metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-2,2′-Bi­pyrimidine-κ4N1,N1′:N3,N3′)bis­­[tri­aqua­(sulfato-κO)manganese(II)]

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 3 September 2011; accepted 4 September 2011; online 14 September 2011)

The title complex, [Mn2(SO4)2(C8H6N4)(H2O)6], is the second monoclinic polymorph [De Munno et al. (1995[De Munno, G., Ruiz, R., Lloret, F., Faus, J., Sessoli, R. & Julve, M. (1995). Inorg. Chem. 34, 408-411.]). Inorg. Chem. 34, 408–411; Hong et al. (1996[Hong, D. M., Chu, Y. Y. & Wei, H. H. (1996). Polyhedron, 15, 447-452.]). Polyhedron, 15, 447–452]. The asymmetric unit contains two crystallographically independent half-mol­ecules of the binuclear MnII complex; an inversion centre is located at the centroid of each complex. The two MnII atoms in each complex mol­ecules are bridged by a bis-chelating 2,2′-bipyrimidine (bpym) ligand and each MnII atom is six-coordinated in a considerably distorted octa­hedral environment defined by two N atoms of the bridging bpym ligand and four O atoms from one sulfato anionic ligand and three water mol­ecules. In the crystal, the complex mol­ecules are linked by O—H⋯O hydrogen bonds between the water and sulfato ligands, forming a three-dimensional network.

Related literature

For the crystal structure of the title complex in the same space group but with different cell parameters, see: De Munno et al. (1995[De Munno, G., Ruiz, R., Lloret, F., Faus, J., Sessoli, R. & Julve, M. (1995). Inorg. Chem. 34, 408-411.]); Hong et al. (1996[Hong, D. M., Chu, Y. Y. & Wei, H. H. (1996). Polyhedron, 15, 447-452.]). For the synthesis and crystal structure of [Mn2(H2O)8(bpym)](SO4)2·2H2O, see: Ha (2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 313-314.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(SO4)2(C8H6N4)(H2O)6]

  • Mr = 568.26

  • Monoclinic, P 21 /n

  • a = 12.4401 (18) Å

  • b = 13.2640 (19) Å

  • c = 12.8951 (18) Å

  • β = 117.199 (3)°

  • V = 1892.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 200 K

  • 0.33 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.505, Tmax = 0.721

  • 13624 measured reflections

  • 4652 independent reflections

  • 3069 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.08

  • 4652 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O4 2.103 (2)
Mn1—O2 2.1295 (19)
Mn1—O1 2.172 (2)
Mn1—O3 2.190 (2)
Mn1—N1 2.303 (2)
Mn1—N2 2.308 (2)
Mn2—O11 2.105 (2)
Mn2—O9 2.1327 (19)
Mn2—O8 2.181 (2)
Mn2—O10 2.184 (2)
Mn2—N3 2.287 (2)
Mn2—N4 2.332 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6i 0.84 1.88 2.709 (3) 170
O1—H1B⋯O12ii 0.84 1.90 2.700 (3) 160
O2—H2A⋯O13iii 0.84 1.86 2.655 (3) 158
O2—H2B⋯O14i 0.84 1.98 2.804 (3) 168
O3—H3A⋯O12iii 0.84 2.60 3.434 (4) 175
O3—H3B⋯O14iv 0.84 1.93 2.721 (3) 157
O8—H8A⋯O13v 0.84 1.91 2.745 (3) 177
O8—H8B⋯O5ii 0.84 1.93 2.766 (3) 173
O9—H9A⋯O6 0.84 1.80 2.636 (3) 178
O9—H9B⋯O4i 0.84 2.06 2.839 (3) 153
O10—H10A⋯O5 0.84 1.98 2.804 (3) 165
O10—H10B⋯O7vi 0.84 1.87 2.705 (3) 174
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y, -z; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title complex, [Mn2(SO4)2(H2O)6(bpym)] (where bpym is 2,2'-bipyrimidine, C8H6N4), contains two crystallographically independent half-molecules of the dinuclear MnII complex; an inversion centre is located at the centroid of each complex (Fig. 1). The two complexes are chemically identical, but somewhat different in geometry. The crystal structures of the complex were previously reported in the same space group P21/n (De Munno et al., 1995; Hong et al., 1996). The structure presented here is essentially the same as the published, however, the components of a unit cell and the cell parameters are quite different. Each asymmetric unit of the reported structures contains one half-molecule of the dinuclear complex.

In both complexes, two MnII ions are bridged by a bis-chelating bpym ligand to form a dinuclear MnII complex. Each MnII atom is six-coordinated in a considerably distorted octahedral environment defined by two N atoms of the bridging bpym ligand, and four O atoms from one sulfato anionic ligand and three water molecules. However, in the previously reported crystal structure of the analogous dinuclear cationic complex [Mn2(H2O)8(bpym)](SO4)2.2H2O, its single crystals were obtained from a water solution at 50 °C, each MnII atom is coordinated by two N atoms from bpym ligand and four O atoms from four water molecules (Ha, 2011).

The main contributions to the distortion of the octahedron are the tight N—Mn—N chelate angles [71.50 (8) and 71.46 (8)°] and the bulky SO4 groups, which results in non-linear trans axes [<N1—Mn1—O2 = 157.90 (9)° and <N3—Mn2—O9 = 155.79 (9)°], whereas the apical O1—Mn1—O3 and O8—Mn2—O10 bonds are roughly linear with the bond angles of 175.80 (9)° and 176.15 (8)°, respectively. In the two complexes, however, the apical N—Mn—O(SO4) bond angles are fairly different with <N2—Mn1—O4 = 178.47 (8)° and <N4—Mn2—O11 = 160.35 (8)°, because the coordination modes of the SO4 anions are somewhat different. Atom O4 in the complex with atom Mn1 occupies the equatorial position, but atom O11 in the other complex is inclined considerably to the equatorial plane. The Mn—N and Mn—O bond lengths are roughly equivalent, respectively (Table 1). The geometry of the SO4 ligands are nearly tetrahedral with the O—S—O bond angles of 107.83 (13)–111.48 (16)°, and the S—O bond distances are almost equal with 1.437 (2)–1.477 (2) Å. In the crystal structure, the complexes are linked by O—H···O hydrogen bonds between the water and sulfato ligands, forming a three-dimensional network (Fig. 2, Table 2). In addition, the complexes display numerous intermolecular ππ interactions between adjacent pyrimidine rings, the shortest ring centroid-centroid distance being 3.704 (2) Å.

Related literature top

For the crystal structure of the title complex in the same space group but with different cell parameters, see: De Munno et al. (1995); Hong et al. (1996). For the synthesis and crystal structure of [Mn2(H2O)8(bpym)](SO4)2.2H2O, see: Ha (2011).

Experimental top

MnSO4.H2O (0.1688 g, 0.999 mmol) and 2,2'-bipyrimidine (0.1587 g, 1.003 mmol) in H2O (20 ml) were refluxed for 1 h. After evaporation of the solvent, the residue was washed with ether and dried at 50 °C, to give a light yellow powder (0.3152 g) (Ha, 2011). Crystals suitable for X-ray analysis were obtained by slow evaporation from a mixture of water and dimethyl sulfoxide (DMSO) at 90 °C.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligands were located in a difference Fourier map then allowed to ride on their parent O atoms in the final cycles of refinement, with O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O). The highest peak (0.75 e Å-3) and the deepest hole (-0.62 e Å-3) in the difference Fourier map are located 0.86 Å and 0.72 Å from the atoms O14 and Mn2, respectively.

Structure description top

The asymmetric unit of the title complex, [Mn2(SO4)2(H2O)6(bpym)] (where bpym is 2,2'-bipyrimidine, C8H6N4), contains two crystallographically independent half-molecules of the dinuclear MnII complex; an inversion centre is located at the centroid of each complex (Fig. 1). The two complexes are chemically identical, but somewhat different in geometry. The crystal structures of the complex were previously reported in the same space group P21/n (De Munno et al., 1995; Hong et al., 1996). The structure presented here is essentially the same as the published, however, the components of a unit cell and the cell parameters are quite different. Each asymmetric unit of the reported structures contains one half-molecule of the dinuclear complex.

In both complexes, two MnII ions are bridged by a bis-chelating bpym ligand to form a dinuclear MnII complex. Each MnII atom is six-coordinated in a considerably distorted octahedral environment defined by two N atoms of the bridging bpym ligand, and four O atoms from one sulfato anionic ligand and three water molecules. However, in the previously reported crystal structure of the analogous dinuclear cationic complex [Mn2(H2O)8(bpym)](SO4)2.2H2O, its single crystals were obtained from a water solution at 50 °C, each MnII atom is coordinated by two N atoms from bpym ligand and four O atoms from four water molecules (Ha, 2011).

The main contributions to the distortion of the octahedron are the tight N—Mn—N chelate angles [71.50 (8) and 71.46 (8)°] and the bulky SO4 groups, which results in non-linear trans axes [<N1—Mn1—O2 = 157.90 (9)° and <N3—Mn2—O9 = 155.79 (9)°], whereas the apical O1—Mn1—O3 and O8—Mn2—O10 bonds are roughly linear with the bond angles of 175.80 (9)° and 176.15 (8)°, respectively. In the two complexes, however, the apical N—Mn—O(SO4) bond angles are fairly different with <N2—Mn1—O4 = 178.47 (8)° and <N4—Mn2—O11 = 160.35 (8)°, because the coordination modes of the SO4 anions are somewhat different. Atom O4 in the complex with atom Mn1 occupies the equatorial position, but atom O11 in the other complex is inclined considerably to the equatorial plane. The Mn—N and Mn—O bond lengths are roughly equivalent, respectively (Table 1). The geometry of the SO4 ligands are nearly tetrahedral with the O—S—O bond angles of 107.83 (13)–111.48 (16)°, and the S—O bond distances are almost equal with 1.437 (2)–1.477 (2) Å. In the crystal structure, the complexes are linked by O—H···O hydrogen bonds between the water and sulfato ligands, forming a three-dimensional network (Fig. 2, Table 2). In addition, the complexes display numerous intermolecular ππ interactions between adjacent pyrimidine rings, the shortest ring centroid-centroid distance being 3.704 (2) Å.

For the crystal structure of the title complex in the same space group but with different cell parameters, see: De Munno et al. (1995); Hong et al. (1996). For the synthesis and crystal structure of [Mn2(H2O)8(bpym)](SO4)2.2H2O, see: Ha (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 30% probability level for non-H atoms; H atoms are shown as small circles of arbitrary radius. Unlabelled atoms are generated by the application of the inversion centres.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.
(µ-2,2'-Bipyrimidine-κ4N1,N1':N3,N3')bis[triaqua(sulfato-κO)manganese(II)] top
Crystal data top
[Mn2(SO4)2(C8H6N4)(H2O)6]F(000) = 1152
Mr = 568.26Dx = 1.994 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4745 reflections
a = 12.4401 (18) Åθ = 2.4–28.3°
b = 13.2640 (19) ŵ = 1.64 mm1
c = 12.8951 (18) ÅT = 200 K
β = 117.199 (3)°Block, pale yellow
V = 1892.5 (5) Å30.33 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4652 independent reflections
Radiation source: fine-focus sealed tube3069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1614
Tmin = 0.505, Tmax = 0.721k = 1317
13624 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4652 reflectionsΔρmax = 0.75 e Å3
272 parametersΔρmin = 0.62 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (5)
Crystal data top
[Mn2(SO4)2(C8H6N4)(H2O)6]V = 1892.5 (5) Å3
Mr = 568.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4401 (18) ŵ = 1.64 mm1
b = 13.2640 (19) ÅT = 200 K
c = 12.8951 (18) Å0.33 × 0.23 × 0.20 mm
β = 117.199 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4652 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3069 reflections with I > 2σ(I)
Tmin = 0.505, Tmax = 0.721Rint = 0.042
13624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.08Δρmax = 0.75 e Å3
4652 reflectionsΔρmin = 0.62 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.26775 (4)0.05409 (3)0.60729 (4)0.01696 (14)
S10.43118 (6)0.18859 (5)0.50146 (6)0.01596 (18)
O10.28486 (19)0.08475 (16)0.52677 (18)0.0272 (5)
H1A0.35240.10590.53630.041*
H1B0.25280.13690.53740.041*
O20.39400 (18)0.00236 (15)0.77569 (16)0.0239 (5)
H2A0.43360.03820.83480.036*
H2B0.41690.05680.79830.036*
O30.24123 (19)0.18829 (16)0.69190 (18)0.0307 (6)
H3A0.27580.21020.76060.046*
H3B0.19330.23740.66920.046*
O40.4044 (2)0.12401 (17)0.57997 (19)0.0335 (6)
O50.31606 (19)0.22742 (16)0.40891 (18)0.0271 (5)
O60.49194 (19)0.12919 (17)0.44799 (18)0.0319 (6)
O70.5076 (2)0.27128 (16)0.56795 (18)0.0310 (6)
N10.0832 (2)0.07677 (17)0.44664 (19)0.0175 (5)
N20.1216 (2)0.02504 (17)0.64137 (19)0.0167 (5)
C10.0618 (3)0.1279 (2)0.3487 (2)0.0223 (7)
H10.12590.16460.34560.027*
C20.0501 (3)0.1283 (2)0.2535 (3)0.0232 (7)
H20.06430.16420.18470.028*
C30.1404 (3)0.0753 (2)0.7387 (2)0.0205 (6)
H30.21850.07390.80380.025*
C40.0104 (2)0.0281 (2)0.4461 (2)0.0138 (6)
Mn20.27208 (4)0.03864 (3)0.10592 (4)0.01670 (14)
S20.43943 (6)0.17926 (5)0.01112 (6)0.01673 (18)
O80.28871 (19)0.10874 (15)0.03961 (18)0.0263 (5)
H8A0.35840.12160.04830.039*
H8B0.25730.15590.05990.039*
O90.38962 (18)0.00536 (16)0.28077 (16)0.0247 (5)
H9A0.42060.03760.33430.037*
H9B0.44140.05170.30150.037*
O100.24556 (18)0.18206 (15)0.17427 (17)0.0251 (5)
H10A0.25810.20500.23950.038*
H10B0.17230.19830.14580.038*
O110.3665 (2)0.09401 (16)0.01777 (19)0.0291 (5)
O120.3684 (2)0.26991 (19)0.0240 (2)0.0554 (8)
O130.4819 (2)0.15436 (17)0.07476 (18)0.0305 (6)
O140.5442 (2)0.19069 (18)0.12602 (18)0.0377 (6)
N30.0900 (2)0.06865 (17)0.05238 (19)0.0161 (5)
N40.1205 (2)0.03640 (17)0.1383 (2)0.0170 (5)
C50.0733 (3)0.1240 (2)0.1460 (2)0.0204 (6)
H50.14090.15520.14830.025*
C60.0389 (3)0.1363 (2)0.2376 (2)0.0225 (7)
H60.05030.17530.30370.027*
C70.1351 (3)0.0905 (2)0.2315 (2)0.0208 (7)
H70.21370.09730.29490.025*
C80.0082 (3)0.0289 (2)0.0528 (2)0.0146 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0130 (3)0.0182 (3)0.0180 (2)0.00137 (17)0.0057 (2)0.00144 (18)
S10.0154 (4)0.0149 (4)0.0181 (4)0.0013 (3)0.0081 (3)0.0016 (3)
O10.0226 (12)0.0219 (12)0.0391 (13)0.0005 (9)0.0158 (11)0.0065 (10)
O20.0209 (12)0.0226 (12)0.0184 (10)0.0019 (9)0.0005 (9)0.0004 (9)
O30.0274 (13)0.0243 (13)0.0301 (12)0.0048 (9)0.0044 (10)0.0059 (10)
O40.0257 (13)0.0330 (14)0.0454 (14)0.0004 (10)0.0194 (11)0.0163 (11)
O50.0227 (13)0.0285 (13)0.0274 (12)0.0052 (9)0.0091 (10)0.0014 (10)
O60.0221 (13)0.0362 (14)0.0367 (13)0.0021 (10)0.0130 (11)0.0127 (11)
O70.0291 (14)0.0299 (13)0.0341 (12)0.0108 (10)0.0144 (11)0.0113 (10)
N10.0174 (13)0.0167 (13)0.0178 (12)0.0015 (10)0.0076 (11)0.0005 (10)
N20.0147 (13)0.0183 (13)0.0158 (12)0.0005 (9)0.0058 (10)0.0011 (10)
C10.0209 (17)0.0226 (16)0.0243 (16)0.0012 (12)0.0113 (14)0.0040 (13)
C20.0277 (18)0.0235 (17)0.0195 (15)0.0006 (13)0.0118 (14)0.0040 (13)
C30.0189 (16)0.0230 (16)0.0160 (14)0.0007 (12)0.0048 (12)0.0018 (12)
C40.0126 (14)0.0151 (14)0.0145 (14)0.0007 (10)0.0067 (11)0.0016 (11)
Mn20.0142 (3)0.0182 (3)0.0166 (2)0.00171 (17)0.00615 (19)0.00021 (18)
S20.0169 (4)0.0160 (4)0.0193 (4)0.0012 (3)0.0100 (3)0.0013 (3)
O80.0253 (13)0.0193 (12)0.0411 (13)0.0016 (9)0.0213 (11)0.0029 (10)
O90.0182 (12)0.0269 (12)0.0195 (11)0.0052 (9)0.0004 (9)0.0004 (9)
O100.0206 (12)0.0254 (12)0.0248 (11)0.0008 (9)0.0064 (10)0.0066 (9)
O110.0297 (13)0.0260 (13)0.0358 (13)0.0068 (9)0.0186 (11)0.0001 (10)
O120.0575 (19)0.0369 (16)0.090 (2)0.0299 (13)0.0495 (18)0.0336 (15)
O130.0343 (14)0.0358 (14)0.0312 (12)0.0135 (10)0.0236 (11)0.0124 (10)
O140.0369 (15)0.0439 (16)0.0240 (12)0.0175 (11)0.0068 (11)0.0047 (11)
N30.0154 (13)0.0156 (12)0.0170 (12)0.0024 (9)0.0070 (10)0.0001 (10)
N40.0153 (13)0.0191 (13)0.0162 (12)0.0015 (9)0.0070 (10)0.0008 (10)
C50.0228 (17)0.0199 (16)0.0232 (15)0.0019 (12)0.0145 (13)0.0036 (13)
C60.0251 (18)0.0240 (17)0.0204 (15)0.0040 (13)0.0120 (14)0.0087 (13)
C70.0224 (17)0.0205 (16)0.0165 (14)0.0032 (12)0.0062 (13)0.0054 (12)
C80.0174 (15)0.0116 (14)0.0145 (14)0.0008 (10)0.0071 (12)0.0015 (11)
Geometric parameters (Å, º) top
Mn1—O42.103 (2)Mn2—O112.105 (2)
Mn1—O22.1295 (19)Mn2—O92.1327 (19)
Mn1—O12.172 (2)Mn2—O82.181 (2)
Mn1—O32.190 (2)Mn2—O102.184 (2)
Mn1—N12.303 (2)Mn2—N32.287 (2)
Mn1—N22.308 (2)Mn2—N42.332 (2)
S1—O71.448 (2)S2—O121.437 (2)
S1—O61.464 (2)S2—O131.466 (2)
S1—O41.476 (2)S2—O141.467 (2)
S1—O51.476 (2)S2—O111.477 (2)
O1—H1A0.8400O8—H8A0.8400
O1—H1B0.8400O8—H8B0.8400
O2—H2A0.8400O9—H9A0.8400
O2—H2B0.8400O9—H9B0.8400
O3—H3A0.8400O10—H10A0.8400
O3—H3B0.8400O10—H10B0.8400
N1—C41.328 (3)N3—C81.328 (3)
N1—C11.348 (4)N3—C51.345 (3)
N2—C4i1.327 (3)N4—C8ii1.330 (3)
N2—C31.344 (4)N4—C71.339 (3)
C1—C21.372 (4)C5—C61.365 (4)
C1—H10.9500C5—H50.9500
C2—C3i1.368 (4)C6—C7ii1.376 (4)
C2—H20.9500C6—H60.9500
C3—H30.9500C7—H70.9500
C4—C4i1.492 (5)C8—C8ii1.494 (5)
O4—Mn1—O292.12 (8)O11—Mn2—O9112.59 (9)
O4—Mn1—O191.74 (9)O11—Mn2—O885.68 (8)
O2—Mn1—O191.52 (8)O9—Mn2—O891.55 (8)
O4—Mn1—O392.43 (9)O11—Mn2—O1097.96 (8)
O2—Mn1—O387.86 (8)O9—Mn2—O1088.21 (8)
O1—Mn1—O3175.80 (9)O8—Mn2—O10176.15 (8)
O4—Mn1—N1109.97 (9)O11—Mn2—N391.54 (9)
O2—Mn1—N1157.90 (9)O9—Mn2—N3155.79 (9)
O1—Mn1—N187.48 (8)O8—Mn2—N392.22 (8)
O3—Mn1—N191.53 (8)O10—Mn2—N386.44 (8)
O4—Mn1—N2178.47 (8)O11—Mn2—N4160.35 (8)
O2—Mn1—N286.41 (8)O9—Mn2—N485.05 (8)
O1—Mn1—N287.90 (8)O8—Mn2—N485.24 (8)
O3—Mn1—N287.92 (9)O10—Mn2—N490.92 (8)
N1—Mn1—N271.50 (8)N3—Mn2—N471.46 (8)
O7—S1—O6110.25 (13)O12—S2—O13109.38 (15)
O7—S1—O4109.04 (13)O12—S2—O14111.48 (16)
O6—S1—O4109.73 (14)O13—S2—O14109.04 (14)
O7—S1—O5110.26 (13)O12—S2—O11110.72 (15)
O6—S1—O5109.03 (12)O13—S2—O11108.32 (13)
O4—S1—O5108.51 (13)O14—S2—O11107.83 (13)
Mn1—O1—H1A121.6Mn2—O8—H8A114.0
Mn1—O1—H1B117.5Mn2—O8—H8B113.8
H1A—O1—H1B102.6H8A—O8—H8B114.0
Mn1—O2—H2A126.6Mn2—O9—H9A121.2
Mn1—O2—H2B129.0Mn2—O9—H9B126.3
H2A—O2—H2B104.4H9A—O9—H9B103.7
Mn1—O3—H3A133.3Mn2—O10—H10A136.6
Mn1—O3—H3B134.5Mn2—O10—H10B112.3
H3A—O3—H3B92.2H10A—O10—H10B90.8
S1—O4—Mn1145.49 (14)S2—O11—Mn2143.88 (14)
C4—N1—C1116.2 (2)C8—N3—C5116.6 (2)
C4—N1—Mn1116.88 (18)C8—N3—Mn2117.95 (18)
C1—N1—Mn1126.6 (2)C5—N3—Mn2125.42 (19)
C4i—N2—C3116.6 (2)C8ii—N4—C7116.3 (3)
C4i—N2—Mn1117.25 (18)C8ii—N4—Mn2116.68 (18)
C3—N2—Mn1125.96 (19)C7—N4—Mn2126.9 (2)
N1—C1—C2121.7 (3)N3—C5—C6121.3 (3)
N1—C1—H1119.2N3—C5—H5119.3
C2—C1—H1119.2C6—C5—H5119.3
C3i—C2—C1117.7 (3)C5—C6—C7ii118.0 (3)
C3i—C2—H2121.2C5—C6—H6121.0
C1—C2—H2121.2C7ii—C6—H6121.0
N2—C3—C2i121.7 (3)N4—C7—C6ii121.6 (3)
N2—C3—H3119.2N4—C7—H7119.2
C2i—C3—H3119.2C6ii—C7—H7119.2
N2i—C4—N1126.2 (2)N3—C8—N4ii126.1 (2)
N2i—C4—C4i116.5 (3)N3—C8—C8ii117.3 (3)
N1—C4—C4i117.4 (3)N4ii—C8—C8ii116.6 (3)
O7—S1—O4—Mn1127.8 (3)O14—S2—O11—Mn257.7 (3)
O6—S1—O4—Mn1111.4 (3)O9—Mn2—O11—S270.5 (3)
O5—S1—O4—Mn17.7 (3)O8—Mn2—O11—S2160.4 (2)
O2—Mn1—O4—S1174.7 (3)O10—Mn2—O11—S220.9 (2)
O1—Mn1—O4—S193.7 (3)N3—Mn2—O11—S2107.5 (2)
O3—Mn1—O4—S186.7 (3)N4—Mn2—O11—S2137.0 (2)
N1—Mn1—O4—S15.8 (3)O11—Mn2—N3—C8167.6 (2)
O4—Mn1—N1—C4173.38 (19)O9—Mn2—N3—C816.9 (3)
O2—Mn1—N1—C45.4 (4)O8—Mn2—N3—C881.9 (2)
O1—Mn1—N1—C482.4 (2)O10—Mn2—N3—C894.5 (2)
O3—Mn1—N1—C493.5 (2)N4—Mn2—N3—C82.31 (19)
N2—Mn1—N1—C46.18 (19)O11—Mn2—N3—C512.6 (2)
O4—Mn1—N1—C10.9 (3)O9—Mn2—N3—C5162.9 (2)
O2—Mn1—N1—C1179.7 (2)O8—Mn2—N3—C598.4 (2)
O1—Mn1—N1—C191.8 (2)O10—Mn2—N3—C585.2 (2)
O3—Mn1—N1—C192.3 (2)N4—Mn2—N3—C5177.4 (2)
N2—Mn1—N1—C1179.5 (3)O11—Mn2—N4—C8ii29.3 (4)
O2—Mn1—N2—C4i173.7 (2)O9—Mn2—N4—C8ii176.0 (2)
O1—Mn1—N2—C4i82.0 (2)O8—Mn2—N4—C8ii92.0 (2)
O3—Mn1—N2—C4i98.4 (2)O10—Mn2—N4—C8ii87.9 (2)
N1—Mn1—N2—C4i6.04 (19)N3—Mn2—N4—C8ii1.92 (19)
O2—Mn1—N2—C30.8 (2)O11—Mn2—N4—C7147.2 (3)
O1—Mn1—N2—C392.4 (2)O9—Mn2—N4—C77.5 (2)
O3—Mn1—N2—C387.2 (2)O8—Mn2—N4—C784.5 (2)
N1—Mn1—N2—C3179.5 (2)O10—Mn2—N4—C795.6 (2)
C4—N1—C1—C20.9 (4)N3—Mn2—N4—C7178.5 (2)
Mn1—N1—C1—C2173.5 (2)C8—N3—C5—C61.5 (4)
N1—C1—C2—C3i0.4 (4)Mn2—N3—C5—C6178.8 (2)
C4i—N2—C3—C2i1.1 (4)N3—C5—C6—C7ii0.2 (4)
Mn1—N2—C3—C2i173.4 (2)C8ii—N4—C7—C6ii0.6 (4)
C1—N1—C4—N2i0.3 (4)Mn2—N4—C7—C6ii176.0 (2)
Mn1—N1—C4—N2i174.6 (2)C5—N3—C8—N4ii2.0 (4)
C1—N1—C4—C4i179.3 (3)Mn2—N3—C8—N4ii178.3 (2)
Mn1—N1—C4—C4i5.8 (4)C5—N3—C8—C8ii177.3 (3)
O12—S2—O11—Mn264.5 (3)Mn2—N3—C8—C8ii2.4 (4)
O13—S2—O11—Mn2175.6 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6iii0.841.882.709 (3)170
O1—H1B···O12iv0.841.902.700 (3)160
O2—H2A···O13v0.841.862.655 (3)158
O2—H2B···O14iii0.841.982.804 (3)168
O3—H3A···O12v0.842.603.434 (4)175
O3—H3B···O14vi0.841.932.721 (3)157
O8—H8A···O13vii0.841.912.745 (3)177
O8—H8B···O5iv0.841.932.766 (3)173
O9—H9A···O60.841.802.636 (3)178
O9—H9B···O4iii0.842.062.839 (3)153
O10—H10A···O50.841.982.804 (3)165
O10—H10B···O7viii0.841.872.705 (3)174
Symmetry codes: (iii) x+1, y, z+1; (iv) x+1/2, y1/2, z+1/2; (v) x, y, z+1; (vi) x1/2, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn2(SO4)2(C8H6N4)(H2O)6]
Mr568.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)12.4401 (18), 13.2640 (19), 12.8951 (18)
β (°) 117.199 (3)
V3)1892.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.33 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.505, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
13624, 4652, 3069
Rint0.042
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.08
No. of reflections4652
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.62

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mn1—O42.103 (2)Mn2—O112.105 (2)
Mn1—O22.1295 (19)Mn2—O92.1327 (19)
Mn1—O12.172 (2)Mn2—O82.181 (2)
Mn1—O32.190 (2)Mn2—O102.184 (2)
Mn1—N12.303 (2)Mn2—N32.287 (2)
Mn1—N22.308 (2)Mn2—N42.332 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6i0.841.882.709 (3)169.7
O1—H1B···O12ii0.841.902.700 (3)159.9
O2—H2A···O13iii0.841.862.655 (3)157.7
O2—H2B···O14i0.841.982.804 (3)167.9
O3—H3A···O12iii0.842.603.434 (4)175.0
O3—H3B···O14iv0.841.932.721 (3)157.0
O8—H8A···O13v0.841.912.745 (3)177.2
O8—H8B···O5ii0.841.932.766 (3)173.4
O9—H9A···O60.841.802.636 (3)177.9
O9—H9B···O4i0.842.062.839 (3)153.3
O10—H10A···O50.841.982.804 (3)164.7
O10—H10B···O7vi0.841.872.705 (3)174.1
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x, y, z+1; (iv) x1/2, y+1/2, z+1/2; (v) x+1, y, z; (vi) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Munno, G., Ruiz, R., Lloret, F., Faus, J., Sessoli, R. & Julve, M. (1995). Inorg. Chem. 34, 408–411.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 313–314.  CAS Google Scholar
First citationHong, D. M., Chu, Y. Y. & Wei, H. H. (1996). Polyhedron, 15, 447–452.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds