organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{[(Benz­yl­oxy)carbon­yl]amino}­butanoic acid

aDepartment of Biological Science and Technology, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan, and bSchool of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka, Kanagawa 259-1292, Japan
*Correspondence e-mail: fujii@wing.ncc.u-tokai.ac.jp

(Received 27 August 2011; accepted 29 August 2011; online 3 September 2011)

In the title compound, C12H15NO4, the butyric acid group has a stretched trans conformation. The dihedral angle between the phenyl ring and the oxycarb­oxy­amino N—(C=O)—O—C plane is 56.6 (2)°. In the crystal, an inversion dimer is formed by a pair of O—H⋯O hydrogen bonds. The dimers are further linked by N—H⋯O hydrogen bonds between amide groups, forming a tape along the b axis.

Related literature

For general background to 3-amino­butanoic acid, see: Cohen et al. (2011[Cohen, Y., Rubin, A. E. & Vaknin, M. (2011). Eur. J. Plant Pathol. 130, 13-27.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For structures of related metallo-organic compounds, see: Bryan et al. (1961[Bryan, R. F., Poltak, R. J. & Tomita, K.-I. (1961). Acta Cryst. 14, 1125-1130.]); Böhm & Seebach (2000[Böhm, A. & Seebach, D. (2000). Helv. Chim. Acta, 83, 3262-3278.]); Gross & Vahrenkamo (2005[Gross, F. & Vahrenkamo, H. (2005). Inorg. Chem. 44, 4433-4440.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO4

  • Mr = 237.25

  • Monoclinic, P 21 /c

  • a = 23.1413 (7) Å

  • b = 4.9589 (4) Å

  • c = 11.0879 (6) Å

  • β = 103.075 (6)°

  • V = 1239.41 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.8 mm−1

  • T = 297 K

  • 0.4 × 0.2 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.74, Tmax = 0.856

  • 2696 measured reflections

  • 2547 independent reflections

  • 1669 reflections with > 2σ(i)

  • Rint = 0.023

  • 3 standard reflections every 300 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.131

  • S = 1.02

  • 2547 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 1.18 (3) 1.48 (3) 2.650 (2) 177 (2)
N1—HN1⋯O3ii 0.85 (2) 2.04 (2) 2.865 (2) 165 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Solid-phase synthesis is now the accepted method for peptide synthesis, in which the protected natural or non-natural amino acids are widely used. 3-Aminobutanoic acid (BABA) is one of the non-protein amino acids, and it attracts attentions to building block. At the same time, BABA potentially possesses various bioactivities. Downy mildew of lettuce (Bremia lactucae) is a serious disease, but BABA is considered with one of the disease resistance inducers (Cohen et al., 2011). Despite the agrichemical or pharmaceutical desires, crystal structures of BABA derivatives have not been cleared except for the structures of some metallo-organic compounds (Bryan et al., 1961; Gross & Vahrenkamo, 2005; Böhm & Seebach, 2000) because of its difficulty in crystallization.

Fortunately, the title compound, 3-benzyloxycarbonylaminobutanoic acid (Cbz-BABA), (I), was crystallized, and we herein report on the crystal structure. The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges except for the O-H bond length at the carboxy dimer. The part of BABA is essentially similar with that reported by Gross & Vahrenkamo (2005). The butyric acid group owns a stretched trans-conformation (O1-C1-C2-C3-C4). At the β-position the benzyloxycarboxyamino group is attached perpendicular to the butyric acid group. The phenyl group is twisted against the least-squares plane of the oxycarboxyamino group (N1/C5/O3/O4/C6/C7) with the dihedral angle of 56.6 (2)°.

In the crystal structure, an enantiomer makes a planar structure with the intermolecular hydrogen bond (N1—HN1···O3) along the b axis. The planar structure is stacked to the enantiopure layer along the c axis. The carboxy dimer is made from the enantiomeric isomers with the intermolecular hydrogen bond (O1—H1···O2). The H atom is shared by carboxy dimer then the bond distance O1—H1 is longer than that of general carboxy group. The hydrophobic and hydrophilic layers are well separated along the a axis. The structure shows a herring bone stacking mode (Fig. 2).

Related literature top

For general background to 3-aminobutanoic acid, see: Cohen et al. (2011). For bond-length data, see: Allen et al. (1987). For structures of related metallo-organic compounds, see: Bryan et al. (1961); Böhm & Seebach (2000); Gross & Vahrenkamo (2005).

Experimental top

The title compound was purchased from Aldrich-Sigma Co. Ltd. Rod-like colourless crystals suitable for X-ray diffraction were obtained by vapour-phase diffusion of an ethanol and chloroform mixture solution at 297 K.

Refinement top

All H atoms were located in a difference-Fourier map. H atoms bonded to N and O atoms were then refined isotropically. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

Solid-phase synthesis is now the accepted method for peptide synthesis, in which the protected natural or non-natural amino acids are widely used. 3-Aminobutanoic acid (BABA) is one of the non-protein amino acids, and it attracts attentions to building block. At the same time, BABA potentially possesses various bioactivities. Downy mildew of lettuce (Bremia lactucae) is a serious disease, but BABA is considered with one of the disease resistance inducers (Cohen et al., 2011). Despite the agrichemical or pharmaceutical desires, crystal structures of BABA derivatives have not been cleared except for the structures of some metallo-organic compounds (Bryan et al., 1961; Gross & Vahrenkamo, 2005; Böhm & Seebach, 2000) because of its difficulty in crystallization.

Fortunately, the title compound, 3-benzyloxycarbonylaminobutanoic acid (Cbz-BABA), (I), was crystallized, and we herein report on the crystal structure. The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges except for the O-H bond length at the carboxy dimer. The part of BABA is essentially similar with that reported by Gross & Vahrenkamo (2005). The butyric acid group owns a stretched trans-conformation (O1-C1-C2-C3-C4). At the β-position the benzyloxycarboxyamino group is attached perpendicular to the butyric acid group. The phenyl group is twisted against the least-squares plane of the oxycarboxyamino group (N1/C5/O3/O4/C6/C7) with the dihedral angle of 56.6 (2)°.

In the crystal structure, an enantiomer makes a planar structure with the intermolecular hydrogen bond (N1—HN1···O3) along the b axis. The planar structure is stacked to the enantiopure layer along the c axis. The carboxy dimer is made from the enantiomeric isomers with the intermolecular hydrogen bond (O1—H1···O2). The H atom is shared by carboxy dimer then the bond distance O1—H1 is longer than that of general carboxy group. The hydrophobic and hydrophilic layers are well separated along the a axis. The structure shows a herring bone stacking mode (Fig. 2).

For general background to 3-aminobutanoic acid, see: Cohen et al. (2011). For bond-length data, see: Allen et al. (1987). For structures of related metallo-organic compounds, see: Bryan et al. (1961); Böhm & Seebach (2000); Gross & Vahrenkamo (2005).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing view of the title compound. Dashed lines indicate O—H···O and N—H···O interactions [symmetry codes: (i) - x, 1 - y, 1 - z; (ii) x, y - 1, z].
3-{[(Benzyloxy)carbonyl]amino}butanoic acid top
Crystal data top
C12H15NO4F(000) = 504
Mr = 237.25Dx = 1.271 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 23.1413 (7) Åθ = 30.0–35.0°
b = 4.9589 (4) ŵ = 0.8 mm1
c = 11.0879 (6) ÅT = 297 K
β = 103.075 (6)°Rod, colourless
V = 1239.41 (13) Å30.4 × 0.2 × 0.2 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
Radiation source: sealed X-ray tubeθmax = 74.9°, θmin = 2.0°
ω/2θ scansh = 2828
Absorption correction: ψ scan
(North et al., 1968)
k = 60
Tmin = 0.74, Tmax = 0.856l = 130
2696 measured reflections3 standard reflections every 300 reflections
2547 independent reflections intensity decay: none
1669 reflections with > 2σ(i)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3091P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2547 reflectionsΔρmax = 0.14 e Å3
164 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (4)
Crystal data top
C12H15NO4V = 1239.41 (13) Å3
Mr = 237.25Z = 4
Monoclinic, P21/cCu Kα radiation
a = 23.1413 (7) ŵ = 0.8 mm1
b = 4.9589 (4) ÅT = 297 K
c = 11.0879 (6) Å0.4 × 0.2 × 0.2 mm
β = 103.075 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1669 reflections with > 2σ(i)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.74, Tmax = 0.8563 standard reflections every 300 reflections
2696 measured reflections intensity decay: none
2547 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.14 e Å3
2547 reflectionsΔρmin = 0.14 e Å3
164 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00381 (6)0.2239 (3)0.60261 (14)0.0693 (5)
O20.05705 (6)0.5990 (3)0.61469 (14)0.0671 (5)
O30.20820 (7)0.8467 (3)0.78378 (18)0.0841 (7)
O40.25967 (6)0.5196 (3)0.71327 (15)0.0686 (5)
N10.18104 (7)0.4105 (3)0.78288 (15)0.0513 (5)
C10.04634 (8)0.3818 (4)0.65874 (18)0.0501 (6)
C20.07918 (8)0.2819 (4)0.78120 (17)0.0536 (6)
C30.13228 (8)0.4484 (4)0.84471 (16)0.0511 (6)
C40.15096 (11)0.3763 (6)0.9808 (2)0.0862 (9)
C50.21503 (8)0.6116 (4)0.76220 (18)0.0536 (6)
C60.29917 (11)0.7210 (6)0.6843 (3)0.1074 (13)
C70.34503 (10)0.5785 (5)0.6328 (3)0.0770 (9)
C80.40323 (12)0.6072 (8)0.6870 (3)0.1103 (13)
C90.44560 (14)0.4824 (10)0.6379 (4)0.142 (2)
C100.4307 (2)0.3267 (10)0.5382 (5)0.150 (2)
C110.3731 (2)0.2940 (10)0.4833 (4)0.1460 (19)
C120.32992 (13)0.4217 (8)0.5303 (3)0.1111 (13)
H10.0229 (13)0.297 (7)0.505 (3)0.135 (11)*
HN10.1926 (9)0.252 (5)0.7727 (19)0.066 (6)*
H2A0.092600.099900.770800.0640*
H2B0.051800.272100.835600.0640*
H30.120800.639100.838100.0610*
H4A0.161000.188300.989100.1290*
H4B0.118900.412701.020200.1290*
H4C0.184900.482301.019300.1290*
H6A0.317800.820000.758400.1290*
H6B0.277400.847500.624100.1290*
H80.414600.712100.758000.1320*
H90.485500.507200.675100.1710*
H100.459800.241100.506700.1790*
H110.362300.185200.413500.1750*
H120.290200.399900.491400.1330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0694 (9)0.0549 (8)0.0760 (10)0.0139 (7)0.0005 (7)0.0066 (7)
O20.0658 (9)0.0513 (8)0.0775 (10)0.0062 (7)0.0023 (7)0.0186 (7)
O30.0803 (11)0.0347 (7)0.1441 (16)0.0014 (7)0.0394 (10)0.0024 (8)
O40.0618 (8)0.0487 (8)0.1039 (11)0.0028 (6)0.0369 (8)0.0035 (8)
N10.0533 (9)0.0339 (8)0.0699 (10)0.0031 (7)0.0207 (7)0.0012 (7)
C10.0456 (9)0.0415 (9)0.0642 (11)0.0040 (8)0.0145 (8)0.0028 (9)
C20.0532 (10)0.0466 (10)0.0626 (12)0.0030 (8)0.0162 (9)0.0091 (9)
C30.0533 (10)0.0466 (10)0.0551 (11)0.0056 (8)0.0161 (8)0.0010 (8)
C40.0801 (15)0.119 (2)0.0582 (13)0.0027 (16)0.0129 (11)0.0025 (14)
C50.0518 (10)0.0385 (10)0.0696 (12)0.0031 (8)0.0119 (9)0.0036 (9)
C60.0802 (16)0.0665 (16)0.194 (3)0.0051 (13)0.0697 (19)0.0239 (19)
C70.0555 (12)0.0749 (16)0.1052 (19)0.0028 (11)0.0281 (12)0.0230 (15)
C80.0677 (16)0.140 (3)0.124 (2)0.0100 (18)0.0234 (16)0.005 (2)
C90.0618 (17)0.180 (4)0.190 (4)0.009 (2)0.038 (2)0.004 (3)
C100.123 (3)0.147 (4)0.212 (5)0.000 (3)0.108 (3)0.013 (3)
C110.148 (3)0.170 (4)0.142 (3)0.040 (3)0.079 (3)0.037 (3)
C120.0780 (18)0.142 (3)0.113 (2)0.017 (2)0.0209 (17)0.007 (2)
Geometric parameters (Å, º) top
O1—C11.301 (2)C9—C101.328 (7)
O2—C11.231 (2)C10—C111.344 (7)
O3—C51.208 (2)C11—C121.381 (6)
O4—C51.350 (2)C2—H2A0.9700
O4—C61.438 (3)C2—H2B0.9700
O1—H11.18 (3)C3—H30.9800
N1—C31.459 (2)C4—H4A0.9600
N1—C51.322 (3)C4—H4B0.9600
N1—HN10.85 (2)C4—H4C0.9600
C1—C21.483 (3)C6—H6A0.9700
C2—C31.515 (3)C6—H6B0.9700
C3—C41.515 (3)C8—H80.9300
C6—C71.492 (4)C9—H90.9300
C7—C121.356 (5)C10—H100.9300
C7—C81.353 (4)C11—H110.9300
C8—C91.372 (5)C12—H120.9300
O1···C2i3.357 (2)H1···O1iii2.74 (3)
O1···O1ii3.156 (2)H1···O2iii1.48 (3)
O1···O2iii2.650 (2)H1···C1iii2.38 (3)
O2···O1iii2.650 (2)H1···H1iii2.29 (5)
O2···N13.188 (2)HN1···O3vii2.04 (2)
O2···C1iii3.412 (2)HN1···H2A2.4300
O3···N1iv2.865 (2)H2A···HN12.4300
O1···H2Bi2.7500H2A···H3vii2.4500
O1···H1iii2.74 (3)H2B···H4B2.3800
O2···H2Bv2.8300H2B···O1v2.7500
O2···H32.5900H2B···O2i2.8300
O2···H1iii1.48 (3)H2B···C1i3.0000
O3···HN1iv2.04 (2)H3···O22.5900
O3···H32.4600H3···O32.4600
O3···H6A2.6200H3···H2Aiv2.4500
O3···H6B2.6400H4B···H2B2.3800
O3···H12vi2.9200H4B···C1ix2.9100
O4···H122.7700H4C···H6Bvi2.3500
N1···O23.188 (2)H6A···O32.6200
N1···O3vii2.865 (2)H6A···H82.3000
C1···O2iii3.412 (2)H6B···O32.6400
C2···O1v3.357 (2)H6B···H4Cx2.3500
C1···H2Bv3.0000H8···H6A2.3000
C1···H1iii2.38 (3)H12···O42.7700
C1···H4Bviii2.9100H12···O3x2.9200
C5—O4—C6115.96 (18)C3—C2—H2B108.00
C1—O1—H1116.0 (16)H2A—C2—H2B107.00
C3—N1—C5122.56 (16)N1—C3—H3108.00
C5—N1—HN1117.3 (15)C2—C3—H3108.00
C3—N1—HN1118.9 (15)C4—C3—H3108.00
O1—C1—O2122.37 (18)C3—C4—H4A109.00
O1—C1—C2114.36 (17)C3—C4—H4B109.00
O2—C1—C2123.24 (18)C3—C4—H4C109.00
C1—C2—C3115.92 (16)H4A—C4—H4B110.00
C2—C3—C4110.66 (17)H4A—C4—H4C109.00
N1—C3—C2110.09 (15)H4B—C4—H4C109.00
N1—C3—C4111.15 (17)O4—C6—H6A110.00
O3—C5—N1125.75 (19)O4—C6—H6B110.00
O3—C5—O4123.51 (18)C7—C6—H6A110.00
O4—C5—N1110.74 (17)C7—C6—H6B110.00
O4—C6—C7107.4 (2)H6A—C6—H6B109.00
C6—C7—C8120.2 (3)C7—C8—H8120.00
C6—C7—C12121.4 (3)C9—C8—H8120.00
C8—C7—C12118.4 (3)C8—C9—H9119.00
C7—C8—C9120.4 (3)C10—C9—H9119.00
C8—C9—C10121.2 (4)C9—C10—H10120.00
C9—C10—C11119.4 (4)C11—C10—H10120.00
C10—C11—C12120.1 (4)C10—C11—H11120.00
C7—C12—C11120.5 (3)C12—C11—H11120.00
C1—C2—H2A108.00C7—C12—H12120.00
C1—C2—H2B108.00C11—C12—H12120.00
C3—C2—H2A108.00
C6—O4—C5—O31.5 (3)O4—C6—C7—C8122.5 (3)
C6—O4—C5—N1178.82 (19)O4—C6—C7—C1258.6 (4)
C5—O4—C6—C7179.6 (2)C6—C7—C8—C9178.2 (3)
C5—N1—C3—C2139.00 (18)C12—C7—C8—C90.7 (5)
C5—N1—C3—C498.0 (2)C6—C7—C12—C11179.3 (3)
C3—N1—C5—O34.8 (3)C8—C7—C12—C110.3 (5)
C3—N1—C5—O4174.88 (16)C7—C8—C9—C101.4 (7)
O1—C1—C2—C3175.10 (16)C8—C9—C10—C111.0 (8)
O2—C1—C2—C36.8 (3)C9—C10—C11—C120.1 (7)
C1—C2—C3—N173.0 (2)C10—C11—C12—C70.8 (7)
C1—C2—C3—C4163.72 (18)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x, y+1/2, z+3/2; (vi) x, y+3/2, z+1/2; (vii) x, y1, z; (viii) x, y+1/2, z1/2; (ix) x, y+1/2, z+1/2; (x) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2iii1.18 (3)1.48 (3)2.650 (2)177 (2)
N1—HN1···O3vii0.85 (2)2.04 (2)2.865 (2)165 (2)
C3—H3···O30.982.462.825 (3)101
Symmetry codes: (iii) x, y+1, z+1; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H15NO4
Mr237.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)23.1413 (7), 4.9589 (4), 11.0879 (6)
β (°) 103.075 (6)
V3)1239.41 (13)
Z4
Radiation typeCu Kα
µ (mm1)0.8
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.74, 0.856
No. of measured, independent and
observed [ > 2σ(i)] reflections
2696, 2547, 1669
Rint0.023
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.02
No. of reflections2547
No. of parameters164
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i1.18 (3)1.48 (3)2.650 (2)177 (2)
N1—HN1···O3ii0.85 (2)2.04 (2)2.865 (2)165 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors would like to thank T. Watadani of Daito Chem and Dr Y. Takahasi for their experimental support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBöhm, A. & Seebach, D. (2000). Helv. Chim. Acta, 83, 3262–3278.  Google Scholar
First citationBryan, R. F., Poltak, R. J. & Tomita, K.-I. (1961). Acta Cryst. 14, 1125–1130.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCohen, Y., Rubin, A. E. & Vaknin, M. (2011). Eur. J. Plant Pathol. 130, 13–27.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGross, F. & Vahrenkamo, H. (2005). Inorg. Chem. 44, 4433–4440.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds