organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N4,N6-Di­methyl-5-nitro-N4,N6-di­phenyl­pyrimidine-4,6-di­amine

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 25 August 2011; accepted 27 August 2011; online 3 September 2011)

In the title compound, C18H17N5O2, the pyrimidine ring makes dihedral angles of 66.09 (12), 71.39 (13) and 56.7 (3)° with two phenyl rings and the nitro group, respectively. The dihedral angle between the two phenyl rings is 44.05 (14)°.

Related literature

For applications of pyrimidine diamines, see: Barillari et al. (2001[Barillari, C., Barlocco, D. & Raveglia, L. (2001). Eur. J. Org. Chem. pp. 4737-4741.]); Che et al. (2008[Che, X., Zheng, L., Dang, Q. & Bai, X. (2008). J. Org. Chem. 73, 1147-1149.]); Itoh et al. (2004[Itoh, T., Sato, K. & Mase, T. (2004). Adv. Synth. Catal. 346, 1859-1867.]); Koppel & Robins (1958[Koppel, H. & Robins, R. (1958). J. Org. Chem. 23, 1457-1460.]); Shi et al. (2011[Shi, F., Zhu, L.-H., Zhang, L. & Li, Y.-F. (2011). Acta Cryst. E67, o2089.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N5O2

  • Mr = 335.37

  • Monoclinic, P 21 /c

  • a = 10.794 (2) Å

  • b = 7.0019 (14) Å

  • c = 23.650 (6) Å

  • β = 109.02 (3)°

  • V = 1689.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.50 × 0.12 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.991

  • 15784 measured reflections

  • 3843 independent reflections

  • 2018 reflections with I > 2σ(I)

  • Rint = 0.108

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.146

  • S = 1.05

  • 3843 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrimidine diamines, important intermediate products (Koppel et al., 1958; Itoh et al., 2004; Che et al., 2008; Shi et al., 2011), exhibit a wide range of biological activities (Barillari et al., 2001). Here, the crystal structure of N4,N6- dimethyl-5-nitro-N4, N6-diphenylpyrimidine-4,6-diamine is determined by X-ray single crystal diffraction.

In the structure of the title compound (Fig. 1), the dihedral angles between pyrimidyl and two phenyl rings and between two phenyl rings are 66.09 (12), 71.39 (13) and 44.05 (14)°, respectively.

Related literature top

For applications of pyrimidine diamines, see: Barillari et al. (2001); Che et al. (2008); Itoh et al. (2004); Koppel & Robins (1958); Shi et al. (2011).

Experimental top

4,6-Dichloro-5-nitro-pyrimidine (192 mg, 1 mmol), N-methylbenzenamine (0.33 mL, 3 mmol) and triethylamine (0.22 mL, 2 mmol) were dissolved in anhydrous THF (10 mL). The reaction mixture was stirred in reflux overnight. The product was concentrated in vacuo, diluted with water, and extracted with EtOAc. The organic phase was washed with 1mol/L HCl, brine, and dried over anhydrous MgSO4. The crude product was purified by flash chromatography (elution with 15% EtOAc in petroleum ether) to give N4,N6-dimethyl-5-nitro-N4, N6-diphenylpyrimidine- 4,6-diamine (yellow solid, 256 mg, 76.4%, 166.4-168.6 °C). 1H NMR (CDCl3, 400 Hz), δ: 8.46 (s, 1H), 7.23-7.19(m, 4H), 7.13-7.11(m, 2H), 7.02-6.99(m, 4H), 3.50 (s, 6H); 13C NMR (CDCl3, 100 Hz), δ: 156.0, 155.7, 144.2, 129.2, 126.6, 125.1, 121.0, 42.0; ES-MS: 336.1 [(M + H+)].

Refinement top

All H atoms were located from difference Fourier maps. H atoms attached to C atoms were treated as riding [C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C)].

Structure description top

Pyrimidine diamines, important intermediate products (Koppel et al., 1958; Itoh et al., 2004; Che et al., 2008; Shi et al., 2011), exhibit a wide range of biological activities (Barillari et al., 2001). Here, the crystal structure of N4,N6- dimethyl-5-nitro-N4, N6-diphenylpyrimidine-4,6-diamine is determined by X-ray single crystal diffraction.

In the structure of the title compound (Fig. 1), the dihedral angles between pyrimidyl and two phenyl rings and between two phenyl rings are 66.09 (12), 71.39 (13) and 44.05 (14)°, respectively.

For applications of pyrimidine diamines, see: Barillari et al. (2001); Che et al. (2008); Itoh et al. (2004); Koppel & Robins (1958); Shi et al. (2011).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoid are shown at the 50% probability level.
N4,N6-Dimethyl-5-nitro-N4,N6- diphenylpyrimidine-4,6-diamine top
Crystal data top
C18H17N5O2F(000) = 704
Mr = 335.37Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 500 reflections
a = 10.794 (2) Åθ = 3.1–27.5°
b = 7.0019 (14) ŵ = 0.09 mm1
c = 23.650 (6) ÅT = 293 K
β = 109.02 (3)°Block, colorless
V = 1689.8 (6) Å30.50 × 0.12 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3843 independent reflections
Radiation source: fine-focus sealed tube2018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1413
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.956, Tmax = 0.991l = 3030
15784 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.0764P]
where P = (Fo2 + 2Fc2)/3
3843 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H17N5O2V = 1689.8 (6) Å3
Mr = 335.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.794 (2) ŵ = 0.09 mm1
b = 7.0019 (14) ÅT = 293 K
c = 23.650 (6) Å0.50 × 0.12 × 0.10 mm
β = 109.02 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3843 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2018 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.991Rint = 0.108
15784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
3843 reflectionsΔρmin = 0.20 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84317 (18)0.0703 (3)0.35192 (9)0.0577 (6)
O20.85674 (17)0.2808 (3)0.42079 (8)0.0586 (6)
N10.5774 (2)0.2175 (3)0.41820 (9)0.0435 (6)
N20.45045 (19)0.3519 (3)0.32882 (10)0.0434 (6)
N30.52690 (19)0.3954 (3)0.24557 (9)0.0412 (5)
N40.7997 (2)0.2043 (3)0.37282 (10)0.0424 (6)
N50.74616 (19)0.3627 (3)0.25459 (9)0.0393 (5)
C10.7275 (3)0.2635 (4)0.44234 (13)0.0553 (8)
H10.72160.37820.42180.066*
C20.8135 (3)0.2471 (5)0.49962 (14)0.0639 (9)
H20.86630.34980.51760.077*
C30.8210 (3)0.0796 (5)0.53010 (13)0.0678 (10)
H30.87840.06920.56900.081*
C40.6587 (2)0.0578 (4)0.44551 (10)0.0387 (6)
C50.6500 (3)0.1108 (4)0.41512 (11)0.0446 (7)
H50.59210.12240.37630.054*
C60.7441 (3)0.0745 (4)0.50349 (12)0.0562 (8)
H60.74960.18850.52430.067*
C70.4741 (3)0.2699 (5)0.44293 (13)0.0705 (10)
H7A0.45310.40280.43540.085*
H7B0.50410.24700.48530.085*
H7C0.39750.19430.42430.085*
C80.6703 (2)0.2779 (3)0.33805 (10)0.0338 (6)
C90.5681 (2)0.2799 (3)0.36205 (11)0.0362 (6)
C100.6494 (2)0.3447 (3)0.27970 (11)0.0359 (6)
C110.4380 (2)0.3965 (4)0.27283 (13)0.0456 (7)
H110.35450.43410.24930.055*
C120.8912 (3)0.5770 (4)0.32865 (12)0.0461 (7)
H120.81810.64420.33030.055*
C130.9840 (3)0.3278 (4)0.28633 (12)0.0474 (7)
H130.97420.22560.26010.057*
C141.0143 (3)0.6310 (4)0.36414 (13)0.0573 (8)
H141.02460.73320.39040.069*
C151.1078 (3)0.3861 (4)0.32153 (13)0.0573 (8)
H151.18150.32410.31840.069*
C161.1223 (3)0.5339 (5)0.36078 (13)0.0604 (9)
H161.20560.56900.38530.072*
C170.8759 (2)0.4228 (3)0.29054 (10)0.0365 (6)
C180.7094 (3)0.3940 (4)0.19040 (10)0.0503 (7)
H18A0.65090.29450.16970.060*
H18B0.78650.39270.17860.060*
H18C0.66640.51540.18050.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0466 (12)0.0511 (12)0.0785 (14)0.0176 (10)0.0247 (11)0.0139 (11)
O20.0418 (11)0.0717 (14)0.0505 (11)0.0089 (10)0.0010 (9)0.0050 (11)
N10.0423 (12)0.0468 (13)0.0451 (12)0.0077 (11)0.0194 (10)0.0064 (11)
N20.0315 (12)0.0430 (13)0.0557 (14)0.0047 (10)0.0143 (10)0.0090 (11)
N30.0313 (12)0.0410 (12)0.0469 (12)0.0030 (10)0.0066 (10)0.0064 (10)
N40.0323 (12)0.0434 (14)0.0507 (14)0.0013 (11)0.0126 (11)0.0124 (12)
N50.0314 (11)0.0470 (13)0.0389 (12)0.0007 (10)0.0108 (10)0.0015 (10)
C10.065 (2)0.0434 (16)0.0620 (18)0.0039 (15)0.0270 (16)0.0043 (15)
C20.059 (2)0.064 (2)0.066 (2)0.0128 (17)0.0162 (16)0.0262 (18)
C30.058 (2)0.084 (2)0.0471 (17)0.0004 (19)0.0025 (15)0.0157 (18)
C40.0346 (14)0.0434 (15)0.0364 (13)0.0024 (12)0.0091 (11)0.0021 (12)
C50.0439 (15)0.0456 (17)0.0420 (14)0.0041 (13)0.0107 (12)0.0034 (13)
C60.0603 (19)0.0576 (19)0.0424 (15)0.0027 (15)0.0054 (14)0.0024 (14)
C70.069 (2)0.092 (2)0.0630 (19)0.0289 (19)0.0377 (17)0.0118 (18)
C80.0234 (12)0.0313 (13)0.0417 (14)0.0007 (10)0.0037 (11)0.0031 (11)
C90.0312 (13)0.0316 (13)0.0450 (14)0.0009 (11)0.0112 (12)0.0002 (12)
C100.0302 (13)0.0311 (13)0.0424 (14)0.0017 (11)0.0063 (12)0.0019 (11)
C110.0287 (14)0.0426 (16)0.0610 (18)0.0040 (12)0.0087 (13)0.0123 (14)
C120.0433 (16)0.0426 (15)0.0566 (16)0.0036 (13)0.0219 (13)0.0039 (14)
C130.0416 (15)0.0460 (16)0.0568 (16)0.0059 (13)0.0188 (13)0.0010 (13)
C140.059 (2)0.0513 (17)0.0600 (18)0.0148 (16)0.0176 (15)0.0084 (15)
C150.0347 (15)0.064 (2)0.073 (2)0.0080 (15)0.0174 (15)0.0161 (17)
C160.0452 (18)0.068 (2)0.0580 (18)0.0170 (17)0.0033 (15)0.0101 (17)
C170.0321 (13)0.0390 (14)0.0393 (13)0.0003 (12)0.0129 (11)0.0038 (12)
C180.0465 (16)0.0653 (19)0.0403 (15)0.0101 (15)0.0157 (13)0.0026 (14)
Geometric parameters (Å, º) top
O1—N41.223 (3)C5—H50.9300
O2—N41.224 (3)C6—H60.9300
N1—C91.370 (3)C7—H7A0.9600
N1—C41.438 (3)C7—H7B0.9600
N1—C71.464 (3)C7—H7C0.9600
N2—C111.324 (3)C8—C91.395 (3)
N2—C91.355 (3)C8—C101.404 (3)
N3—C111.319 (3)C11—H110.9300
N3—C101.353 (3)C12—C141.374 (4)
N4—C81.464 (3)C12—C171.382 (3)
N5—C101.366 (3)C12—H120.9300
N5—C171.444 (3)C13—C171.375 (4)
N5—C181.455 (3)C13—C151.385 (4)
C1—C21.375 (4)C13—H130.9300
C1—C51.381 (4)C14—C161.374 (4)
C1—H10.9300C14—H140.9300
C2—C31.365 (4)C15—C161.365 (4)
C2—H20.9300C15—H150.9300
C3—C61.382 (4)C16—H160.9300
C3—H30.9300C18—H18A0.9600
C4—C51.369 (3)C18—H18B0.9600
C4—C61.386 (3)C18—H18C0.9600
C9—N1—C4121.6 (2)C9—C8—N4120.7 (2)
C9—N1—C7118.9 (2)C10—C8—N4119.2 (2)
C4—N1—C7116.6 (2)N2—C9—N1116.1 (2)
C11—N2—C9116.0 (2)N2—C9—C8118.9 (2)
C11—N3—C10115.8 (2)N1—C9—C8125.0 (2)
O1—N4—O2124.5 (2)N3—C10—N5117.0 (2)
O1—N4—C8117.7 (2)N3—C10—C8119.1 (2)
O2—N4—C8117.8 (2)N5—C10—C8123.9 (2)
C10—N5—C17120.2 (2)N3—C11—N2129.4 (2)
C10—N5—C18118.7 (2)N3—C11—H11115.3
C17—N5—C18116.9 (2)N2—C11—H11115.3
C2—C1—C5120.4 (3)C14—C12—C17120.0 (3)
C2—C1—H1119.8C14—C12—H12120.0
C5—C1—H1119.8C17—C12—H12120.0
C3—C2—C1119.8 (3)C17—C13—C15119.3 (3)
C3—C2—H2120.1C17—C13—H13120.4
C1—C2—H2120.1C15—C13—H13120.4
C2—C3—C6120.5 (3)C16—C14—C12119.9 (3)
C2—C3—H3119.8C16—C14—H14120.0
C6—C3—H3119.8C12—C14—H14120.0
C5—C4—C6120.1 (2)C16—C15—C13120.5 (3)
C5—C4—N1120.5 (2)C16—C15—H15119.8
C6—C4—N1119.4 (2)C13—C15—H15119.8
C4—C5—C1119.7 (2)C15—C16—C14120.2 (3)
C4—C5—H5120.1C15—C16—H16119.9
C1—C5—H5120.1C14—C16—H16119.9
C3—C6—C4119.5 (3)C13—C17—C12120.1 (2)
C3—C6—H6120.3C13—C17—N5120.0 (2)
C4—C6—H6120.3C12—C17—N5119.9 (2)
N1—C7—H7A109.5N5—C18—H18A109.5
N1—C7—H7B109.5N5—C18—H18B109.5
H7A—C7—H7B109.5H18A—C18—H18B109.5
N1—C7—H7C109.5N5—C18—H18C109.5
H7A—C7—H7C109.5H18A—C18—H18C109.5
H7B—C7—H7C109.5H18B—C18—H18C109.5
C9—C8—C10120.1 (2)

Experimental details

Crystal data
Chemical formulaC18H17N5O2
Mr335.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.794 (2), 7.0019 (14), 23.650 (6)
β (°) 109.02 (3)
V3)1689.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.12 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.956, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
15784, 3843, 2018
Rint0.108
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.146, 1.05
No. of reflections3843
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (20071108) and the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBarillari, C., Barlocco, D. & Raveglia, L. (2001). Eur. J. Org. Chem. pp. 4737–4741.  CrossRef Google Scholar
First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChe, X., Zheng, L., Dang, Q. & Bai, X. (2008). J. Org. Chem. 73, 1147–1149.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationItoh, T., Sato, K. & Mase, T. (2004). Adv. Synth. Catal. 346, 1859–1867.  Web of Science CrossRef CAS Google Scholar
First citationKoppel, H. & Robins, R. (1958). J. Org. Chem. 23, 1457–1460.  CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F., Zhu, L.-H., Zhang, L. & Li, Y.-F. (2011). Acta Cryst. E67, o2089.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds