078 (3)
H30.39121.52010.51990.094*
C40.3152 (6)1.5845 (10)0.4357 (6)0.075 (2)
H40.30351.68360.45630.090*
C50.2785 (6)1.5408 (12)0.3679 (5)0.078 (2)
H50.24111.60830.34340.093*
C60.2974 (5)1.3950 (8)0.3356 (5)0.0589 (16)
H60.27291.36470.28920.071*
C70.3657 (3)0.9567 (8)0.2569 (3)0.0423 (12)
C80.3670 (4)0.7515 (7)0.1808 (4)0.0528 (15)
H80.35840.68360.13920.063*
C90.4113 (4)0.7196 (8)0.2445 (4)0.0541 (15)
H90.43830.62430.25420.065*
C100.2915 (3)0.9926 (9)0.1299 (3)0.0516 (14)
H10A0.26000.92160.09690.062*
H10B0.25231.06250.15560.062*
C110.3752 (4)1.2323 (9)0.0999 (4)0.0630 (17)
H110.35931.29610.14120.076*
C120.4303 (5)1.2674 (9)0.0438 (4)0.0623 (17)
H120.45941.36230.04050.075*
C130.3883 (3)1.0371 (8)0.0180 (3)0.0445 (13)
C140.3903 (4)0.7183 (8)0.1108 (4)0.0544 (15)
C150.4215 (5)0.7007 (11)0.1837 (4)0.0690 (19)
H150.45340.78120.20530.083*
C160.4061 (7)0.5638 (13)0.2260 (6)0.088 (3)
H160.42620.55180.27600.106*
C170.3599 (7)0.4471 (14)0.1909 (7)0.093 (3)
H170.34980.35400.21790.112*
C180.3283 (7)0.4624 (11)0.1177 (6)0.090 (3)
H180.29720.38120.09570.108*
C190.3433 (6)0.6010 (9)0.0767 (5)0.070 (2)
H190.32190.61430.02710.084*
C200.5958 (6)0.0608 (11)0.1501 (5)0.075 (2)
F10.5243 (3)0.0059 (14)0.1521 (6)0.152 (4)
F20.5931 (9)0.2044 (11)0.1290 (6)0.199 (6)
F30.6175 (6)0.0668 (10)0.2239 (4)0.131 (3)
N10.3750 (3)1.1435 (7)0.3445 (3)0.0501 (11)
N20.3443 (3)1.1075 (6)0.2807 (3)0.0462 (11)
N30.4113 (3)0.8465 (6)0.2935 (3)0.0484 (11)
N40.3370 (3)0.9007 (6)0.1878 (3)0.0450 (12)
N50.3475 (3)1.0842 (6)0.0837 (3)0.0427 (11)
N60.4379 (4)1.1474 (7)0.0069 (3)0.0520 (12)
N70.3705 (3)0.8891 (6)0.0124 (3)0.0465 (12)
N80.4090 (3)0.8640 (7)0.0747 (3)0.0508 (12)
O10.6671 (6)0.1988 (10)0.1246 (6)0.127 (3)
O20.7448 (5)0.0336 (14)0.1010 (6)0.149 (4)
O30.6378 (5)0.0472 (10)0.0180 (4)0.104 (2)
S10.67017 (10)0.0515 (2)0.09234 (12)0.0592 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0678 (3)0.0891 (4)0.0477 (3)0.0057 (2)0.0201 (2)0.0008 (3)
C10.047 (3)0.059 (4)0.047 (3)0.014 (3)0.013 (2)0.013 (3)
C20.053 (4)0.117 (7)0.064 (5)0.010 (4)0.000 (3)0.016 (5)
C30.066 (4)0.104 (7)0.064 (5)0.033 (5)0.016 (4)0.048 (5)
C40.079 (6)0.069 (5)0.077 (6)0.016 (4)0.024 (5)0.027 (4)
C50.082 (5)0.077 (5)0.074 (5)0.002 (4)0.024 (4)0.006 (4)
C60.063 (4)0.056 (4)0.058 (4)0.004 (3)0.012 (3)0.006 (3)
C70.031 (2)0.065 (4)0.032 (3)0.006 (2)0.0032 (19)0.005 (2)
C80.070 (4)0.045 (3)0.044 (3)0.010 (3)0.001 (3)0.011 (3)
C90.059 (4)0.044 (3)0.059 (4)0.001 (3)0.001 (3)0.002 (3)
C100.033 (2)0.092 (5)0.030 (3)0.000 (3)0.001 (2)0.011 (3)
C110.058 (4)0.080 (5)0.051 (4)0.010 (3)0.006 (3)0.004 (3)
C120.071 (4)0.058 (4)0.058 (4)0.002 (3)0.007 (3)0.006 (3)
C130.032 (2)0.069 (4)0.033 (3)0.004 (2)0.004 (2)0.001 (2)
C140.057 (3)0.065 (4)0.041 (3)0.013 (3)0.007 (3)0.006 (3)
C150.069 (4)0.081 (5)0.056 (4)0.019 (4)0.005 (3)0.015 (4)
C160.084 (6)0.109 (8)0.070 (6)0.020 (5)0.004 (5)0.017 (5)
C170.098 (7)0.091 (7)0.090 (7)0.017 (6)0.030 (6)0.039 (6)
C180.117 (7)0.063 (5)0.090 (8)0.007 (5)0.000 (6)0.005 (5)
C190.085 (5)0.066 (5)0.059 (4)0.002 (4)0.001 (4)0.000 (3)
C200.076 (5)0.073 (5)0.076 (6)0.010 (4)0.007 (4)0.029 (4)
F10.051 (3)0.237 (9)0.169 (8)0.006 (4)0.022 (3)0.111 (8)
F20.347 (16)0.110 (5)0.141 (8)0.123 (8)0.069 (9)0.022 (5)
F30.159 (7)0.167 (7)0.065 (4)0.015 (5)0.009 (4)0.049 (4)
N10.050 (3)0.064 (3)0.037 (2)0.006 (2)0.001 (2)0.002 (2)
N20.043 (2)0.061 (3)0.035 (2)0.003 (2)0.0013 (19)0.003 (2)
N30.050 (3)0.051 (3)0.044 (3)0.005 (2)0.006 (2)0.006 (2)
N40.051 (3)0.051 (3)0.033 (2)0.008 (2)0.002 (2)0.0095 (19)
N50.039 (2)0.054 (3)0.035 (2)0.0043 (18)0.0010 (19)0.001 (2)
N60.049 (3)0.061 (3)0.047 (3)0.008 (3)0.006 (2)0.008 (3)
N70.044 (2)0.062 (3)0.034 (2)0.006 (2)0.0006 (18)0.000 (2)
N80.051 (3)0.064 (3)0.038 (2)0.009 (2)0.0003 (19)0.000 (2)
O10.154 (8)0.089 (5)0.138 (8)0.037 (5)0.043 (6)0.017 (5)
O20.076 (4)0.222 (9)0.148 (8)0.060 (6)0.018 (5)0.058 (8)
O30.120 (6)0.134 (6)0.060 (4)0.030 (5)0.012 (4)0.037 (4)
S10.0443 (7)0.0712 (10)0.0622 (10)0.0010 (7)0.0022 (7)0.0131 (9)
Geometric parameters (Å, º) top
Ag1—N32.152 (5)C11—H110.9300
Ag1—N6i2.174 (6)C12—N61.347 (10)
C1—C61.364 (11)C12—H120.9300
C1—C21.390 (10)C13—N61.298 (9)
C1—N11.424 (9)C13—N51.371 (7)
C2—C31.406 (14)C13—N71.387 (8)
C2—H20.9300C14—C151.364 (10)
C3—C41.339 (14)C14—C191.378 (11)
C3—H30.9300C14—N81.413 (8)
C4—C51.363 (13)C15—C161.391 (13)
C4—H40.9300C15—H150.9300
C5—C61.386 (11)C16—C171.374 (16)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—C181.369 (16)
C7—N31.342 (8)C17—H170.9300
C7—N41.365 (8)C18—C191.390 (12)
C7—N21.383 (8)C18—H180.9300
C8—C91.338 (10)C19—H190.9300
C8—N41.355 (8)C20—F21.268 (13)
C8—H80.9300C20—F11.278 (11)
C9—N31.366 (9)C20—F31.322 (11)
C9—H90.9300C20—S11.822 (8)
C10—N51.429 (8)N1—N21.246 (7)
C10—N41.463 (9)N6—Ag1ii2.174 (6)
C10—H10A0.9700N7—N81.259 (7)
C10—H10B0.9700O1—S11.365 (9)
C11—C121.345 (10)O2—S11.404 (7)
C11—N51.357 (9)O3—S11.388 (7)
N3—Ag1—N6i153.9 (2)C19—C14—N8123.7 (6)
C6—C1—C2120.4 (7)C14—C15—C16120.8 (9)
C6—C1—N1124.6 (6)C14—C15—H15119.6
C2—C1—N1115.0 (7)C16—C15—H15119.6
C1—C2—C3118.3 (9)C17—C16—C15117.5 (9)
C1—C2—H2120.8C17—C16—H16121.3
C3—C2—H2120.8C15—C16—H16121.3
C4—C3—C2120.2 (7)C16—C17—C18122.6 (9)
C4—C3—H3119.9C16—C17—H17118.7
C2—C3—H3119.9C18—C17—H17118.7
C3—C4—C5121.6 (8)C17—C18—C19119.2 (10)
C3—C4—H4119.2C17—C18—H18120.4
C5—C4—H4119.2C19—C18—H18120.4
C4—C5—C6119.5 (10)C14—C19—C18118.9 (8)
C4—C5—H5120.2C14—C19—H19120.6
C6—C5—H5120.2C18—C19—H19120.6
C1—C6—C5120.0 (8)F2—C20—F1113.5 (11)
C1—C6—H6120.0F2—C20—F3104.5 (10)
C5—C6—H6120.0F1—C20—F3103.1 (9)
N3—C7—N4110.8 (6)F2—C20—S1111.3 (8)
N3—C7—N2129.4 (6)F1—C20—S1111.7 (6)
N4—C7—N2119.8 (5)F3—C20—S1112.2 (7)
C9—C8—N4107.5 (6)N2—N1—C1114.6 (6)
C9—C8—H8126.2N1—N2—C7113.0 (5)
N4—C8—H8126.2C7—N3—C9104.6 (5)
C8—C9—N3110.7 (6)C7—N3—Ag1120.7 (4)
C8—C9—H9124.7C9—N3—Ag1134.2 (4)
N3—C9—H9124.7C8—N4—C7106.4 (6)
N5—C10—N4110.9 (4)C8—N4—C10127.6 (5)
N5—C10—H10A109.5C7—N4—C10125.6 (5)
N4—C10—H10A109.5C11—N5—C13106.4 (5)
N5—C10—H10B109.5C11—N5—C10126.1 (5)
N4—C10—H10B109.5C13—N5—C10127.3 (5)
H10A—C10—H10B108.0C13—N6—C12105.6 (6)
C12—C11—N5105.6 (6)C13—N6—Ag1ii120.2 (5)
C12—C11—H11127.2C12—N6—Ag1ii133.3 (5)
N5—C11—H11127.2N8—N7—C13112.0 (5)
C11—C12—N6111.3 (7)N7—N8—C14114.9 (6)
C11—C12—H12124.4O1—S1—O3112.9 (6)
N6—C12—H12124.4O1—S1—O2117.1 (7)
N6—C13—N5111.0 (6)O3—S1—O2113.8 (6)
N6—C13—N7130.4 (6)O1—S1—C20103.1 (5)
N5—C13—N7118.5 (5)O3—S1—C20104.5 (5)
C15—C14—C19121.1 (7)O2—S1—C20103.4 (5)
C15—C14—N8115.2 (7)
C6—C1—C2—C31.4 (11)N2—C7—N4—C8179.3 (5)
N1—C1—C2—C3179.9 (6)N3—C7—N4—C10174.5 (5)
C1—C2—C3—C40.3 (12)N2—C7—N4—C107.2 (8)
C2—C3—C4—C51.3 (12)N5—C10—N4—C891.0 (8)
C3—C4—C5—C61.7 (12)N5—C10—N4—C781.0 (7)
C2—C1—C6—C51.0 (10)C12—C11—N5—C130.3 (7)
N1—C1—C6—C5179.5 (6)C12—C11—N5—C10176.1 (6)
C4—C5—C6—C10.6 (11)N6—C13—N5—C110.8 (7)
N4—C8—C9—N30.3 (8)N7—C13—N5—C11179.1 (5)
N5—C11—C12—N60.2 (9)N6—C13—N5—C10176.5 (5)
C19—C14—C15—C160.5 (12)N7—C13—N5—C105.2 (9)
N8—C14—C15—C16178.8 (7)N4—C10—N5—C1188.1 (7)
C14—C15—C16—C171.2 (13)N4—C10—N5—C1386.8 (7)
C15—C16—C17—C181.1 (15)N5—C13—N6—C120.9 (7)
C16—C17—C18—C190.1 (16)N7—C13—N6—C12178.9 (6)
C15—C14—C19—C180.5 (12)N5—C13—N6—Ag1ii171.3 (4)
N8—C14—C19—C18179.7 (8)N7—C13—N6—Ag1ii10.6 (9)
C17—C18—C19—C140.6 (14)C11—C12—N6—C130.7 (8)
C6—C1—N1—N23.2 (9)C11—C12—N6—Ag1ii169.3 (5)
C2—C1—N1—N2178.2 (6)N6—C13—N7—N81.3 (9)
C1—N1—N2—C7177.8 (5)N5—C13—N7—N8176.7 (5)
N3—C7—N2—N12.4 (8)C13—N7—N8—C14176.8 (5)
N4—C7—N2—N1179.7 (5)C15—C14—N8—N7170.3 (6)
N4—C7—N3—C90.8 (6)C19—C14—N8—N79.0 (9)
N2—C7—N3—C9178.9 (6)F2—C20—S1—O1177.9 (10)
N4—C7—N3—Ag1174.6 (4)F1—C20—S1—O154.1 (10)
N2—C7—N3—Ag17.3 (8)F3—C20—S1—O161.1 (9)
C8—C9—N3—C70.3 (7)F2—C20—S1—O363.9 (10)
C8—C9—N3—Ag1172.8 (5)F1—C20—S1—O364.1 (10)
N6i—Ag1—N3—C7170.1 (5)F3—C20—S1—O3179.4 (8)
N6i—Ag1—N3—C91.5 (9)F2—C20—S1—O255.5 (11)
C9—C8—N4—C70.8 (7)F1—C20—S1—O2176.5 (10)
C9—C8—N4—C10174.1 (6)F3—C20—S1—O261.3 (10)
N3—C7—N4—C81.0 (7)
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+1, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1iii0.972.503.285 (10)138
C8—H8···O2iv0.932.313.021 (10)133
Symmetry codes: (iii) x1/2, y+3/2, z; (iv) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ag(C19H16N8)](CF3SO3)
Mr613.34
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)16.0251 (19), 8.455 (1), 17.293 (2)
V3)2343.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.13 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.879, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
11674, 4823, 4073
Rint0.057
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.167, 1.13
No. of reflections4823
No. of parameters326
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.54
Absolute structureFlack (1983), 1807 Friedel pairs
Absolute structure parameter0.54 (5)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N32.152 (5)Ag1—N6i2.174 (6)
Symmetry code: (i) x+1, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1ii0.972.503.285 (10)138.4
C8—H8···O2iii0.932.313.021 (10)132.5
Symmetry codes: (ii) x1/2, y+3/2, z; (iii) x1/2, y+1/2, z.
 

Acknowledgements

We gratefully acknowledge financial support by the Natural Science Foundation of Hubei Province, People's Republic of China (2009CDB349) and the Science Foundation of Hubei Provincial Department of Education (Z201022001).

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D. (2011). CrystEngComm, 13, 3623–3642.  Web of Science CrossRef CAS Google Scholar
First citationCustelcean, R. (2010). Chem. Soc. Rev. 39, 3675–3685.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamilton, B. H. & Ziegler, C. J. (2004). Inorg. Chem. 43, 4272–4277.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJin, C. M., Chen, Z. F., Mei, H. F. & Shi, X. K. (2009). J. Mol. Struct. 921, 58–62.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853–908.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPschirer, N. G., Curtin, D. M., Smith, M. D., Bunz, W. H. F. & Zur Loye, H.-C. (2002). Angew. Chem. Int. Ed. Engl. 41, 583–585.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanabe, K. K. & Cohen, S. M. (2011). Chem. Soc. Rev. 40, 498–519.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds