organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Hy­dr­oxy­phen­yl)-3,4-di­hydro­iso­quinolin-1(2H)-one

aCollege of Science, Northwest Agriculture and Forest University, Yangling 712100, People's Republic of China
*Correspondence e-mail: zhoulechem@yahoo.com.cn

(Received 31 August 2011; accepted 13 September 2011; online 30 September 2011)

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H13NO2, in both the six-membered dihydro­pyridine rings adopt a half-chair conformation. The two benzene rings make dihedral angles of 43.66 (10) and 62.22 (10)° in the two mol­ecules. In the crystal, the two independent mol­ecules are linked alternately by inter­molecular O—H⋯O hydrogen bonds, forming a zigzag chain along the c axis. Furthermore, inter­molecular C—H⋯π inter­actions link the chains into a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Shaw & Zhang (2008[Shaw, K. R. & Zhang, M. B. (2008). US Patent WO2008016596.]). For the bioactivity of tetra­hydro­isoquinoline derivatives, see: Kamal et al. (2011[Kamal, A. M., Radwan, S. M. & Zaki, R. M. (2011). Eur. J. Med. Chem. 46, 567-578.]); Liu et al. (2009[Liu, X. H., Zhu, J., Zhou, A. N., Song, B. A., Zhu, H. L., Bai, L. S., Bhadury, P. S. & Pan, C. X. (2009). Bioorg. Med. Chem. 17, 1207-1213.]); Vrba et al. (2009[Vrba, J., Dolězel, P., Vičar, J. & Ulríchová, J. (2009). Toxicol. In Vitro, 23, 580-588.]); Abe et al. (2005[Abe, K., Saitoh, T., Horiguchi, Y., Utsunomiya, I. & Taguchi, K. (2005). Biol. Pharm. Bull. 28, 1355-1362.]); Adhami et al. (2004[Adhami, V. M., Aziz, M. H., Reagen-Shaw, S. R., Nihal, M., Mukhtar, H. & Ahmad, N. (2004). Mol. Cancer Ther. 3, 933-940.]); Storch et al. (2002[Storch, A., Ott, S., Hwang, Y. I., Ortmann, R., Hein, A., Frenzel, S., Matsubara, K., Ohta, S., Wolf, H. U. & Schwarz, J. (2002). Biochem. Pharmacol. 63, 909-920.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO2

  • Mr = 239.26

  • Monoclinic, C 2/c

  • a = 21.350 (3) Å

  • b = 11.0670 (14) Å

  • c = 21.064 (3) Å

  • β = 100.227 (2)°

  • V = 4897.9 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.50 × 0.35 × 0.34 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.971

  • 17755 measured reflections

  • 4559 independent reflections

  • 2998 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.01

  • 4559 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.84 2.6388 (18) 166
O4—H4A⋯O1 0.82 1.85 2.6668 (17) 175
C7—H7BCg2ii 0.97 2.92 3.770 (2) 147
C19—H19⋯Cg2iii 0.93 2.78 3.518 (3) 137
C23—H23ACg3iv 0.97 2.87 3.771 (2) 155
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z+2]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tetrahydroisoquinoline derivatives have recently attracted a great deal of attention because of their outstanding bioactivity, such as neurotoxicity (Abe et al., 2005; Storch et al., 2002), antitumor activity (Vrba et al., 2009; Adhami et al., 2004), antimicrobial activity (Kamal et al., 2011; Liu et al., 2009), and so on. With the interests in the synthesis of tetrahydroisoquinoline derivatives with bioactivity, we herein report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound include two independent molecules (Fig. 1), each is built up from one 3,4-dihydroisoquinolin-1(2H)-one fragment connected to one 2-hydroxybenzene ring through the C—N bond. Benzene rings C1—C6 and C10—C15 are inclined with respect to one another with a dihedral angle of 43.66 (10) °, and benzene C16—C21 and C25—C30 with a dihedral angle of 62.22 (10) °. The conformation of the six-membered heterocycle of 3,4-dihydroisoquinolin-1(2H)-one fragment is analyzed with respect to the plane formed by C1/C6/C7/C9 and the corresponding deviations of the atoms C8 and N1 are 0.852 and 0.339 Å, respectively. Meanwhile, the corresponding deviations of the atoms C23 and N2 from the plane formed by C16/C21/C22/C24 are 0.761 and 0.289 Å, respectively.

In the crystal structure, the molecules are linked by intermolecular O—H···O hydrogen bonds (Table 1) into a chain along the c axis. These chains are further connected by C—H···π interactions (C7—H7B···Cg2 and C23—H23A···Cg3; Table 1) into a sheet, where Cg2 is the centroid of the benzene C1—C6 ring and Cg3 is of the benzene C10—C15 ring. Furthermore, C19—H19···Cg2 interaction connects the sheets into three-dimension framework (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Shaw & Zhang (2008). For the bioactivity of tetrahydroisoquinoline derivatives, see: Kamal et al. (2011); Liu et al. (2009); Vrba et al. (2009); Abe et al. (2005); Adhami et al. (2004); Storch et al. (2002).

Experimental top

The title compound was synthesized according to the literature procedure (Shaw & Zhang, 2008). An NaOH solution (0.1 mol/L, 10 ml) was added to the solution of 2-(2-hydroxyphenyl)-3,4-dihydroisoquinolinum bromide (304 mg, 1 mmol) in ethanol (10 ml) dropwise under stirring. After 24 h, the mixture was extracted by chloroform (30 ml), dried over anhydrous Na2SO4 and evaporated under reduced pressure. Further purification by silicagel column chromatography (petroleum ether / ethyl acetate = 5:1) and recrystallization gave 85 mg the title compound (yield 36%; m.p. 433–434 K).

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 (aromatic CH), or 0.97 Å (methylene CH2), and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Structure description top

The tetrahydroisoquinoline derivatives have recently attracted a great deal of attention because of their outstanding bioactivity, such as neurotoxicity (Abe et al., 2005; Storch et al., 2002), antitumor activity (Vrba et al., 2009; Adhami et al., 2004), antimicrobial activity (Kamal et al., 2011; Liu et al., 2009), and so on. With the interests in the synthesis of tetrahydroisoquinoline derivatives with bioactivity, we herein report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound include two independent molecules (Fig. 1), each is built up from one 3,4-dihydroisoquinolin-1(2H)-one fragment connected to one 2-hydroxybenzene ring through the C—N bond. Benzene rings C1—C6 and C10—C15 are inclined with respect to one another with a dihedral angle of 43.66 (10) °, and benzene C16—C21 and C25—C30 with a dihedral angle of 62.22 (10) °. The conformation of the six-membered heterocycle of 3,4-dihydroisoquinolin-1(2H)-one fragment is analyzed with respect to the plane formed by C1/C6/C7/C9 and the corresponding deviations of the atoms C8 and N1 are 0.852 and 0.339 Å, respectively. Meanwhile, the corresponding deviations of the atoms C23 and N2 from the plane formed by C16/C21/C22/C24 are 0.761 and 0.289 Å, respectively.

In the crystal structure, the molecules are linked by intermolecular O—H···O hydrogen bonds (Table 1) into a chain along the c axis. These chains are further connected by C—H···π interactions (C7—H7B···Cg2 and C23—H23A···Cg3; Table 1) into a sheet, where Cg2 is the centroid of the benzene C1—C6 ring and Cg3 is of the benzene C10—C15 ring. Furthermore, C19—H19···Cg2 interaction connects the sheets into three-dimension framework (Fig. 2).

For the synthesis of the title compound, see: Shaw & Zhang (2008). For the bioactivity of tetrahydroisoquinoline derivatives, see: Kamal et al. (2011); Liu et al. (2009); Vrba et al. (2009); Abe et al. (2005); Adhami et al. (2004); Storch et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Dashed lines indicate the hydrogen bonds and C—H···π interactions.
2-(2-Hydroxyphenyl)-3,4-dihydroisoquinolin-1(2H)-one top
Crystal data top
C15H13NO2F(000) = 2016
Mr = 239.26Dx = 1.298 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3281 reflections
a = 21.350 (3) Åθ = 2.5–22.2°
b = 11.0670 (14) ŵ = 0.09 mm1
c = 21.064 (3) ÅT = 296 K
β = 100.227 (2)°Block, colourless
V = 4897.9 (11) Å30.50 × 0.35 × 0.34 mm
Z = 16
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4559 independent reflections
Radiation source: fine-focus sealed tube2998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.958, Tmax = 0.971k = 1313
17755 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0584P)2 + 1.0944P]
where P = (Fo2 + 2Fc2)/3
4559 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H13NO2V = 4897.9 (11) Å3
Mr = 239.26Z = 16
Monoclinic, C2/cMo Kα radiation
a = 21.350 (3) ŵ = 0.09 mm1
b = 11.0670 (14) ÅT = 296 K
c = 21.064 (3) Å0.50 × 0.35 × 0.34 mm
β = 100.227 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4559 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2998 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.971Rint = 0.034
17755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
4559 reflectionsΔρmin = 0.16 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64702 (8)1.22521 (16)0.96814 (8)0.0475 (4)
C20.64055 (9)1.20334 (19)0.90234 (9)0.0557 (5)
H20.62441.12970.88550.067*
C30.65796 (10)1.2900 (2)0.86179 (10)0.0669 (6)
H30.65291.27520.81770.080*
C40.68274 (10)1.3979 (2)0.88650 (12)0.0726 (6)
H40.69421.45660.85910.087*
C50.69074 (10)1.41978 (19)0.95193 (12)0.0665 (6)
H50.70861.49240.96840.080*
C60.67252 (8)1.33481 (17)0.99346 (9)0.0529 (5)
C70.67903 (10)1.35321 (18)1.06454 (10)0.0646 (6)
H7A0.68001.43901.07410.077*
H7B0.71861.31781.08630.077*
C80.62387 (10)1.29515 (17)1.08845 (9)0.0599 (5)
H8A0.63011.30141.13510.072*
H8B0.58491.33731.07070.072*
C90.62857 (8)1.13100 (17)1.01102 (8)0.0463 (4)
C100.60218 (8)1.08107 (17)1.11477 (8)0.0490 (4)
C110.64429 (8)1.06340 (17)1.17237 (8)0.0501 (5)
C120.62941 (10)0.9830 (2)1.21757 (9)0.0626 (5)
H120.65730.97221.25640.075*
C130.57360 (11)0.9192 (2)1.20525 (11)0.0732 (6)
H130.56370.86501.23580.088*
C140.53190 (10)0.9349 (2)1.14774 (12)0.0763 (7)
H140.49430.89061.13940.092*
C150.54588 (9)1.0160 (2)1.10293 (10)0.0630 (5)
H150.51741.02731.06450.076*
C160.87970 (8)0.86788 (16)0.85716 (8)0.0486 (4)
C170.91880 (9)0.92042 (19)0.81889 (10)0.0631 (5)
H170.90220.94150.77650.076*
C180.98214 (10)0.9416 (2)0.84322 (12)0.0776 (7)
H181.00830.97630.81730.093*
C191.00639 (11)0.9113 (2)0.90587 (13)0.0839 (7)
H191.04890.92680.92270.101*
C200.96817 (11)0.8582 (2)0.94387 (11)0.0792 (7)
H200.98530.83780.98620.095*
C210.90435 (9)0.83423 (18)0.92027 (9)0.0570 (5)
C220.86093 (10)0.7762 (2)0.95990 (9)0.0669 (6)
H22A0.84280.83780.98390.080*
H22B0.88520.72100.99060.080*
C230.80834 (10)0.70835 (19)0.91819 (9)0.0610 (5)
H23A0.82550.63600.90170.073*
H23B0.77710.68370.94390.073*
C240.81068 (9)0.85581 (16)0.83172 (8)0.0477 (4)
C250.70918 (8)0.77602 (15)0.84686 (8)0.0458 (4)
C260.67305 (8)0.84301 (15)0.88288 (8)0.0445 (4)
C270.60732 (9)0.83775 (18)0.86810 (9)0.0555 (5)
H270.58290.88220.89220.067*
C280.57827 (10)0.7672 (2)0.81807 (10)0.0678 (6)
H280.53410.76450.80820.081*
C290.61354 (11)0.7005 (2)0.78239 (10)0.0713 (6)
H290.59330.65280.74850.086*
C300.67912 (10)0.70412 (18)0.79681 (9)0.0613 (5)
H300.70310.65830.77290.074*
N10.61817 (7)1.16666 (13)1.06934 (7)0.0495 (4)
N20.77725 (7)0.78299 (13)0.86388 (7)0.0482 (4)
O10.62296 (6)1.02339 (11)0.99405 (6)0.0565 (3)
O20.69906 (6)1.12681 (14)1.18018 (6)0.0672 (4)
H2A0.72091.10981.21510.101*
O30.78604 (6)0.91442 (13)0.78357 (6)0.0650 (4)
O40.70448 (6)0.91102 (12)0.93171 (6)0.0584 (4)
H4A0.67870.94840.94880.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0401 (10)0.0511 (11)0.0487 (10)0.0066 (8)0.0008 (8)0.0025 (9)
C20.0509 (11)0.0617 (12)0.0527 (11)0.0019 (9)0.0040 (9)0.0010 (10)
C30.0659 (14)0.0788 (15)0.0570 (12)0.0069 (12)0.0133 (10)0.0084 (11)
C40.0673 (14)0.0702 (15)0.0847 (17)0.0048 (12)0.0252 (12)0.0157 (13)
C50.0536 (12)0.0548 (12)0.0909 (17)0.0009 (10)0.0122 (11)0.0018 (12)
C60.0422 (10)0.0517 (11)0.0620 (12)0.0061 (9)0.0014 (8)0.0054 (10)
C70.0681 (13)0.0524 (12)0.0678 (13)0.0005 (10)0.0025 (10)0.0135 (10)
C80.0706 (13)0.0551 (12)0.0510 (11)0.0115 (10)0.0029 (9)0.0133 (9)
C90.0409 (10)0.0511 (11)0.0437 (10)0.0058 (8)0.0008 (8)0.0085 (9)
C100.0434 (10)0.0593 (11)0.0445 (10)0.0055 (9)0.0084 (8)0.0114 (9)
C110.0420 (10)0.0637 (12)0.0445 (10)0.0013 (9)0.0078 (8)0.0092 (9)
C120.0604 (13)0.0782 (14)0.0496 (11)0.0048 (11)0.0110 (9)0.0009 (10)
C130.0717 (15)0.0833 (16)0.0704 (15)0.0019 (13)0.0285 (12)0.0020 (12)
C140.0559 (13)0.0919 (17)0.0847 (17)0.0173 (12)0.0228 (12)0.0132 (14)
C150.0455 (11)0.0835 (15)0.0593 (12)0.0020 (11)0.0071 (9)0.0134 (11)
C160.0456 (10)0.0513 (11)0.0478 (10)0.0069 (8)0.0050 (8)0.0013 (8)
C170.0543 (12)0.0731 (14)0.0611 (12)0.0016 (10)0.0079 (10)0.0040 (10)
C180.0510 (13)0.0902 (17)0.0914 (17)0.0034 (12)0.0123 (12)0.0068 (13)
C190.0468 (13)0.0979 (18)0.1005 (19)0.0018 (12)0.0048 (13)0.0028 (15)
C200.0589 (14)0.0993 (18)0.0713 (15)0.0133 (13)0.0106 (12)0.0074 (13)
C210.0527 (12)0.0615 (12)0.0536 (11)0.0133 (10)0.0008 (9)0.0018 (9)
C220.0708 (14)0.0796 (15)0.0481 (11)0.0173 (12)0.0045 (10)0.0127 (10)
C230.0627 (13)0.0640 (12)0.0561 (12)0.0143 (10)0.0099 (10)0.0180 (10)
C240.0498 (11)0.0527 (11)0.0400 (9)0.0053 (9)0.0066 (8)0.0004 (9)
C250.0488 (10)0.0459 (10)0.0430 (9)0.0001 (8)0.0089 (8)0.0011 (8)
C260.0459 (10)0.0463 (10)0.0405 (9)0.0012 (8)0.0052 (8)0.0021 (8)
C270.0477 (11)0.0675 (13)0.0513 (11)0.0023 (9)0.0087 (9)0.0026 (9)
C280.0552 (12)0.0857 (15)0.0598 (13)0.0180 (11)0.0029 (10)0.0020 (12)
C290.0770 (16)0.0750 (15)0.0571 (13)0.0239 (12)0.0010 (11)0.0134 (11)
C300.0785 (15)0.0562 (12)0.0512 (11)0.0020 (11)0.0167 (10)0.0078 (9)
N10.0532 (9)0.0525 (9)0.0414 (8)0.0071 (7)0.0042 (7)0.0086 (7)
N20.0461 (9)0.0538 (9)0.0456 (8)0.0082 (7)0.0108 (7)0.0080 (7)
O10.0700 (9)0.0495 (8)0.0520 (7)0.0015 (6)0.0165 (6)0.0113 (6)
O20.0526 (8)0.0939 (11)0.0511 (8)0.0098 (8)0.0021 (6)0.0017 (7)
O30.0563 (8)0.0822 (10)0.0511 (8)0.0079 (7)0.0049 (6)0.0209 (7)
O40.0502 (8)0.0683 (9)0.0553 (8)0.0000 (6)0.0053 (6)0.0208 (7)
Geometric parameters (Å, º) top
C1—C21.389 (2)C16—C211.391 (2)
C1—C61.396 (3)C16—C241.482 (2)
C1—C91.478 (3)C17—C181.378 (3)
C2—C31.378 (3)C17—H170.9300
C2—H20.9300C18—C191.371 (3)
C3—C41.371 (3)C18—H180.9300
C3—H30.9300C19—C201.373 (3)
C4—C51.380 (3)C19—H190.9300
C4—H40.9300C20—C211.390 (3)
C5—C61.386 (3)C20—H200.9300
C5—H50.9300C21—C221.498 (3)
C6—C71.493 (3)C22—C231.498 (3)
C7—C81.505 (3)C22—H22A0.9700
C7—H7A0.9700C22—H22B0.9700
C7—H7B0.9700C23—N21.470 (2)
C8—N11.477 (2)C23—H23A0.9700
C8—H8A0.9700C23—H23B0.9700
C8—H8B0.9700C24—O31.240 (2)
C9—O11.243 (2)C24—N21.338 (2)
C9—N11.346 (2)C25—C301.384 (3)
C10—C151.385 (3)C25—C261.389 (2)
C10—C111.390 (2)C25—N21.436 (2)
C10—N11.430 (2)C26—O41.353 (2)
C11—O21.349 (2)C26—C271.384 (2)
C11—C121.381 (3)C27—C281.368 (3)
C12—C131.370 (3)C27—H270.9300
C12—H120.9300C28—C291.370 (3)
C13—C141.381 (3)C28—H280.9300
C13—H130.9300C29—C301.380 (3)
C14—C151.373 (3)C29—H290.9300
C14—H140.9300C30—H300.9300
C15—H150.9300O2—H2A0.8200
C16—C171.387 (3)O4—H4A0.8200
C2—C1—C6119.70 (18)C18—C17—H17119.8
C2—C1—C9119.77 (17)C16—C17—H17119.8
C6—C1—C9120.51 (16)C19—C18—C17119.6 (2)
C3—C2—C1120.46 (19)C19—C18—H18120.2
C3—C2—H2119.8C17—C18—H18120.2
C1—C2—H2119.8C18—C19—C20120.3 (2)
C4—C3—C2119.9 (2)C18—C19—H19119.9
C4—C3—H3120.0C20—C19—H19119.9
C2—C3—H3120.0C19—C20—C21121.3 (2)
C3—C4—C5120.2 (2)C19—C20—H20119.3
C3—C4—H4119.9C21—C20—H20119.3
C5—C4—H4119.9C20—C21—C16118.1 (2)
C4—C5—C6120.8 (2)C20—C21—C22123.15 (19)
C4—C5—H5119.6C16—C21—C22118.74 (17)
C6—C5—H5119.6C21—C22—C23111.20 (16)
C5—C6—C1118.84 (18)C21—C22—H22A109.4
C5—C6—C7123.63 (18)C23—C22—H22A109.4
C1—C6—C7117.53 (17)C21—C22—H22B109.4
C6—C7—C8109.78 (16)C23—C22—H22B109.4
C6—C7—H7A109.7H22A—C22—H22B108.0
C8—C7—H7A109.7N2—C23—C22111.26 (17)
C6—C7—H7B109.7N2—C23—H23A109.4
C8—C7—H7B109.7C22—C23—H23A109.4
H7A—C7—H7B108.2N2—C23—H23B109.4
N1—C8—C7110.58 (15)C22—C23—H23B109.4
N1—C8—H8A109.5H23A—C23—H23B108.0
C7—C8—H8A109.5O3—C24—N2122.85 (16)
N1—C8—H8B109.5O3—C24—C16119.94 (17)
C7—C8—H8B109.5N2—C24—C16117.19 (15)
H8A—C8—H8B108.1C30—C25—C26119.71 (17)
O1—C9—N1121.35 (17)C30—C25—N2122.20 (16)
O1—C9—C1121.52 (16)C26—C25—N2118.09 (15)
N1—C9—C1117.13 (16)O4—C26—C27122.76 (16)
C15—C10—C11119.36 (18)O4—C26—C25117.63 (15)
C15—C10—N1121.76 (17)C27—C26—C25119.61 (16)
C11—C10—N1118.88 (16)C28—C27—C26120.02 (19)
O2—C11—C12123.50 (17)C28—C27—H27120.0
O2—C11—C10116.48 (16)C26—C27—H27120.0
C12—C11—C10120.02 (18)C27—C28—C29120.8 (2)
C13—C12—C11120.0 (2)C27—C28—H28119.6
C13—C12—H12120.0C29—C28—H28119.6
C11—C12—H12120.0C28—C29—C30119.91 (19)
C12—C13—C14120.3 (2)C28—C29—H29120.0
C12—C13—H13119.9C30—C29—H29120.0
C14—C13—H13119.9C29—C30—C25119.97 (19)
C15—C14—C13120.0 (2)C29—C30—H30120.0
C15—C14—H14120.0C25—C30—H30120.0
C13—C14—H14120.0C9—N1—C10120.94 (15)
C14—C15—C10120.2 (2)C9—N1—C8120.81 (16)
C14—C15—H15119.9C10—N1—C8118.25 (14)
C10—C15—H15119.9C24—N2—C25120.89 (14)
C17—C16—C21120.20 (17)C24—N2—C23121.64 (15)
C17—C16—C24119.35 (16)C25—N2—C23117.47 (14)
C21—C16—C24120.32 (17)C11—O2—H2A109.5
C18—C17—C16120.5 (2)C26—O4—H4A109.5
C6—C1—C2—C31.3 (3)C24—C16—C21—C225.1 (3)
C9—C1—C2—C3179.55 (17)C20—C21—C22—C23152.4 (2)
C1—C2—C3—C41.0 (3)C16—C21—C22—C2328.7 (3)
C2—C3—C4—C50.5 (3)C21—C22—C23—N249.3 (2)
C3—C4—C5—C61.6 (3)C17—C16—C24—O315.6 (3)
C4—C5—C6—C11.3 (3)C21—C16—C24—O3160.19 (18)
C4—C5—C6—C7179.17 (19)C17—C16—C24—N2166.28 (17)
C2—C1—C6—C50.2 (3)C21—C16—C24—N217.9 (3)
C9—C1—C6—C5178.40 (16)C30—C25—C26—O4179.36 (16)
C2—C1—C6—C7179.41 (17)N2—C25—C26—O40.2 (2)
C9—C1—C6—C71.2 (2)C30—C25—C26—C270.4 (3)
C5—C6—C7—C8144.45 (18)N2—C25—C26—C27179.54 (16)
C1—C6—C7—C836.0 (2)O4—C26—C27—C28179.99 (17)
C6—C7—C8—N154.5 (2)C25—C26—C27—C280.3 (3)
C2—C1—C9—O118.7 (2)C26—C27—C28—C290.5 (3)
C6—C1—C9—O1159.50 (17)C27—C28—C29—C300.0 (3)
C2—C1—C9—N1161.35 (16)C28—C29—C30—C250.6 (3)
C6—C1—C9—N120.4 (2)C26—C25—C30—C290.8 (3)
C15—C10—C11—O2178.12 (17)N2—C25—C30—C29179.95 (18)
N1—C10—C11—O22.1 (2)O1—C9—N1—C102.0 (2)
C15—C10—C11—C121.0 (3)C1—C9—N1—C10177.93 (15)
N1—C10—C11—C12178.74 (16)O1—C9—N1—C8178.89 (16)
O2—C11—C12—C13178.00 (19)C1—C9—N1—C81.2 (2)
C10—C11—C12—C131.0 (3)C15—C10—N1—C964.9 (2)
C11—C12—C13—C140.1 (3)C11—C10—N1—C9115.33 (18)
C12—C13—C14—C150.8 (3)C15—C10—N1—C8115.91 (19)
C13—C14—C15—C100.9 (3)C11—C10—N1—C863.8 (2)
C11—C10—C15—C140.0 (3)C7—C8—N1—C938.9 (2)
N1—C10—C15—C14179.70 (18)C7—C8—N1—C10140.29 (16)
C21—C16—C17—C181.0 (3)O3—C24—N2—C254.9 (3)
C24—C16—C17—C18174.73 (19)C16—C24—N2—C25173.20 (15)
C16—C17—C18—C190.5 (3)O3—C24—N2—C23175.84 (17)
C17—C18—C19—C201.2 (4)C16—C24—N2—C236.1 (2)
C18—C19—C20—C210.3 (4)C30—C25—N2—C2482.4 (2)
C19—C20—C21—C161.3 (3)C26—C25—N2—C2498.5 (2)
C19—C20—C21—C22179.8 (2)C30—C25—N2—C2398.3 (2)
C17—C16—C21—C201.9 (3)C26—C25—N2—C2380.9 (2)
C24—C16—C21—C20173.83 (18)C22—C23—N2—C2440.1 (2)
C17—C16—C21—C22179.16 (18)C22—C23—N2—C25139.19 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.842.6388 (18)166
O4—H4A···O10.821.852.6668 (17)175
C7—H7B···Cg2ii0.972.923.770 (2)147
C19—H19···Cg2iii0.932.783.518 (3)137
C23—H23A···Cg3iv0.972.873.771 (2)155
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+3/2, y+5/2, z+2; (iii) x+1/2, y1/2, z; (iv) x+3/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC15H13NO2
Mr239.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)21.350 (3), 11.0670 (14), 21.064 (3)
β (°) 100.227 (2)
V3)4897.9 (11)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.35 × 0.34
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
17755, 4559, 2998
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.01
No. of reflections4559
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.842.6388 (18)166
O4—H4A···O10.821.852.6668 (17)175
C7—H7B···Cg2ii0.97002.923.770 (2)147
C19—H19···Cg2iii0.93002.783.518 (3)137
C23—H23A···Cg3iv0.97002.873.771 (2)155
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+3/2, y+5/2, z+2; (iii) x+1/2, y1/2, z; (iv) x+3/2, y+3/2, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSF; Nos. 30771454, 31000865).

References

First citationAbe, K., Saitoh, T., Horiguchi, Y., Utsunomiya, I. & Taguchi, K. (2005). Biol. Pharm. Bull. 28, 1355–1362.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAdhami, V. M., Aziz, M. H., Reagen-Shaw, S. R., Nihal, M., Mukhtar, H. & Ahmad, N. (2004). Mol. Cancer Ther. 3, 933–940.  PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKamal, A. M., Radwan, S. M. & Zaki, R. M. (2011). Eur. J. Med. Chem. 46, 567–578.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, X. H., Zhu, J., Zhou, A. N., Song, B. A., Zhu, H. L., Bai, L. S., Bhadury, P. S. & Pan, C. X. (2009). Bioorg. Med. Chem. 17, 1207–1213.  Web of Science CrossRef PubMed Google Scholar
First citationShaw, K. R. & Zhang, M. B. (2008). US Patent WO2008016596.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorch, A., Ott, S., Hwang, Y. I., Ortmann, R., Hein, A., Frenzel, S., Matsubara, K., Ohta, S., Wolf, H. U. & Schwarz, J. (2002). Biochem. Pharmacol. 63, 909–920.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVrba, J., Dolězel, P., Vičar, J. & Ulríchová, J. (2009). Toxicol. In Vitro, 23, 580–588.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds