organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1H-1,2,4-Triazol-4-ium 4-nitro­benzene­sulfonate monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 6 September 2011; accepted 10 September 2011; online 17 September 2011)

In the 4-nitro­benzene sulfonate anion of the title compound, C2H4N3+·C6H4NO5S·H2O, the nitro group is slightly twisted from the plane of the benzene ring [dihedral angle = 2.8 (3)°]. In the crystal, the three components are linked via N—H⋯O, O—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane. A short inter­molecular O⋯N contact of 2.872 (3) Å is also observed between the nitro and sulfonate groups.

Related literature

For details and applications of aromatic sulfonates, see: Yachi et al. (1989[Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1-7.]); Spungin et al. (1992[Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett. 311, 155-160.]); Jiang et al. (1990[Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139-149.]); Narayanan & Krakow (1983[Narayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res. 11, 2701-2716.]).

[Scheme 1]

Experimental

Crystal data
  • C2H4N3+·C6H4NO5S·H2O

  • Mr = 290.26

  • Monoclinic, P 21 /c

  • a = 14.0931 (13) Å

  • b = 6.4859 (6) Å

  • c = 14.5707 (14) Å

  • β = 117.182 (2)°

  • V = 1184.77 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.41 × 0.28 × 0.05 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.986

  • 10925 measured reflections

  • 2692 independent reflections

  • 2136 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.144

  • S = 1.07

  • 2692 reflections

  • 188 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1NA⋯O5i 0.88 (4) 1.88 (4) 2.744 (3) 169 (2)
O1W—H1W⋯N3 0.91 (4) 2.17 (4) 3.041 (3) 160 (4)
N2—H1NB⋯O1Wii 0.86 (4) 1.84 (4) 2.692 (3) 171 (3)
O1W—H2W⋯O3iii 0.95 (4) 1.86 (4) 2.774 (3) 161 (5)
C7—H7A⋯O4iv 0.93 2.36 3.063 (3) 132
C8—H8A⋯O1 0.93 2.54 3.186 (4) 126
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, there has been of great interest in the design and utilization of 1,2,4-triazole and its derivatives in coordination and biological chemistry for they represent the simple small molecular ligands. Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure of the title compound (I).

The asymmetric unit of the title compound, (Fig. 1), contains a protonated 1,2,4-triazolinium cation, a 4-nitrobenzenesulfonate anion and a water molecule. In the 4-nitrobenzenesulfonate anion, the nitro and sulfonate groups are twisted slightly from the ring to which they are attached with the dihedral angles between the O1/O2/N1 and C1–C6 planes, and the S1/O3/O5 and C1–C6 planes being 2.8 (3) and 88.85 (13)°, respectively.

In the crystal structure, (Fig. 2), the ion pairs and water molecules are linked via intermolecular N—H···O, O—H···N, O—H···O and C—H···O hydrogen bonds (Table 1), forming two-dimensional networks parallel to (100). A short O···N contact of 2.87 Å is also observed.

Related literature top

For details and applications of aromatic sulfonates, see: Yachi et al. (1989); Spungin et al. (1992); Jiang et al. (1990); Narayanan & Krakow (1983).

Experimental top

A methanol solution (20 ml) of 1-(p-Nitrobenzenesulfonayl)-1H-1,2,4-triazole (63.55 mg, Aldrich) was warmed over a heating magnetic stirrer for 15 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement top

Atoms H1NA and H1NB were located in a difference Fourier map and refined freely [N—H = 0.86 (3)–0.87 (3) Å]. Atoms H1W and H2W were also located in a difference map and were refined with restraints of bond lengths and angles [O—H = 0.917 (18)–0.950 (18) Å and H2W—O1W—H1W = 110 (3)°]. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

In recent years, there has been of great interest in the design and utilization of 1,2,4-triazole and its derivatives in coordination and biological chemistry for they represent the simple small molecular ligands. Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure of the title compound (I).

The asymmetric unit of the title compound, (Fig. 1), contains a protonated 1,2,4-triazolinium cation, a 4-nitrobenzenesulfonate anion and a water molecule. In the 4-nitrobenzenesulfonate anion, the nitro and sulfonate groups are twisted slightly from the ring to which they are attached with the dihedral angles between the O1/O2/N1 and C1–C6 planes, and the S1/O3/O5 and C1–C6 planes being 2.8 (3) and 88.85 (13)°, respectively.

In the crystal structure, (Fig. 2), the ion pairs and water molecules are linked via intermolecular N—H···O, O—H···N, O—H···O and C—H···O hydrogen bonds (Table 1), forming two-dimensional networks parallel to (100). A short O···N contact of 2.87 Å is also observed.

For details and applications of aromatic sulfonates, see: Yachi et al. (1989); Spungin et al. (1992); Jiang et al. (1990); Narayanan & Krakow (1983).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. Intermolecular O—H···N and C—H···O hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines represent hydrogen bonds.
1H-1,2,4-Triazol-4-ium 4-nitrobenzenesulfonate monohydrate top
Crystal data top
C2H4N3+·C6H4NO5S·H2OF(000) = 600
Mr = 290.26Dx = 1.627 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3747 reflections
a = 14.0931 (13) Åθ = 2.8–30.9°
b = 6.4859 (6) ŵ = 0.31 mm1
c = 14.5707 (14) ÅT = 296 K
β = 117.182 (2)°Block, colourless
V = 1184.77 (19) Å30.41 × 0.28 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2692 independent reflections
Radiation source: fine-focus sealed tube2136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1816
Tmin = 0.885, Tmax = 0.986k = 88
10925 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.2559P]
where P = (Fo2 + 2Fc2)/3
2692 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.27 e Å3
3 restraintsΔρmin = 0.37 e Å3
Crystal data top
C2H4N3+·C6H4NO5S·H2OV = 1184.77 (19) Å3
Mr = 290.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0931 (13) ŵ = 0.31 mm1
b = 6.4859 (6) ÅT = 296 K
c = 14.5707 (14) Å0.41 × 0.28 × 0.05 mm
β = 117.182 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2692 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2136 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.986Rint = 0.038
10925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
2692 reflectionsΔρmin = 0.37 e Å3
188 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.09777 (16)0.2748 (3)0.10622 (14)0.0521 (5)
H2W0.165 (2)0.336 (7)0.125 (4)0.126 (16)*
H1W0.066 (3)0.338 (7)0.141 (3)0.130 (18)*
O30.72455 (14)0.0217 (3)0.38351 (14)0.0535 (5)
O40.83055 (14)0.2569 (3)0.49177 (16)0.0520 (5)
O50.75198 (13)0.0065 (3)0.55875 (13)0.0441 (4)
N10.34545 (15)0.6163 (3)0.32475 (15)0.0384 (5)
C10.62491 (17)0.4703 (4)0.39475 (18)0.0357 (5)
H1A0.68650.52960.39820.043*
C20.53180 (18)0.5842 (3)0.35933 (18)0.0360 (5)
H2A0.52930.71950.33730.043*
C30.44280 (16)0.4921 (3)0.35755 (16)0.0313 (5)
C40.44120 (17)0.2906 (4)0.38632 (18)0.0365 (5)
H4A0.37950.23240.38320.044*
C50.53449 (17)0.1771 (4)0.42016 (18)0.0355 (5)
H5A0.53590.04020.43970.043*
C60.62590 (16)0.2680 (3)0.42492 (15)0.0293 (4)
S10.74353 (4)0.11570 (9)0.46843 (4)0.03281 (19)
O10.26690 (14)0.5340 (3)0.32361 (16)0.0553 (5)
O20.34762 (14)0.7968 (3)0.30119 (15)0.0513 (5)
C70.08790 (19)0.3289 (4)0.33222 (18)0.0377 (5)
H7A0.14810.30870.34180.045*
C80.07316 (18)0.3574 (4)0.35568 (19)0.0386 (5)
H8A0.14730.35930.38850.046*
N20.01283 (16)0.3160 (3)0.40391 (16)0.0372 (4)
H1NA0.141 (3)0.397 (4)0.185 (3)0.057 (9)*
N30.01514 (15)0.3939 (3)0.25866 (15)0.0378 (5)
N40.08644 (15)0.3754 (3)0.24581 (16)0.0356 (4)
H1NB0.033 (2)0.284 (4)0.467 (3)0.056 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0560 (12)0.0645 (12)0.0418 (10)0.0220 (9)0.0277 (9)0.0133 (9)
O30.0481 (10)0.0691 (12)0.0361 (9)0.0226 (9)0.0128 (8)0.0110 (9)
O40.0309 (9)0.0637 (12)0.0627 (12)0.0006 (7)0.0225 (8)0.0041 (9)
O50.0381 (9)0.0573 (10)0.0332 (9)0.0099 (7)0.0131 (7)0.0110 (8)
N10.0338 (10)0.0511 (12)0.0294 (10)0.0095 (8)0.0136 (8)0.0016 (9)
C10.0303 (10)0.0394 (11)0.0397 (12)0.0027 (9)0.0179 (9)0.0001 (10)
C20.0378 (12)0.0345 (11)0.0376 (12)0.0023 (9)0.0188 (9)0.0036 (9)
C30.0289 (10)0.0382 (11)0.0250 (10)0.0054 (8)0.0108 (8)0.0016 (9)
C40.0273 (10)0.0432 (12)0.0400 (13)0.0006 (9)0.0163 (9)0.0011 (10)
C50.0345 (11)0.0352 (11)0.0397 (12)0.0022 (9)0.0195 (10)0.0049 (10)
C60.0284 (10)0.0374 (11)0.0229 (10)0.0026 (8)0.0126 (8)0.0001 (8)
S10.0276 (3)0.0439 (3)0.0256 (3)0.0065 (2)0.0110 (2)0.0010 (2)
O10.0336 (9)0.0730 (12)0.0644 (13)0.0111 (8)0.0267 (8)0.0157 (10)
O20.0509 (11)0.0436 (10)0.0545 (12)0.0141 (8)0.0199 (9)0.0063 (9)
C70.0367 (12)0.0416 (12)0.0370 (12)0.0036 (10)0.0188 (10)0.0047 (10)
C80.0335 (11)0.0392 (12)0.0407 (13)0.0020 (9)0.0149 (10)0.0004 (10)
N20.0414 (11)0.0373 (10)0.0298 (11)0.0010 (8)0.0136 (8)0.0021 (8)
N30.0375 (10)0.0408 (10)0.0369 (11)0.0075 (8)0.0186 (8)0.0011 (8)
N40.0312 (9)0.0402 (10)0.0309 (10)0.0045 (8)0.0102 (8)0.0015 (8)
Geometric parameters (Å, º) top
O1W—H2W0.950 (18)C4—C51.386 (3)
O1W—H1W0.917 (18)C4—H4A0.9300
O3—S11.4472 (18)C5—C61.389 (3)
O4—S11.4411 (18)C5—H5A0.9300
O5—S11.4508 (18)C6—S11.779 (2)
N1—O11.222 (3)C7—N41.304 (3)
N1—O21.224 (3)C7—N21.326 (3)
N1—C31.470 (3)C7—H7A0.9300
C1—C61.382 (3)C8—N31.291 (3)
C1—C21.384 (3)C8—N21.355 (3)
C1—H1A0.9300C8—H8A0.9300
C2—C31.379 (3)N2—H1NB0.86 (3)
C2—H2A0.9300N3—N41.362 (3)
C3—C41.376 (3)N4—H1NA0.87 (3)
H2W—O1W—H1W110 (3)C5—C6—S1118.29 (16)
O1—N1—O2123.5 (2)O4—S1—O3113.45 (12)
O1—N1—C3118.0 (2)O4—S1—O5112.82 (11)
O2—N1—C3118.42 (19)O3—S1—O5112.42 (12)
C6—C1—C2119.7 (2)O4—S1—C6106.58 (10)
C6—C1—H1A120.1O3—S1—C6105.01 (10)
C2—C1—H1A120.1O5—S1—C6105.75 (10)
C3—C2—C1118.4 (2)N4—C7—N2107.0 (2)
C3—C2—H2A120.8N4—C7—H7A126.5
C1—C2—H2A120.8N2—C7—H7A126.5
C4—C3—C2123.16 (19)N3—C8—N2111.8 (2)
C4—C3—N1118.48 (19)N3—C8—H8A124.1
C2—C3—N1118.35 (19)N2—C8—H8A124.1
C3—C4—C5117.9 (2)C7—N2—C8106.2 (2)
C3—C4—H4A121.0C7—N2—H1NB125 (2)
C5—C4—H4A121.0C8—N2—H1NB129 (2)
C4—C5—C6120.0 (2)C8—N3—N4103.57 (19)
C4—C5—H5A120.0C7—N4—N3111.5 (2)
C6—C5—H5A120.0C7—N4—H1NA128 (2)
C1—C6—C5120.84 (19)N3—N4—H1NA121 (2)
C1—C6—S1120.85 (16)
C6—C1—C2—C31.4 (3)C4—C5—C6—S1179.78 (17)
C1—C2—C3—C42.0 (3)C1—C6—S1—O416.1 (2)
C1—C2—C3—N1177.05 (19)C5—C6—S1—O4165.17 (17)
O1—N1—C3—C40.7 (3)C1—C6—S1—O3104.6 (2)
O2—N1—C3—C4178.5 (2)C5—C6—S1—O374.2 (2)
O1—N1—C3—C2179.8 (2)C1—C6—S1—O5136.35 (19)
O2—N1—C3—C20.6 (3)C5—C6—S1—O544.87 (19)
C2—C3—C4—C51.1 (3)N4—C7—N2—C80.1 (3)
N1—C3—C4—C5178.02 (19)N3—C8—N2—C70.3 (3)
C3—C4—C5—C60.5 (3)N2—C8—N3—N40.3 (3)
C2—C1—C6—C50.0 (3)N2—C7—N4—N30.0 (3)
C2—C1—C6—S1178.76 (17)C8—N3—N4—C70.2 (2)
C4—C5—C6—C11.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1NA···O5i0.88 (4)1.88 (4)2.744 (3)169 (2)
O1W—H1W···N30.91 (4)2.17 (4)3.041 (3)160 (4)
N2—H1NB···O1Wii0.86 (4)1.84 (4)2.692 (3)171 (3)
O1W—H2W···O3iii0.95 (4)1.86 (4)2.774 (3)161 (5)
C7—H7A···O4iv0.932.363.063 (3)132
C8—H8A···O10.932.543.186 (4)126
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC2H4N3+·C6H4NO5S·H2O
Mr290.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.0931 (13), 6.4859 (6), 14.5707 (14)
β (°) 117.182 (2)
V3)1184.77 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.41 × 0.28 × 0.05
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.885, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
10925, 2692, 2136
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.144, 1.07
No. of reflections2692
No. of parameters188
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1NA···O5i0.88 (4)1.88 (4)2.744 (3)169 (2)
O1W—H1W···N30.91 (4)2.17 (4)3.041 (3)160 (4)
N2—H1NB···O1Wii0.86 (4)1.84 (4)2.692 (3)171 (3)
O1W—H2W···O3iii0.95 (4)1.86 (4)2.774 (3)161 (5)
C7—H7A···O4iv0.93002.36003.063 (3)132.00
C8—H8A···O10.93002.54003.186 (4)126.00
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH, HKF and IAR thank the Ministry of Higher Education, Malaysia and Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/6711171. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139–149.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNarayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res. 11, 2701–2716.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett. 311, 155–160.  CrossRef PubMed CAS Web of Science Google Scholar
First citationYachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1–7.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds