metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Bromo-2-{[2-(morpholin-4-yl)ethyl­imino]­meth­yl}phenolato)dioxido­vanadium(V)

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 25 August 2011; accepted 29 August 2011; online 14 September 2011)

In the title mononuclear dioxidovanadium(V) complex, [V(C13H16BrN2O2)O2], the VV atom is five-coordinated by one phenolate O, one imine N and one morpholine N atom of the Schiff base ligand, and by two oxide O atoms, forming a distorted square-pyramidal geometry. In the crystal, weak C—H⋯O inter­actions and a short Br⋯Br contact [3.4597 (12) Å] are observed.

Related literature

For related Schiff base complexes that we have reported recently, see: Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.], 2011[Wang, C.-Y. (2011). Acta Cryst. E67, m1085-m1086.]); Wang & Ye (2011[Wang, C.-Y. & Ye, J.-Y. (2011). Russ. J. Coord. Chem. 37, 235-241.]). For similar oxidovanadium(V) complexes, see: Xie et al. (2004[Xie, M.-J., Ping, Y.-S., Zheng, L.-D., Hui, J.-Z. & Peng, C. (2004). Acta Cryst. E60, m1382-m1383.]); Gao et al. (2005[Gao, S., Huo, L.-H., Deng, Z.-P. & Zhao, H. (2005). Acta Cryst. E61, m978-m980.]); Hartung et al. (2007[Hartung, J., Ludwig, A., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, m1422-m1423.]); Romanowski et al. (2009[Romanowski, G., Wera, M. & Sikorski, A. (2009). Acta Cryst. E65, m190.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C13H16BrN2O2)O2]

  • Mr = 395.13

  • Monoclinic, P 21 /c

  • a = 21.372 (3) Å

  • b = 6.0892 (15) Å

  • c = 11.372 (3) Å

  • β = 97.248 (2)°

  • V = 1468.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.41 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.595, Tmax = 0.665

  • 11267 measured reflections

  • 3204 independent reflections

  • 2058 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.096

  • S = 1.02

  • 3204 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

V1—O4 1.611 (2)
V1—O3 1.622 (3)
V1—O1 1.907 (3)
V1—N1 2.142 (3)
V1—N2 2.159 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.53 3.241 (4) 133
C11—H11A⋯O2ii 0.97 2.57 3.479 (5) 156
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into new Schiff base complexes (Wang & Ye, 2011; Wang, 2009, 2011), we have synthesized the title compound, a new mononuclear dioxovanadium(V) complex (Fig. 1). The VV atom in the complex is five-coordinated by one phenolate O, one imine N and one morpholine N atom of the Schiff base ligand, and by two oxo O atoms, forming a distorted square pyramidal coordination. The V–O and V–N bond lengths (Table 1) are typical and are comparable with those observed in other similar oxovanadium(V) complexes with Schiff bases (Xie et al., 2004; Gao et al., 2005; Hartung et al., 2007; Romanowski et al., 2009).

Related literature top

For related Schiff base complexes that we have reported recently, see: Wang (2009, 2011); Wang & Ye (2011). For similar oxidovanadium(V) complexes, see: Xie et al. (2004); Gao et al. (2005); Hartung et al. (2007); Romanowski et al. (2009).

Experimental top

5-Bromosalicylaldehyde (1.0 mmol, 0.201 g), 2-morpholin-4-ylethylamine (1.0 mmol, 0.130 g) and VO(acac)2 (1.0 mmol, 0.265 g) were dissolved in MeOH (30 ml). The mixture was stirred at room temperature for 10 min to give a yellow solution. After keeping the solution in air for a week, yellow block-shaped crystals were formed at the bottom of the vessel.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C).

Structure description top

As part of our investigations into new Schiff base complexes (Wang & Ye, 2011; Wang, 2009, 2011), we have synthesized the title compound, a new mononuclear dioxovanadium(V) complex (Fig. 1). The VV atom in the complex is five-coordinated by one phenolate O, one imine N and one morpholine N atom of the Schiff base ligand, and by two oxo O atoms, forming a distorted square pyramidal coordination. The V–O and V–N bond lengths (Table 1) are typical and are comparable with those observed in other similar oxovanadium(V) complexes with Schiff bases (Xie et al., 2004; Gao et al., 2005; Hartung et al., 2007; Romanowski et al., 2009).

For related Schiff base complexes that we have reported recently, see: Wang (2009, 2011); Wang & Ye (2011). For similar oxidovanadium(V) complexes, see: Xie et al. (2004); Gao et al. (2005); Hartung et al. (2007); Romanowski et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(4-Bromo-2-{[2-(morpholin-4-yl)ethylimino]methyl}phenolato)dioxidovanadium(V) top
Crystal data top
[V(C13H16BrN2O2)O2]F(000) = 792
Mr = 395.13Dx = 1.788 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2133 reflections
a = 21.372 (3) Åθ = 2.7–25.1°
b = 6.0892 (15) ŵ = 3.41 mm1
c = 11.372 (3) ÅT = 298 K
β = 97.248 (2)°Block, yellow
V = 1468.0 (5) Å30.17 × 0.13 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3204 independent reflections
Radiation source: fine-focus sealed tube2058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2727
Tmin = 0.595, Tmax = 0.665k = 77
11267 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
3204 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[V(C13H16BrN2O2)O2]V = 1468.0 (5) Å3
Mr = 395.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.372 (3) ŵ = 3.41 mm1
b = 6.0892 (15) ÅT = 298 K
c = 11.372 (3) Å0.17 × 0.13 × 0.13 mm
β = 97.248 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3204 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2058 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.665Rint = 0.051
11267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.61 e Å3
3204 reflectionsΔρmin = 0.62 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.28158 (3)0.31216 (10)0.45502 (5)0.02930 (17)
Br10.01304 (2)0.30291 (9)0.10991 (4)0.06124 (19)
N10.23304 (13)0.4015 (4)0.2854 (2)0.0255 (6)
N20.34664 (13)0.5238 (4)0.3783 (2)0.0253 (7)
O10.21270 (13)0.1134 (5)0.4562 (2)0.0482 (7)
O20.47871 (12)0.5987 (5)0.3519 (3)0.0527 (8)
O30.33864 (12)0.1419 (4)0.4953 (2)0.0442 (7)
O40.27296 (13)0.4752 (4)0.5634 (2)0.0473 (7)
C10.15474 (16)0.1138 (6)0.2635 (3)0.0290 (8)
C20.17008 (17)0.0235 (6)0.3773 (3)0.0329 (9)
C30.13930 (18)0.1665 (6)0.4067 (3)0.0407 (10)
H30.15010.22980.48090.049*
C40.09347 (19)0.2617 (6)0.3282 (4)0.0431 (10)
H40.07300.38760.34960.052*
C50.07759 (18)0.1697 (7)0.2164 (3)0.0401 (10)
C60.10726 (17)0.0147 (6)0.1835 (3)0.0372 (9)
H60.09620.07480.10850.045*
C70.18586 (17)0.3060 (6)0.2271 (3)0.0307 (8)
H70.17020.36670.15420.037*
C80.25689 (16)0.5992 (6)0.2292 (3)0.0301 (8)
H8A0.22280.70310.20880.036*
H8B0.27410.55870.15730.036*
C90.30743 (16)0.7010 (5)0.3164 (3)0.0304 (8)
H9A0.33370.79680.27510.036*
H9B0.28830.78820.37370.036*
C100.38229 (17)0.3950 (6)0.2964 (3)0.0351 (9)
H10A0.35340.34870.22830.042*
H10B0.39940.26400.33710.042*
C110.43528 (19)0.5240 (7)0.2543 (3)0.0494 (12)
H11A0.45730.43230.20310.059*
H11B0.41810.64920.20840.059*
C120.44707 (19)0.7346 (7)0.4274 (4)0.0459 (11)
H12A0.43070.86340.38370.055*
H12B0.47700.78370.49340.055*
C130.39376 (17)0.6159 (6)0.4741 (3)0.0362 (9)
H13A0.41090.49710.52520.043*
H13B0.37250.71660.52190.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0394 (4)0.0279 (4)0.0198 (3)0.0050 (3)0.0006 (3)0.0003 (3)
Br10.0583 (3)0.0709 (4)0.0544 (3)0.0337 (3)0.0067 (2)0.0207 (2)
N10.0354 (17)0.0205 (16)0.0202 (15)0.0021 (13)0.0015 (13)0.0013 (12)
N20.0338 (17)0.0198 (16)0.0215 (14)0.0002 (13)0.0006 (12)0.0009 (12)
O10.0541 (18)0.0570 (19)0.0305 (15)0.0253 (15)0.0059 (13)0.0126 (14)
O20.0331 (16)0.068 (2)0.0572 (18)0.0001 (15)0.0048 (14)0.0167 (17)
O30.0503 (17)0.0344 (16)0.0459 (16)0.0026 (13)0.0017 (13)0.0139 (13)
O40.0660 (19)0.0461 (18)0.0318 (14)0.0093 (15)0.0135 (13)0.0113 (13)
C10.034 (2)0.025 (2)0.029 (2)0.0045 (16)0.0059 (16)0.0027 (16)
C20.033 (2)0.034 (2)0.033 (2)0.0049 (18)0.0085 (17)0.0014 (17)
C30.045 (2)0.045 (3)0.033 (2)0.011 (2)0.0064 (18)0.0057 (19)
C40.048 (3)0.033 (2)0.051 (3)0.0123 (19)0.018 (2)0.003 (2)
C50.037 (2)0.045 (3)0.039 (2)0.0175 (19)0.0094 (18)0.019 (2)
C60.039 (2)0.041 (3)0.031 (2)0.0065 (19)0.0039 (17)0.0050 (18)
C70.037 (2)0.037 (2)0.0181 (17)0.0017 (18)0.0026 (15)0.0014 (17)
C80.037 (2)0.024 (2)0.0287 (19)0.0028 (16)0.0010 (16)0.0062 (16)
C90.033 (2)0.022 (2)0.035 (2)0.0019 (16)0.0016 (16)0.0003 (17)
C100.045 (2)0.030 (2)0.030 (2)0.0120 (18)0.0030 (17)0.0002 (17)
C110.047 (3)0.065 (3)0.039 (2)0.011 (2)0.017 (2)0.010 (2)
C120.041 (2)0.043 (3)0.051 (3)0.008 (2)0.008 (2)0.007 (2)
C130.041 (2)0.038 (2)0.027 (2)0.0040 (19)0.0072 (17)0.0010 (17)
Geometric parameters (Å, º) top
V1—O41.611 (2)C4—C51.392 (5)
V1—O31.622 (3)C4—H40.9300
V1—O11.907 (3)C5—C61.365 (5)
V1—N12.142 (3)C6—H60.9300
V1—N22.159 (3)C7—H70.9300
Br1—C51.899 (4)C8—C91.504 (5)
N1—C71.275 (4)C8—H8A0.9700
N1—C81.483 (4)C8—H8B0.9700
N2—C91.487 (4)C9—H9A0.9700
N2—C131.497 (4)C9—H9B0.9700
N2—C101.497 (4)C10—C111.505 (5)
O1—C21.314 (4)C10—H10A0.9700
O2—C121.423 (5)C10—H10B0.9700
O2—C111.428 (4)C11—H11A0.9700
C1—C21.406 (5)C11—H11B0.9700
C1—C61.410 (5)C12—C131.502 (5)
C1—C71.433 (5)C12—H12A0.9700
C2—C31.392 (5)C12—H12B0.9700
C3—C41.368 (5)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
O4—V1—O3109.41 (14)N1—C7—C1126.0 (3)
O4—V1—O1102.89 (13)N1—C7—H7117.0
O3—V1—O198.38 (13)C1—C7—H7117.0
O4—V1—N1116.30 (13)N1—C8—C9107.9 (3)
O3—V1—N1132.70 (12)N1—C8—H8A110.1
O1—V1—N183.17 (11)C9—C8—H8A110.1
O4—V1—N294.75 (12)N1—C8—H8B110.1
O3—V1—N289.77 (12)C9—C8—H8B110.1
O1—V1—N2156.74 (10)H8A—C8—H8B108.4
N1—V1—N275.39 (10)N2—C9—C8109.1 (3)
C7—N1—C8116.0 (3)N2—C9—H9A109.9
C7—N1—V1127.9 (2)C8—C9—H9A109.9
C8—N1—V1116.1 (2)N2—C9—H9B109.9
C9—N2—C13111.1 (3)C8—C9—H9B109.9
C9—N2—C10112.7 (3)H9A—C9—H9B108.3
C13—N2—C10107.5 (3)N2—C10—C11112.7 (3)
C9—N2—V1105.7 (2)N2—C10—H10A109.0
C13—N2—V1109.74 (19)C11—C10—H10A109.0
C10—N2—V1110.0 (2)N2—C10—H10B109.0
C2—O1—V1136.7 (2)C11—C10—H10B109.0
C12—O2—C11110.0 (3)H10A—C10—H10B107.8
C2—C1—C6119.5 (3)O2—C11—C10111.1 (3)
C2—C1—C7121.5 (3)O2—C11—H11A109.4
C6—C1—C7119.0 (3)C10—C11—H11A109.4
O1—C2—C3119.3 (3)O2—C11—H11B109.4
O1—C2—C1121.8 (3)C10—C11—H11B109.4
C3—C2—C1118.9 (3)H11A—C11—H11B108.0
C4—C3—C2121.1 (4)O2—C12—C13111.9 (3)
C4—C3—H3119.4O2—C12—H12A109.2
C2—C3—H3119.4C13—C12—H12A109.2
C3—C4—C5119.8 (4)O2—C12—H12B109.2
C3—C4—H4120.1C13—C12—H12B109.2
C5—C4—H4120.1H12A—C12—H12B107.9
C6—C5—C4120.9 (4)N2—C13—C12113.1 (3)
C6—C5—Br1120.1 (3)N2—C13—H13A109.0
C4—C5—Br1119.0 (3)C12—C13—H13A109.0
C5—C6—C1119.7 (4)N2—C13—H13B109.0
C5—C6—H6120.1C12—C13—H13B109.0
C1—C6—H6120.1H13A—C13—H13B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.533.241 (4)133
C11—H11A···O2ii0.972.573.479 (5)156
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[V(C13H16BrN2O2)O2]
Mr395.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)21.372 (3), 6.0892 (15), 11.372 (3)
β (°) 97.248 (2)
V3)1468.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.17 × 0.13 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.595, 0.665
No. of measured, independent and
observed [I > 2σ(I)] reflections
11267, 3204, 2058
Rint0.051
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.096, 1.02
No. of reflections3204
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.62

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
V1—O41.611 (2)V1—N12.142 (3)
V1—O31.622 (3)V1—N22.159 (3)
V1—O11.907 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.533.241 (4)133
C11—H11A···O2ii0.972.573.479 (5)156
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work wassupported financially by the Natural Science Foundation of China (No. 31071856), the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010C32060), the Natural Science Foundation of Zhejiang Province (No. Y407318), and the Technological Innovation Project (Sinfonietta Talent Plan) of college students in Zhejiang Province (Nos. 2010R42525 and 2011R425027).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, S., Huo, L.-H., Deng, Z.-P. & Zhao, H. (2005). Acta Cryst. E61, m978–m980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHartung, J., Ludwig, A., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, m1422–m1423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRomanowski, G., Wera, M. & Sikorski, A. (2009). Acta Cryst. E65, m190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C.-Y. (2011). Acta Cryst. E67, m1085–m1086.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C.-Y. & Ye, J.-Y. (2011). Russ. J. Coord. Chem. 37, 235–241.  Web of Science CrossRef CAS Google Scholar
First citationXie, M.-J., Ping, Y.-S., Zheng, L.-D., Hui, J.-Z. & Peng, C. (2004). Acta Cryst. E60, m1382–m1383.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds