organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro-1,3-benzo­thia­zol-2-yl)-2-(3-methyl­phen­yl)acetamide monohydrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 30 August 2011; accepted 2 September 2011; online 14 September 2011)

In the title compound, C16H13ClN2OS·H2O, the dihedral angle between the mean planes of the benzothia­zole ring system and the methylphenyl ring is 79.3 (6)°. The crystal packing features inter­molecular O—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds involving the water mol­ecule and weak C—H⋯O, C—H⋯Cg and ππ stacking inter­actions [centroid–centroid distances = 3.8743 (7), 3.7229 (7) and 3.7076 (8) Å].

Related literature

For the biological activity of compounds with benzothia­zole skeletons, see: Aiello et al. (2008[Aiello, S., Wells, G., Stone, E. L., Kadri, H., Bazzi, R., Bell, D. R., Stevens, M. F. G., Matthews, C. S., Bradshaw, T. D. & Westwell, A. D. (2008). J. Med. Chem. 51, 5135-5139.]); Cho et al. (2008[Cho, Y., Ioerger, T. R. & Sacchettini, J. C. (2008). J. Med. Chem. 51, 5984-5992.]). For their structural similarity to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.], 2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]) and for their coordination abilities, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For related structures, see: Davis & Healy (2010[Davis, R. A. & Healy, P. C. (2010). Acta Cryst. E66, o2521.]); John et al. (2010[John, P., Ahmad, W., Khan, I. U., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2048.]); Nogueira et al. (2010[Nogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177.]); Praveen et al. (2011[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.]); Selig et al. (2010[Selig, R., Schollmeyer, D., Albrecht, W. & Laufer, S. (2010). Acta Cryst. E66, o1132.]); Wen et al. (2010[Wen, Y.-H., Qin, H.-Q. & Wen, H.-L. (2010). Acta Cryst. E66, o3294.]); Xiao et al. (2010[Xiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClN2OS·H2O

  • Mr = 334.81

  • Triclinic, [P \overline 1]

  • a = 7.2771 (3) Å

  • b = 9.2568 (5) Å

  • c = 12.0851 (5) Å

  • α = 83.948 (4)°

  • β = 84.306 (3)°

  • γ = 72.133 (4)°

  • V = 768.58 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.25 × 0.21 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.908, Tmax = 0.926

  • 10307 measured reflections

  • 4303 independent reflections

  • 3834 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.089

  • S = 1.01

  • 4303 reflections

  • 209 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2OB⋯N1i 0.88 (1) 2.10 (2) 2.924 (1) 158 (2)
O2—H2OA⋯O1ii 0.88 (1) 2.05 (1) 2.904 (1) 164 (2)
N2—H2N⋯O2 0.87 (1) 1.92 (1) 2.785 (1) 177 (2)
C5—H5A⋯O1iii 0.95 2.56 3.351 (2) 141
C3—H3ACg3iv 0.95 2.66 3.502 (1) 148
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The biological activity of compounds with benzothiazole skeletons includes anticancer, antibacterial, antifungal and anthelmintic properties (Aiello et al., 2008; Cho et al., 2008) N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2008; Mijin et al., 2006). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008; 2010). Crystal structures of some acetamidederivatives, viz., 2-(4-bromophenyl)-N-(2-methoxyphenyl)acetamide (Xiao et al., 2010), N-benzyl-2-(3-chloro-4-hydroxyphenyl)acetamide (Davis et al., 2010), 2-[(5,7-dibromoquinolin-8-yl)oxy]-N-(2-methoxyphenyl)acetamide (Wen et al., 2010), N-(4-bromophenyl)-2-(2-thienyl)acetamide (Nogueira et al., 2010), N-[4-(benzylsulfamoyl)phenyl]acetamide (John et al., 2010), 2-(4-fluorophenyl)-N-{4-[6-(4-fluorophenyl)-2,3-dihydroimidazo[2,1-b][1,3] thiazol-5-yl]pyridin-2-yl}acetamide (Selig et al., 2010) and N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011) have been reported. As part of our ongoing studies of amides, the title compound is synthesized and its crystal structure is reported.

In the title hydrated compound, C16H13ClN2OS × H2O, the dihedral angle between the mean planes of the benzothiazole and benzenes is 79.3 (6)° (Fig. 1). Crystal packing is realized by O–H···N, O—H···O and N—H···O hydrogen bonds involving the water molecule and weak O—H···O, C—H···O, C—H···Cg (Table 1) and ππ stacking (Table 2) intermolecular interactions (Fig. 2).

Related literature top

For the biological activity of compounds with benzothiazole skeletons, see: Aiello et al. (2008); Cho et al. (2008). For their structural similarity to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2006, 2008) and for their coordination abilities, see: Wu et al. (2008, 2010). For related structures, see: Davis & Healy (2010); John et al. (2010); Nogueira et al. (2010); Praveen et al. (2011); Selig et al. (2010); Wen et al. (2010); Xiao et al. (2010). For standard bond lengths, see Allen et al. (1987).

Experimental top

To a stirred solution of (3-methylphenyl)acetic acid (1 g, 6.65 mmol), triethylamine (1.34 g, 13.31 mmol) and 4-chloro-1,3-benzothiazol-2-amine (1.27 g, 6.65 mmol) in dichloromethane (10 ml), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide HCl (1.52 g, 7.93 mmol) was added at 273 K. The reaction mixture was stirred at room temperature for 3 h. After the completion of the reaction, the reaction mixture was poured into ice cold water and the layers were separated. The organic layer was washed with 10% aq. NaHCO3 solution (10 ml), brine (10 ml), dried over anhydrous Na2SO4, filtered and concentrated under vacuum to obtain the crude product which was triturated with ethanol and filtered to afford 1.92 g of the title compound (I) as a white solid in 91 % yield. Single crystals were grown from ethanol by slow evaporation method (m.p.: 397-398 K).

Refinement top

H20A, H20B and H2N were located by a Fourier map and refined isotropically. All other H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.18-1.21 (CH) 1.20 CH2) or 1.51 (CH3) times Ueq of the parent atom.

Structure description top

The biological activity of compounds with benzothiazole skeletons includes anticancer, antibacterial, antifungal and anthelmintic properties (Aiello et al., 2008; Cho et al., 2008) N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2008; Mijin et al., 2006). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008; 2010). Crystal structures of some acetamidederivatives, viz., 2-(4-bromophenyl)-N-(2-methoxyphenyl)acetamide (Xiao et al., 2010), N-benzyl-2-(3-chloro-4-hydroxyphenyl)acetamide (Davis et al., 2010), 2-[(5,7-dibromoquinolin-8-yl)oxy]-N-(2-methoxyphenyl)acetamide (Wen et al., 2010), N-(4-bromophenyl)-2-(2-thienyl)acetamide (Nogueira et al., 2010), N-[4-(benzylsulfamoyl)phenyl]acetamide (John et al., 2010), 2-(4-fluorophenyl)-N-{4-[6-(4-fluorophenyl)-2,3-dihydroimidazo[2,1-b][1,3] thiazol-5-yl]pyridin-2-yl}acetamide (Selig et al., 2010) and N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011) have been reported. As part of our ongoing studies of amides, the title compound is synthesized and its crystal structure is reported.

In the title hydrated compound, C16H13ClN2OS × H2O, the dihedral angle between the mean planes of the benzothiazole and benzenes is 79.3 (6)° (Fig. 1). Crystal packing is realized by O–H···N, O—H···O and N—H···O hydrogen bonds involving the water molecule and weak O—H···O, C—H···O, C—H···Cg (Table 1) and ππ stacking (Table 2) intermolecular interactions (Fig. 2).

For the biological activity of compounds with benzothiazole skeletons, see: Aiello et al. (2008); Cho et al. (2008). For their structural similarity to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2006, 2008) and for their coordination abilities, see: Wu et al. (2008, 2010). For related structures, see: Davis & Healy (2010); John et al. (2010); Nogueira et al. (2010); Praveen et al. (2011); Selig et al. (2010); Wen et al. (2010); Xiao et al. (2010). For standard bond lengths, see Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate O—H···N hydrogen bonds.
N-(4-Chloro-1,3-benzothiazol-2-yl)-2-(3-methylphenyl)acetamide monohydrate top
Crystal data top
C16H13ClN2OS·H2OZ = 2
Mr = 334.81F(000) = 348
Triclinic, P1Dx = 1.447 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2771 (3) ÅCell parameters from 5935 reflections
b = 9.2568 (5) Åθ = 3.2–32.2°
c = 12.0851 (5) ŵ = 0.39 mm1
α = 83.948 (4)°T = 173 K
β = 84.306 (3)°Block, colorless
γ = 72.133 (4)°0.25 × 0.21 × 0.20 mm
V = 768.58 (6) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4303 independent reflections
Radiation source: Enhance (Mo) X-ray Source3834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 16.1500 pixels mm-1θmax = 29.6°, θmin = 3.2°
ω scansh = 610
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.908, Tmax = 0.926l = 1616
10307 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2662P]
where P = (Fo2 + 2Fc2)/3
4303 reflections(Δ/σ)max = 0.007
209 parametersΔρmax = 0.40 e Å3
4 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H13ClN2OS·H2Oγ = 72.133 (4)°
Mr = 334.81V = 768.58 (6) Å3
Triclinic, P1Z = 2
a = 7.2771 (3) ÅMo Kα radiation
b = 9.2568 (5) ŵ = 0.39 mm1
c = 12.0851 (5) ÅT = 173 K
α = 83.948 (4)°0.25 × 0.21 × 0.20 mm
β = 84.306 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4303 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3834 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.926Rint = 0.013
10307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0314 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.40 e Å3
4303 reflectionsΔρmin = 0.28 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10411 (4)0.65402 (3)0.47845 (2)0.02017 (8)
Cl10.78434 (4)0.64763 (4)0.28146 (3)0.02807 (9)
O10.10370 (13)0.84965 (11)0.62242 (8)0.02685 (19)
O20.47923 (14)0.98584 (11)0.64369 (9)0.0289 (2)
H2OB0.477 (2)1.0762 (16)0.6127 (14)0.035*
H2OA0.600 (2)0.9272 (17)0.6380 (15)0.035*
N10.41640 (14)0.74054 (11)0.44287 (8)0.01894 (19)
N20.19872 (14)0.86818 (11)0.58166 (8)0.01959 (19)
H2N0.285 (2)0.9074 (18)0.5985 (13)0.024*
C10.43805 (16)0.62472 (13)0.37390 (9)0.0181 (2)
C20.59653 (16)0.56742 (13)0.29843 (10)0.0202 (2)
C30.60131 (18)0.44952 (14)0.23612 (11)0.0242 (2)
H3A0.70970.41020.18560.029*
C40.44702 (19)0.38796 (14)0.24728 (11)0.0263 (3)
H4A0.45250.30630.20430.032*
C50.28611 (18)0.44326 (14)0.31952 (11)0.0237 (2)
H5A0.18080.40180.32610.028*
C60.28419 (17)0.56185 (13)0.38211 (9)0.0195 (2)
C70.25131 (16)0.76327 (13)0.50223 (9)0.0179 (2)
C80.02371 (17)0.90296 (13)0.64119 (10)0.0200 (2)
C90.00054 (18)1.00506 (14)0.73487 (10)0.0224 (2)
H9A0.13341.07450.74080.027*
H9B0.09031.06750.71940.027*
C100.04473 (18)0.90619 (14)0.84323 (10)0.0219 (2)
C110.20475 (18)0.90263 (15)0.89814 (10)0.0246 (2)
H11A0.28260.96540.86890.030*
C120.2537 (2)0.80858 (16)0.99563 (11)0.0303 (3)
C130.1374 (2)0.71844 (17)1.03722 (12)0.0348 (3)
H13A0.16880.65351.10330.042*
C140.0235 (2)0.72173 (17)0.98378 (12)0.0347 (3)
H14A0.10200.65971.01370.042*
C150.0708 (2)0.81538 (16)0.88651 (11)0.0287 (3)
H15A0.18130.81740.84980.034*
C200.4298 (2)0.8049 (2)1.05269 (14)0.0455 (4)
H20A0.50700.69901.06920.068*
H20B0.38940.85511.12240.068*
H20C0.50760.85841.00370.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01938 (14)0.02259 (14)0.02136 (14)0.01061 (11)0.00229 (10)0.00472 (10)
Cl10.02011 (15)0.03273 (17)0.03346 (17)0.01163 (12)0.00420 (11)0.00644 (12)
O10.0204 (4)0.0311 (5)0.0311 (5)0.0101 (4)0.0026 (3)0.0085 (4)
O20.0231 (4)0.0243 (4)0.0412 (5)0.0111 (4)0.0024 (4)0.0034 (4)
N10.0190 (4)0.0195 (4)0.0197 (4)0.0079 (4)0.0003 (3)0.0030 (4)
N20.0192 (5)0.0215 (5)0.0203 (4)0.0089 (4)0.0008 (4)0.0049 (4)
C10.0190 (5)0.0172 (5)0.0181 (5)0.0056 (4)0.0012 (4)0.0004 (4)
C20.0175 (5)0.0202 (5)0.0221 (5)0.0054 (4)0.0003 (4)0.0004 (4)
C30.0225 (6)0.0219 (5)0.0260 (6)0.0035 (4)0.0021 (4)0.0055 (4)
C40.0288 (6)0.0209 (5)0.0293 (6)0.0066 (5)0.0007 (5)0.0081 (5)
C50.0247 (6)0.0220 (5)0.0269 (6)0.0103 (5)0.0003 (4)0.0052 (4)
C60.0197 (5)0.0193 (5)0.0199 (5)0.0069 (4)0.0005 (4)0.0017 (4)
C70.0189 (5)0.0181 (5)0.0177 (5)0.0074 (4)0.0013 (4)0.0009 (4)
C80.0206 (5)0.0181 (5)0.0200 (5)0.0045 (4)0.0007 (4)0.0005 (4)
C90.0256 (6)0.0188 (5)0.0213 (5)0.0046 (4)0.0018 (4)0.0039 (4)
C100.0235 (5)0.0200 (5)0.0197 (5)0.0034 (4)0.0041 (4)0.0048 (4)
C110.0240 (6)0.0243 (6)0.0235 (5)0.0047 (5)0.0032 (4)0.0052 (4)
C120.0282 (6)0.0319 (7)0.0245 (6)0.0002 (5)0.0015 (5)0.0032 (5)
C130.0387 (8)0.0317 (7)0.0259 (6)0.0027 (6)0.0045 (5)0.0040 (5)
C140.0375 (8)0.0315 (7)0.0327 (7)0.0120 (6)0.0100 (6)0.0018 (5)
C150.0274 (6)0.0299 (6)0.0284 (6)0.0096 (5)0.0044 (5)0.0032 (5)
C200.0377 (8)0.0574 (11)0.0365 (8)0.0071 (8)0.0108 (6)0.0042 (7)
Geometric parameters (Å, º) top
S1—C61.7382 (12)C5—H5A0.9500
S1—C71.7436 (12)C8—C91.5144 (16)
Cl1—C21.7310 (12)C9—C101.5186 (17)
O1—C81.2250 (15)C9—H9A0.9900
O2—H2OB0.876 (13)C9—H9B0.9900
O2—H2OA0.883 (13)C10—C111.3866 (18)
N1—C71.3068 (15)C10—C151.3934 (18)
N1—C11.3884 (14)C11—C121.3963 (18)
N2—C81.3633 (15)C11—H11A0.9500
N2—C71.3809 (14)C12—C131.387 (2)
N2—H2N0.868 (13)C12—C201.504 (2)
C1—C21.4004 (15)C13—C141.383 (2)
C1—C61.4028 (16)C13—H13A0.9500
C2—C31.3799 (17)C14—C151.391 (2)
C3—C41.3964 (18)C14—H14A0.9500
C3—H3A0.9500C15—H15A0.9500
C4—C51.3853 (17)C20—H20A0.9800
C4—H4A0.9500C20—H20B0.9800
C5—C61.3932 (16)C20—H20C0.9800
C6—S1—C788.18 (5)C8—C9—C10108.76 (10)
H2OB—O2—H2OA107.2 (14)C8—C9—H9A109.9
C7—N1—C1109.19 (10)C10—C9—H9A109.9
C8—N2—C7123.21 (10)C8—C9—H9B109.9
C8—N2—H2N118.6 (10)C10—C9—H9B109.9
C7—N2—H2N118.0 (11)H9A—C9—H9B108.3
N1—C1—C2126.10 (11)C11—C10—C15119.52 (12)
N1—C1—C6115.52 (10)C11—C10—C9119.83 (11)
C2—C1—C6118.38 (11)C15—C10—C9120.63 (12)
C3—C2—C1120.19 (11)C10—C11—C12121.27 (13)
C3—C2—Cl1120.05 (9)C10—C11—H11A119.4
C1—C2—Cl1119.75 (9)C12—C11—H11A119.4
C2—C3—C4120.06 (11)C13—C12—C11118.40 (14)
C2—C3—H3A120.0C13—C12—C20121.33 (14)
C4—C3—H3A120.0C11—C12—C20120.26 (14)
C5—C4—C3121.51 (11)C14—C13—C12120.94 (13)
C5—C4—H4A119.2C14—C13—H13A119.5
C3—C4—H4A119.2C12—C13—H13A119.5
C4—C5—C6117.62 (11)C13—C14—C15120.30 (14)
C4—C5—H5A121.2C13—C14—H14A119.8
C6—C5—H5A121.2C15—C14—H14A119.8
C5—C6—C1122.21 (11)C14—C15—C10119.57 (13)
C5—C6—S1128.07 (9)C14—C15—H15A120.2
C1—C6—S1109.71 (8)C10—C15—H15A120.2
N1—C7—N2120.77 (10)C12—C20—H20A109.5
N1—C7—S1117.35 (9)C12—C20—H20B109.5
N2—C7—S1121.88 (8)H20A—C20—H20B109.5
O1—C8—N2121.69 (11)C12—C20—H20C109.5
O1—C8—C9122.33 (11)H20A—C20—H20C109.5
N2—C8—C9115.92 (10)H20B—C20—H20C109.5
C7—N1—C1—C2179.68 (11)C8—N2—C7—N1175.97 (11)
C7—N1—C1—C60.58 (14)C8—N2—C7—S15.13 (16)
N1—C1—C2—C3178.77 (11)C6—S1—C7—N12.23 (10)
C6—C1—C2—C31.50 (17)C6—S1—C7—N2176.71 (10)
N1—C1—C2—Cl12.55 (17)C7—N2—C8—O14.83 (18)
C6—C1—C2—Cl1177.18 (9)C7—N2—C8—C9172.42 (10)
C1—C2—C3—C40.67 (19)O1—C8—C9—C1081.73 (14)
Cl1—C2—C3—C4178.01 (10)N2—C8—C9—C1095.49 (12)
C2—C3—C4—C50.5 (2)C8—C9—C10—C11114.28 (12)
C3—C4—C5—C60.8 (2)C8—C9—C10—C1563.84 (14)
C4—C5—C6—C10.11 (19)C15—C10—C11—C120.61 (18)
C4—C5—C6—S1179.87 (10)C9—C10—C11—C12177.53 (11)
N1—C1—C6—C5179.00 (11)C10—C11—C12—C130.31 (19)
C2—C1—C6—C51.24 (18)C10—C11—C12—C20179.05 (13)
N1—C1—C6—S11.01 (13)C11—C12—C13—C140.2 (2)
C2—C1—C6—S1178.75 (9)C20—C12—C13—C14179.55 (14)
C7—S1—C6—C5178.34 (12)C12—C13—C14—C150.4 (2)
C7—S1—C6—C11.67 (9)C13—C14—C15—C100.1 (2)
C1—N1—C7—N2176.95 (10)C11—C10—C15—C140.39 (19)
C1—N1—C7—S12.00 (13)C9—C10—C15—C14177.73 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2OB···N1i0.88 (1)2.10 (2)2.924 (1)158 (2)
O2—H2OA···O1ii0.88 (1)2.05 (1)2.904 (1)164 (2)
N2—H2N···O20.87 (1)1.92 (1)2.785 (1)177 (2)
C5—H5A···O1iii0.952.563.351 (2)141
C3—H3A···Cg3iv0.952.663.502 (1)148
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H13ClN2OS·H2O
Mr334.81
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.2771 (3), 9.2568 (5), 12.0851 (5)
α, β, γ (°)83.948 (4), 84.306 (3), 72.133 (4)
V3)768.58 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.25 × 0.21 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.908, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
10307, 4303, 3834
Rint0.013
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.01
No. of reflections4303
No. of parameters209
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2OB···N1i0.88 (1)2.10 (2)2.924 (1)158 (2)
O2—H2OA···O1ii0.88 (1)2.05 (1)2.904 (1)164 (2)
N2—H2N···O20.87 (1)1.92 (1)2.785 (1)177 (2)
C5—H5A···O1iii0.952.563.351 (2)141.0
C3—H3A···Cg3iv0.952.663.502 (1)148
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
Cg···Cg π-stacking interactions, Cg1, Cg2 and Cg3 are the centroids of rings S1/C6/C1/N1/C7 C1–C6 and C10–C15, respectively. [Symmetry codes: (i) 1-x, -1-y, 1-z; (ii) -x, 2-y, 2-z] top
CgI···CgJCgI···CgJ (Å)CgI···Perp (Å)CgJ···Perp (Å)
Cg1···Cg1i3.8743 (7)3.5381 (4)3.581 (4)
Cg1···Cg2i3.7229 (7)3.5474 (4)3.5229 (5)
Cg3···Cg3ii3.7076 (8)3.4878 (6)3.4878 (6)
 

Acknowledgements

ASP and HSY thank the UoM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAiello, S., Wells, G., Stone, E. L., Kadri, H., Bazzi, R., Bell, D. R., Stevens, M. F. G., Matthews, C. S., Bradshaw, T. D. & Westwell, A. D. (2008). J. Med. Chem. 51, 5135–5139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCho, Y., Ioerger, T. R. & Sacchettini, J. C. (2008). J. Med. Chem. 51, 5984–5992.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDavis, R. A. & Healy, P. C. (2010). Acta Cryst. E66, o2521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohn, P., Ahmad, W., Khan, I. U., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationNogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelig, R., Schollmeyer, D., Albrecht, W. & Laufer, S. (2010). Acta Cryst. E66, o1132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Y.-H., Qin, H.-Q. & Wen, H.-L. (2010). Acta Cryst. E66, o3294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds