organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-[3-(1H-imidazol-1-yl)propyl­amino]-3-nitro­benzoate

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 2 September 2011; accepted 6 September 2011; online 14 September 2011)

In the title compound, C15H18N4O4, the 1H-imidazole ring forms a dihedral angle of 67.12 (8)° with the benzene ring. An S(6) ring motif is formed via an intra­molecular N—H⋯O hydrogen bond. In the crystal, neighbouring mol­ecules are linked by a pair of inter­molecular N—H⋯N hydrogen bonds, forming an inversion dimer. The dimers are further linked by a pair of C—H⋯O hydrogen bonds, leading to the formation of chain along [021]. A C—H⋯π inter­action involving the centroid of the benzene ring is also observed between the chains.

Related literature

For applications of phenyl­enediamines, see: Sabelle (2006[Sabelle, S. (2006). US Patent 20060005323.]); Glebowska et al. (2009[Glebowska, A., Przybylski, P., Winek, M., Krzyczkowska, P., Krówczyński, A., Szydłowska, J., Pociecha, D. & Górecka, E. (2009). J. Mater. Chem. 19, 1395-1398.]); Remusat et al. (2004[Remusat, V., Terme, T., Gellis, A., Rathelot, P. & Vanelle, P. (2004). J. Heterocycl. Chem. 41, 221-225.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18N4O4

  • Mr = 318.33

  • Triclinic, [P \overline 1]

  • a = 8.4860 (4) Å

  • b = 8.6175 (4) Å

  • c = 11.7507 (6) Å

  • α = 77.489 (1)°

  • β = 81.732 (1)°

  • γ = 67.977 (1)°

  • V = 775.83 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 297 K

  • 0.43 × 0.37 × 0.23 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.978

  • 15358 measured reflections

  • 4470 independent reflections

  • 3627 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.173

  • S = 1.05

  • 4470 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.859 (18) 2.004 (18) 2.6464 (18) 130.9 (15)
N1—H1N1⋯N3i 0.859 (18) 2.345 (17) 3.0281 (18) 136.7 (15)
C15—H15A⋯O1ii 0.96 2.47 3.346 (2) 151
C1—H1ACg1iii 0.93 2.90 3.5962 (16) 132
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+3, -z+2; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitrophenyleneamine is an important class of compounds in organic synthetic chemistry. They are most of the time used to synthesize phenylenediamines by reducing the nitro (NO2) group to amine (NH2). Phenylenediamines themselves are then used as composition in making dyes (Sabelle, 2006), metallomesogens (Glebowska et al., 2009) as well as ligand precursors. Condensation of substituted o-phenylenediamine with various diketones is then used in the preparation of a variety of pharmaceuticals (Remusat et al., 2004).

In the title compound (Fig. 1), the 1H-imidazole (C1/C2/N3/C3/N2) is almost planar with a maximum deviation of 0.003 (2) Å at atom C3 and it forms a dihedral angle of 67.12 (8)° with the benzene ring (C7–C12). An S(6) ring motif (Bernstein et al., 1995) is formed via an intramolecular N1—H1N1···O2 hydrogen bond (Table 1).

In the crystal packing (Fig. 2), pairs of intermolecular N1—H1N1···N3 and C15—H15A···O1 hydrogen bonds (Table 1) link the neighbouring molecules to form dimers, leading to the formation of chains along the [021]. The crystal packing is further stabilized by a C—H···π interaction (Table 1), involving the centroid of the benzene ring (Cg1).

Related literature top

For applications of phenylenediamines, see: Sabelle (2006); Glebowska et al. (2009); Remusat et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Ethyl-4-fluro-3-nitro benzoate (4.6 mmol) in dichloromethane (20 mL) was added into the solution of 3-(1H-imidazole-1yl)propane-1-amine (7.0 mmol) and N, N-diisopropylethylamine (5.6 mmol) in dichloromethane (20 mL). The reaction mixture was stirred overnight at room temperature. After completion of the reaction, evidenced by TLC analysis. The reaction mixture was washed with water (10 mL × 2) and 10% Na2CO3 (10 ml × 2). The dichloromethane layer was collected and dried over Na2SO4. The organic layer was concentrated under reduced pressure to afford white-colored crystals.

Refinement top

Atom H1N1 was located in a difference Fourier map and was refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.93–0.97 Å). A rotating group model was applied to the methyl group. Three outliners were omitted for the final refinement, 0 -1 4, -5 0 4 and -4 0 5.

Structure description top

Nitrophenyleneamine is an important class of compounds in organic synthetic chemistry. They are most of the time used to synthesize phenylenediamines by reducing the nitro (NO2) group to amine (NH2). Phenylenediamines themselves are then used as composition in making dyes (Sabelle, 2006), metallomesogens (Glebowska et al., 2009) as well as ligand precursors. Condensation of substituted o-phenylenediamine with various diketones is then used in the preparation of a variety of pharmaceuticals (Remusat et al., 2004).

In the title compound (Fig. 1), the 1H-imidazole (C1/C2/N3/C3/N2) is almost planar with a maximum deviation of 0.003 (2) Å at atom C3 and it forms a dihedral angle of 67.12 (8)° with the benzene ring (C7–C12). An S(6) ring motif (Bernstein et al., 1995) is formed via an intramolecular N1—H1N1···O2 hydrogen bond (Table 1).

In the crystal packing (Fig. 2), pairs of intermolecular N1—H1N1···N3 and C15—H15A···O1 hydrogen bonds (Table 1) link the neighbouring molecules to form dimers, leading to the formation of chains along the [021]. The crystal packing is further stabilized by a C—H···π interaction (Table 1), involving the centroid of the benzene ring (Cg1).

For applications of phenylenediamines, see: Sabelle (2006); Glebowska et al. (2009); Remusat et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Ethyl 4-[3-(1H-imidazol-1-yl)propylamino]-3-nitrobenzoate top
Crystal data top
C15H18N4O4Z = 2
Mr = 318.33F(000) = 336
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4860 (4) ÅCell parameters from 6626 reflections
b = 8.6175 (4) Åθ = 2.6–32.5°
c = 11.7507 (6) ŵ = 0.10 mm1
α = 77.489 (1)°T = 297 K
β = 81.732 (1)°Block, yellow
γ = 67.977 (1)°0.43 × 0.37 × 0.23 mm
V = 775.83 (7) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4470 independent reflections
Radiation source: fine-focus sealed tube3627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.958, Tmax = 0.978k = 1112
15358 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1056P)2 + 0.1039P]
where P = (Fo2 + 2Fc2)/3
4470 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H18N4O4γ = 67.977 (1)°
Mr = 318.33V = 775.83 (7) Å3
Triclinic, P1Z = 2
a = 8.4860 (4) ÅMo Kα radiation
b = 8.6175 (4) ŵ = 0.10 mm1
c = 11.7507 (6) ÅT = 297 K
α = 77.489 (1)°0.43 × 0.37 × 0.23 mm
β = 81.732 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4470 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3627 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.978Rint = 0.021
15358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
4470 reflectionsΔρmin = 0.23 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70039 (15)1.08819 (19)0.76638 (14)0.0819 (4)
O20.66111 (13)0.92725 (15)0.66648 (11)0.0630 (3)
O30.28465 (12)1.36380 (12)1.04716 (9)0.0495 (2)
O40.04276 (15)1.30975 (15)1.09224 (9)0.0602 (3)
N10.39536 (14)0.82823 (14)0.71627 (10)0.0439 (3)
N20.16593 (13)0.56169 (13)0.55424 (9)0.0411 (2)
N30.32584 (19)0.38579 (17)0.43667 (11)0.0598 (3)
N40.61326 (13)1.01531 (14)0.74276 (10)0.0457 (3)
C10.1987 (2)0.4015 (2)0.61436 (12)0.0579 (4)
H1A0.16130.37020.69120.069*
C20.2965 (2)0.29595 (19)0.54111 (13)0.0586 (4)
H2A0.33760.17790.56010.070*
C30.2444 (2)0.5452 (2)0.44782 (13)0.0605 (4)
H3A0.24150.63680.38830.073*
C40.06090 (17)0.72024 (18)0.59566 (13)0.0511 (3)
H4A0.00240.69340.67020.061*
H4B0.02490.78780.54060.061*
C50.16440 (18)0.82458 (16)0.60979 (12)0.0487 (3)
H5A0.08790.93130.63180.058*
H5B0.22400.85050.53550.058*
C60.29333 (16)0.73156 (15)0.70181 (11)0.0423 (3)
H6A0.23320.70640.77600.051*
H6B0.36860.62420.68010.051*
C70.34741 (14)0.94586 (14)0.78555 (10)0.0364 (2)
C80.18281 (16)0.98950 (16)0.84576 (11)0.0432 (3)
H8A0.10760.94080.83270.052*
C90.13241 (16)1.10113 (16)0.92231 (11)0.0435 (3)
H9A0.02381.12610.95980.052*
C100.23935 (15)1.17874 (14)0.94578 (10)0.0383 (2)
C110.39749 (15)1.14588 (14)0.88549 (10)0.0379 (2)
H11A0.46951.19850.89820.045*
C120.44984 (14)1.03452 (14)0.80583 (10)0.0361 (2)
C130.17697 (17)1.28977 (15)1.03544 (10)0.0417 (3)
C140.22780 (19)1.47706 (18)1.13211 (12)0.0512 (3)
H14A0.24021.41151.21070.061*
H14B0.10871.54751.12450.061*
C150.3332 (3)1.5847 (2)1.10987 (17)0.0705 (5)
H15A0.29721.66121.16480.106*
H15B0.32031.64881.03190.106*
H15C0.45061.51401.11850.106*
H1N10.495 (2)0.808 (2)0.6809 (15)0.058 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0597 (7)0.1035 (10)0.1167 (11)0.0523 (7)0.0326 (7)0.0724 (9)
O20.0512 (5)0.0719 (7)0.0792 (7)0.0281 (5)0.0258 (5)0.0497 (6)
O30.0513 (5)0.0525 (5)0.0546 (5)0.0209 (4)0.0062 (4)0.0319 (4)
O40.0660 (6)0.0713 (7)0.0563 (6)0.0357 (5)0.0245 (5)0.0365 (5)
N10.0431 (5)0.0441 (5)0.0525 (6)0.0187 (4)0.0085 (4)0.0272 (4)
N20.0406 (5)0.0477 (5)0.0404 (5)0.0169 (4)0.0025 (4)0.0202 (4)
N30.0698 (8)0.0594 (7)0.0533 (7)0.0226 (6)0.0142 (6)0.0296 (6)
N40.0406 (5)0.0446 (5)0.0577 (6)0.0183 (4)0.0090 (4)0.0235 (5)
C10.0748 (9)0.0574 (8)0.0400 (6)0.0233 (7)0.0052 (6)0.0120 (6)
C20.0720 (9)0.0480 (7)0.0528 (8)0.0128 (6)0.0063 (7)0.0170 (6)
C30.0832 (10)0.0545 (8)0.0434 (7)0.0261 (7)0.0163 (7)0.0186 (6)
C40.0396 (6)0.0556 (7)0.0600 (8)0.0093 (5)0.0002 (5)0.0302 (6)
C50.0544 (7)0.0413 (6)0.0514 (7)0.0126 (5)0.0025 (5)0.0194 (5)
C60.0470 (6)0.0380 (5)0.0482 (6)0.0172 (5)0.0019 (5)0.0203 (5)
C70.0416 (5)0.0336 (5)0.0368 (5)0.0146 (4)0.0032 (4)0.0133 (4)
C80.0458 (6)0.0454 (6)0.0478 (6)0.0245 (5)0.0110 (5)0.0215 (5)
C90.0470 (6)0.0436 (6)0.0454 (6)0.0221 (5)0.0132 (5)0.0193 (5)
C100.0463 (6)0.0359 (5)0.0357 (5)0.0165 (4)0.0053 (4)0.0144 (4)
C110.0416 (5)0.0356 (5)0.0407 (5)0.0157 (4)0.0012 (4)0.0143 (4)
C120.0373 (5)0.0344 (5)0.0386 (5)0.0136 (4)0.0043 (4)0.0136 (4)
C130.0500 (6)0.0406 (6)0.0379 (5)0.0179 (5)0.0047 (4)0.0159 (4)
C140.0616 (8)0.0506 (7)0.0481 (7)0.0195 (6)0.0019 (6)0.0275 (5)
C150.0860 (12)0.0714 (10)0.0742 (10)0.0428 (9)0.0087 (9)0.0364 (8)
Geometric parameters (Å, º) top
O1—N41.2251 (15)C5—C61.5217 (19)
O2—N41.2261 (14)C5—H5A0.9700
O3—C131.3313 (15)C5—H5B0.9700
O3—C141.4533 (14)C6—H6A0.9700
O4—C131.2067 (16)C6—H6B0.9700
N1—C71.3449 (13)C7—C81.4249 (16)
N1—C61.4551 (15)C7—C121.4257 (15)
N1—H1N10.856 (19)C8—C91.3686 (15)
N2—C31.3395 (16)C8—H8A0.9300
N2—C11.3518 (19)C9—C101.3978 (17)
N2—C41.4657 (15)C9—H9A0.9300
N3—C31.3120 (19)C10—C111.3826 (16)
N3—C21.346 (2)C10—C131.4840 (15)
N4—C121.4440 (15)C11—C121.3944 (14)
C1—C21.351 (2)C11—H11A0.9300
C1—H1A0.9300C14—C151.476 (2)
C2—H2A0.9300C14—H14A0.9700
C3—H3A0.9300C14—H14B0.9700
C4—C51.5186 (19)C15—H15A0.9600
C4—H4A0.9700C15—H15B0.9600
C4—H4B0.9700C15—H15C0.9600
C13—O3—C14115.30 (10)C5—C6—H6B108.9
C7—N1—C6124.49 (10)H6A—C6—H6B107.8
C7—N1—H1N1116.5 (12)N1—C7—C8119.86 (10)
C6—N1—H1N1119.0 (12)N1—C7—C12125.14 (10)
C3—N2—C1105.75 (12)C8—C7—C12115.00 (9)
C3—N2—C4127.17 (12)C9—C8—C7121.81 (11)
C1—N2—C4127.05 (11)C9—C8—H8A119.1
C3—N3—C2104.48 (12)C7—C8—H8A119.1
O1—N4—O2121.58 (11)C8—C9—C10121.93 (11)
O1—N4—C12119.17 (10)C8—C9—H9A119.0
O2—N4—C12119.25 (10)C10—C9—H9A119.0
C2—C1—N2106.62 (13)C11—C10—C9118.24 (10)
C2—C1—H1A126.7C11—C10—C13123.90 (11)
N2—C1—H1A126.7C9—C10—C13117.86 (10)
N3—C2—C1110.43 (13)C10—C11—C12120.55 (11)
N3—C2—H2A124.8C10—C11—H11A119.7
C1—C2—H2A124.8C12—C11—H11A119.7
N3—C3—N2112.72 (13)C11—C12—C7122.29 (10)
N3—C3—H3A123.6C11—C12—N4116.41 (10)
N2—C3—H3A123.6C7—C12—N4121.29 (9)
N2—C4—C5112.73 (10)O4—C13—O3123.64 (11)
N2—C4—H4A109.0O4—C13—C10123.26 (11)
C5—C4—H4A109.0O3—C13—C10113.10 (10)
N2—C4—H4B109.0O3—C14—C15108.04 (12)
C5—C4—H4B109.0O3—C14—H14A110.1
H4A—C4—H4B107.8C15—C14—H14A110.1
C4—C5—C6112.09 (11)O3—C14—H14B110.1
C4—C5—H5A109.2C15—C14—H14B110.1
C6—C5—H5A109.2H14A—C14—H14B108.4
C4—C5—H5B109.2C14—C15—H15A109.5
C6—C5—H5B109.2C14—C15—H15B109.5
H5A—C5—H5B107.9H15A—C15—H15B109.5
N1—C6—C5113.19 (11)C14—C15—H15C109.5
N1—C6—H6A108.9H15A—C15—H15C109.5
C5—C6—H6A108.9H15B—C15—H15C109.5
N1—C6—H6B108.9
C3—N2—C1—C20.29 (18)C9—C10—C11—C121.70 (18)
C4—N2—C1—C2178.23 (13)C13—C10—C11—C12177.37 (10)
C3—N3—C2—C10.4 (2)C10—C11—C12—C72.12 (18)
N2—C1—C2—N30.0 (2)C10—C11—C12—N4176.86 (11)
C2—N3—C3—N20.6 (2)N1—C7—C12—C11175.11 (11)
C1—N2—C3—N30.5 (2)C8—C7—C12—C114.66 (17)
C4—N2—C3—N3178.48 (13)N1—C7—C12—N45.96 (19)
C3—N2—C4—C570.00 (19)C8—C7—C12—N4174.27 (11)
C1—N2—C4—C5112.49 (16)O1—N4—C12—C114.07 (19)
N2—C4—C5—C662.97 (15)O2—N4—C12—C11175.55 (12)
C7—N1—C6—C585.02 (15)O1—N4—C12—C7176.93 (13)
C4—C5—C6—N1179.45 (10)O2—N4—C12—C73.44 (19)
C6—N1—C7—C83.56 (19)C14—O3—C13—O41.8 (2)
C6—N1—C7—C12176.19 (11)C14—O3—C13—C10178.66 (10)
N1—C7—C8—C9176.17 (12)C11—C10—C13—O4175.61 (13)
C12—C7—C8—C93.61 (18)C9—C10—C13—O43.5 (2)
C7—C8—C9—C100.0 (2)C11—C10—C13—O33.97 (18)
C8—C9—C10—C112.76 (19)C9—C10—C13—O3176.96 (11)
C8—C9—C10—C13176.37 (12)C13—O3—C14—C15163.51 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.859 (18)2.004 (18)2.6464 (18)130.9 (15)
N1—H1N1···N3i0.859 (18)2.345 (17)3.0281 (18)136.7 (15)
C15—H15A···O1ii0.962.473.346 (2)151
C1—H1A···Cg1iii0.932.903.5962 (16)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+3, z+2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H18N4O4
Mr318.33
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)8.4860 (4), 8.6175 (4), 11.7507 (6)
α, β, γ (°)77.489 (1), 81.732 (1), 67.977 (1)
V3)775.83 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.43 × 0.37 × 0.23
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.958, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
15358, 4470, 3627
Rint0.021
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.173, 1.05
No. of reflections4470
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.859 (18)2.004 (18)2.6464 (18)130.9 (15)
N1—H1N1···N3i0.859 (18)2.345 (17)3.0281 (18)136.7 (15)
C15—H15A···O1ii0.962.473.346 (2)151
C1—H1A···Cg1iii0.932.903.5962 (16)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+3, z+2; (iii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors wish to express their thanks to Universiti Sains Malaysia (USM), Penang, Malaysia, for providing research facilities. HKF and WSL thank USM for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlebowska, A., Przybylski, P., Winek, M., Krzyczkowska, P., Krówczyński, A., Szydłowska, J., Pociecha, D. & Górecka, E. (2009). J. Mater. Chem. 19, 1395–1398.  CAS Google Scholar
First citationRemusat, V., Terme, T., Gellis, A., Rathelot, P. & Vanelle, P. (2004). J. Heterocycl. Chem. 41, 221–225.  CrossRef CAS Google Scholar
First citationSabelle, S. (2006). US Patent 20060005323.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds