organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ethyl­piperidinium chloride

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bVirginia Commonwealth University, Chemistry School, USA, cSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 6 September 2011; accepted 10 September 2011; online 17 September 2011)

In the title molecular salt, C7H16N+·Cl, the piperidinium ring adopts a chair conformation. In the crystal, the two components are connected by N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming a supra­molecular double-chain structure along the c axis.

Related literature

For biological applications of piperidine, see: Waelbroeck et al. (1992[Waelbroeck, M., Camus, J., Tastenoy, M. & Christophe, J. (1992). Br. J. Pharmacol. 105, 97-102.]); El Hadri et al. (1995[El Hadri, A., Maldivi, P., Leclerc, G. & Rocher, J.-P. (1995). Bioorg. Med. Chem. 3, 1183-1201.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C7H16N+·Cl

  • Mr = 149.66

  • Orthorhombic, P b c n

  • a = 24.2052 (6) Å

  • b = 9.7594 (3) Å

  • c = 7.2764 (2) Å

  • V = 1718.89 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 0.72 × 0.27 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.778, Tmax = 0.948

  • 50389 measured reflections

  • 4453 independent reflections

  • 3438 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.088

  • S = 1.07

  • 4453 reflections

  • 91 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯Cl1i 0.886 (14) 2.220 (14) 3.1054 (7) 176.9 (11)
N1—H2NA⋯Cl1 0.899 (15) 2.217 (15) 3.1149 (7) 177.8 (12)
C1—H1A⋯Cl1ii 0.99 2.80 3.6121 (8) 139
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. The piperidine nucleus is present in a wide range of biologically active compounds. For example, the binding properties of 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and its analogs have been evaluated at muscarinic receptors in human neuroblastoma NB-OK1 cells (M1 receptor subtype), rat heart (M2 subtype), rat pancreas (M3 subtype) and the putative M4 receptor subtype in striatum (Waelbroeck et al., 1992). NMDA receptor antagonist properties of piperidine-2-carboxylic acid derivatives have also been reported (El Hadri et al., 1995). Herein, we have present the crystal structure of the title compound (I).

The asymmetric unit of (I), (Fig. 1), consists of a 2-ethylpiperidinium cation and a chloride anion. The piperidine (N1/C1–C5) ring adopts a chair conformation with puckering parameters Q = 0.5708 (9) Å, θ = 180.00 (9)° and φ = 282 (7)° (Cremer & Pople, 1975). In the crystal structure (Fig. 2), the cations and anions are connected by intermolecular N1—H1NA···Cl1, N1—H2NA···Cl1 and C1—H1A···Cl1 hydrogen bonds (Table 1), forming one-dimensional supramolecular chains along the c-axis.

Related literature top

For biological applications of piperidine, see: Waelbroeck et al. (1992); El Hadri et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

In a round bottom flask, 25ml of tetrahydronfuran (THF) was mixed with 2-ethylpiperidine (0.01 mol, 0.8 g) with stirring. Drops of benzylchloride (0.01 mol, 1.0 g) dissolved in THF was then added. The reaction mixture was refluxed for 30 min. The precipitate formed was washed with THF. The precipitate was then dissolved in methanol at room temperature. After few days, colourless needle-shaped crystals were formed by slow evaporation.

Refinement top

Atoms H1N1 and H2N1 were located from a difference Fourier maps and refined freely [N—H = 0.886 (13)–0.896 (14) Å]. The remaining H atoms were positioned geometrically (C—H = 0.98–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. The piperidine nucleus is present in a wide range of biologically active compounds. For example, the binding properties of 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and its analogs have been evaluated at muscarinic receptors in human neuroblastoma NB-OK1 cells (M1 receptor subtype), rat heart (M2 subtype), rat pancreas (M3 subtype) and the putative M4 receptor subtype in striatum (Waelbroeck et al., 1992). NMDA receptor antagonist properties of piperidine-2-carboxylic acid derivatives have also been reported (El Hadri et al., 1995). Herein, we have present the crystal structure of the title compound (I).

The asymmetric unit of (I), (Fig. 1), consists of a 2-ethylpiperidinium cation and a chloride anion. The piperidine (N1/C1–C5) ring adopts a chair conformation with puckering parameters Q = 0.5708 (9) Å, θ = 180.00 (9)° and φ = 282 (7)° (Cremer & Pople, 1975). In the crystal structure (Fig. 2), the cations and anions are connected by intermolecular N1—H1NA···Cl1, N1—H2NA···Cl1 and C1—H1A···Cl1 hydrogen bonds (Table 1), forming one-dimensional supramolecular chains along the c-axis.

For biological applications of piperidine, see: Waelbroeck et al. (1992); El Hadri et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. An intermolecular N—H···Cl hydrogen bond is shown by a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis.
2-Ethylpiperidinium chloride top
Crystal data top
C7H16N+·ClF(000) = 656
Mr = 149.66Dx = 1.157 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9898 reflections
a = 24.2052 (6) Åθ = 2.3–36.9°
b = 9.7594 (3) ŵ = 0.37 mm1
c = 7.2764 (2) ÅT = 100 K
V = 1718.89 (8) Å3Block, colourless
Z = 80.72 × 0.27 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4453 independent reflections
Radiation source: fine-focus sealed tube3438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 37.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4040
Tmin = 0.778, Tmax = 0.948k = 1616
50389 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.4206P]
where P = (Fo2 + 2Fc2)/3
4453 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C7H16N+·ClV = 1718.89 (8) Å3
Mr = 149.66Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 24.2052 (6) ŵ = 0.37 mm1
b = 9.7594 (3) ÅT = 100 K
c = 7.2764 (2) Å0.72 × 0.27 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4453 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3438 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.948Rint = 0.045
50389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.34 e Å3
4453 reflectionsΔρmin = 0.27 e Å3
91 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39971 (3)0.13082 (7)0.95142 (9)0.01471 (11)
C10.45090 (3)0.18923 (8)1.03505 (12)0.01927 (15)
H1A0.48380.14820.97610.023*
H1B0.45200.16701.16780.023*
C20.45182 (4)0.34373 (9)1.00941 (12)0.02298 (17)
H2A0.45430.36550.87680.028*
H2B0.48480.38231.07100.028*
C30.39979 (4)0.40873 (9)1.08969 (12)0.02384 (17)
H3A0.39990.50841.06470.029*
H3B0.39930.39551.22460.029*
C40.34807 (4)0.34393 (8)1.00500 (12)0.01959 (15)
H4A0.31480.38371.06380.024*
H4B0.34670.36640.87240.024*
C50.34710 (3)0.18860 (8)1.02842 (10)0.01526 (13)
H5A0.34520.16671.16250.018*
C60.29921 (4)0.11725 (8)0.93081 (12)0.01881 (14)
H6A0.30110.13820.79780.023*
H6B0.30330.01690.94550.023*
C70.24270 (4)0.16025 (11)1.00354 (15)0.02814 (19)
H7A0.21380.11060.93690.042*
H7B0.23780.25900.98550.042*
H7C0.24030.13881.13490.042*
H1NA0.4002 (5)0.0410 (14)0.9689 (17)0.021 (3)*
H2NA0.4007 (4)0.1476 (13)0.830 (2)0.024 (3)*
Cl10.401145 (8)0.182057 (18)0.52892 (2)0.01611 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0164 (3)0.0142 (3)0.0135 (3)0.0003 (2)0.0004 (2)0.0007 (2)
C10.0173 (3)0.0207 (3)0.0198 (3)0.0028 (3)0.0031 (3)0.0026 (3)
C20.0263 (4)0.0213 (4)0.0213 (4)0.0086 (3)0.0037 (3)0.0031 (3)
C30.0368 (5)0.0158 (3)0.0189 (3)0.0042 (3)0.0016 (3)0.0012 (3)
C40.0254 (4)0.0137 (3)0.0197 (3)0.0020 (3)0.0015 (3)0.0000 (3)
C50.0176 (3)0.0142 (3)0.0140 (3)0.0010 (2)0.0026 (3)0.0008 (2)
C60.0166 (3)0.0188 (3)0.0210 (3)0.0001 (3)0.0004 (3)0.0002 (3)
C70.0186 (4)0.0286 (4)0.0372 (5)0.0007 (3)0.0062 (4)0.0015 (4)
Cl10.02022 (9)0.01473 (8)0.01339 (7)0.00044 (6)0.00104 (6)0.00007 (5)
Geometric parameters (Å, º) top
N1—C11.4935 (11)C3—H3B0.9900
N1—C51.5012 (10)C4—C51.5256 (11)
N1—H1NA0.886 (13)C4—H4A0.9900
N1—H2NA0.896 (14)C4—H4B0.9900
C1—C21.5195 (12)C5—C61.5275 (11)
C1—H1A0.9900C5—H5A1.0000
C1—H1B0.9900C6—C71.5256 (13)
C2—C31.5264 (14)C6—H6A0.9900
C2—H2A0.9900C6—H6B0.9900
C2—H2B0.9900C7—H7A0.9800
C3—C41.5318 (13)C7—H7B0.9800
C3—H3A0.9900C7—H7C0.9800
C1—N1—C5114.10 (6)C5—C4—C3112.20 (7)
C1—N1—H1NA108.0 (7)C5—C4—H4A109.2
C5—N1—H1NA109.2 (7)C3—C4—H4A109.2
C1—N1—H2NA108.0 (7)C5—C4—H4B109.2
C5—N1—H2NA108.7 (7)C3—C4—H4B109.2
H1NA—N1—H2NA108.7 (11)H4A—C4—H4B107.9
N1—C1—C2109.93 (7)N1—C5—C4108.57 (7)
N1—C1—H1A109.7N1—C5—C6107.40 (6)
C2—C1—H1A109.7C4—C5—C6114.38 (7)
N1—C1—H1B109.7N1—C5—H5A108.8
C2—C1—H1B109.7C4—C5—H5A108.8
H1A—C1—H1B108.2C6—C5—H5A108.8
C1—C2—C3110.69 (7)C7—C6—C5113.19 (7)
C1—C2—H2A109.5C7—C6—H6A108.9
C3—C2—H2A109.5C5—C6—H6A108.9
C1—C2—H2B109.5C7—C6—H6B108.9
C3—C2—H2B109.5C5—C6—H6B108.9
H2A—C2—H2B108.1H6A—C6—H6B107.8
C2—C3—C4110.41 (7)C6—C7—H7A109.5
C2—C3—H3A109.6C6—C7—H7B109.5
C4—C3—H3A109.6H7A—C7—H7B109.5
C2—C3—H3B109.6C6—C7—H7C109.5
C4—C3—H3B109.6H7A—C7—H7C109.5
H3A—C3—H3B108.1H7B—C7—H7C109.5
C5—N1—C1—C258.09 (9)C1—N1—C5—C6179.25 (6)
N1—C1—C2—C356.11 (9)C3—C4—C5—N154.61 (9)
C1—C2—C3—C455.59 (9)C3—C4—C5—C6174.51 (7)
C2—C3—C4—C555.68 (9)N1—C5—C6—C7176.69 (7)
C1—N1—C5—C456.59 (8)C4—C5—C6—C762.75 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···Cl1i0.886 (14)2.220 (14)3.1054 (7)176.9 (11)
N1—H2NA···Cl10.899 (15)2.217 (15)3.1149 (7)177.8 (12)
C1—H1A···Cl1ii0.992.803.6121 (8)139
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H16N+·Cl
Mr149.66
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)24.2052 (6), 9.7594 (3), 7.2764 (2)
V3)1718.89 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.72 × 0.27 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.778, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
50389, 4453, 3438
Rint0.045
(sin θ/λ)max1)0.852
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.088, 1.07
No. of reflections4453
No. of parameters91
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···Cl1i0.886 (14)2.220 (14)3.1054 (7)176.9 (11)
N1—H2NA···Cl10.899 (15)2.217 (15)3.1149 (7)177.8 (12)
C1—H1A···Cl1ii0.992.803.6121 (8)139
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AS gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PKIMIA/811055). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hadri, A., Maldivi, P., Leclerc, G. & Rocher, J.-P. (1995). Bioorg. Med. Chem. 3, 1183–1201.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaelbroeck, M., Camus, J., Tastenoy, M. & Christophe, J. (1992). Br. J. Pharmacol. 105, 97–102.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds