organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-5-phen­­oxy-1-phenyl-1H-pyrazole-4-carbaldehyde

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 6 September 2011; accepted 10 September 2011; online 14 September 2011)

In the title compound, C17H14N2O2, the pyrazole ring makes dihedral angles of 73.67 (4) and 45.99 (4)°, respectively, with the adjacent phenyl and phen­oxy rings. In the crystal, there are no classical hydrogen bonds, but a weak C—H⋯π inter­action is observed.

Related literature

For biological applications of pyrazole derivatives, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Girisha et al. (2010[Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree. (2010). Eur. J. Med. Chem. 45, 4640-4644.]). For a related structure, see: Shahani et al. (2011[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Venkatesh, M. (2011). Acta Cryst. E67, o475.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O2

  • Mr = 278.30

  • Monoclinic, P 21 /c

  • a = 8.6207 (1) Å

  • b = 7.1695 (1) Å

  • c = 22.9228 (3) Å

  • β = 99.168 (1)°

  • V = 1398.67 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.46 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.961, Tmax = 0.988

  • 24894 measured reflections

  • 6610 independent reflections

  • 5063 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.06

  • 6610 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11ACg1i 0.95 2.62 3.5052 (8) 156
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoles are a novel class of heterocyclic compounds possessing wide variety of application in the agrochemical and pharmaceutical industries. Derivatives of pyrazoles are found to show good antibacterial (Rai et al., 2008), anti-inflammatory and analgesic (Isloor et al., 2009) activities. In view of these observations and in continuation of our search for biologically active pyrazole derivatives, we herein report the crystal structure of 3-methyl-5-phenoxy-1-phenyl-1H-pyrazole-4-carbaldehyde. Reaction of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde with phenol afforded 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (Girisha et al., 2010).

The asymmetric unit of the title compound is shown in Fig. 1. The 1H-pyrazole (N1/N2/C7–C9) ring is essentially planar with a maximum deviation of 0.004 (1) Å for atom N1. The central pyrazole ring makes dihedral angles of 73.67 (4) and 45.99 (4)° with the terminal phenyl (C1–C6) and (C10–C15) rings, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and is comparable to a closely related structure (Shahani et al., 2011).

In the crystal packing (Fig. 2), there are no classical hydrogen bonds but stabilization is provided by weak C—H···π (Table 1) interactions, involving the centroid Cg1 of the C1–C6 ring.

Related literature top

For biological applications of pyrazole derivatives, see: Rai et al. (2008); Isloor et al. (2009); Girisha et al. (2010). For a related structure, see: Shahani et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-carboxaldehyde (0.1 mol) and phenol (0.1 mol) was dissolved in 10 mL of dimethyl sulfoxide. To this solution, 5.6 g (0.1 mol) of potassium hydroxide was added. The reaction mixture was refluxed for 6 hrs and then was cooled to room temperature and poured to crushed ice. The solid product that separated was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) =1.2 or 1.5Ueq(C).

Structure description top

Pyrazoles are a novel class of heterocyclic compounds possessing wide variety of application in the agrochemical and pharmaceutical industries. Derivatives of pyrazoles are found to show good antibacterial (Rai et al., 2008), anti-inflammatory and analgesic (Isloor et al., 2009) activities. In view of these observations and in continuation of our search for biologically active pyrazole derivatives, we herein report the crystal structure of 3-methyl-5-phenoxy-1-phenyl-1H-pyrazole-4-carbaldehyde. Reaction of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde with phenol afforded 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (Girisha et al., 2010).

The asymmetric unit of the title compound is shown in Fig. 1. The 1H-pyrazole (N1/N2/C7–C9) ring is essentially planar with a maximum deviation of 0.004 (1) Å for atom N1. The central pyrazole ring makes dihedral angles of 73.67 (4) and 45.99 (4)° with the terminal phenyl (C1–C6) and (C10–C15) rings, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and is comparable to a closely related structure (Shahani et al., 2011).

In the crystal packing (Fig. 2), there are no classical hydrogen bonds but stabilization is provided by weak C—H···π (Table 1) interactions, involving the centroid Cg1 of the C1–C6 ring.

For biological applications of pyrazole derivatives, see: Rai et al. (2008); Isloor et al. (2009); Girisha et al. (2010). For a related structure, see: Shahani et al. (2011). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis.
3-Methyl-5-phenoxy-1-phenyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C17H14N2O2F(000) = 584
Mr = 278.30Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7046 reflections
a = 8.6207 (1) Åθ = 3.7–36.0°
b = 7.1695 (1) ŵ = 0.09 mm1
c = 22.9228 (3) ÅT = 100 K
β = 99.168 (1)°Block, colourless
V = 1398.67 (3) Å30.46 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6610 independent reflections
Radiation source: fine-focus sealed tube5063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 36.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.961, Tmax = 0.988k = 1011
24894 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.1411P]
where P = (Fo2 + 2Fc2)/3
6610 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H14N2O2V = 1398.67 (3) Å3
Mr = 278.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6207 (1) ŵ = 0.09 mm1
b = 7.1695 (1) ÅT = 100 K
c = 22.9228 (3) Å0.46 × 0.20 × 0.14 mm
β = 99.168 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6610 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5063 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.988Rint = 0.035
24894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
6610 reflectionsΔρmin = 0.25 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05681 (7)0.69565 (8)0.13280 (3)0.01742 (12)
O20.06804 (8)0.18778 (10)0.24152 (3)0.02350 (14)
N10.13873 (7)0.51835 (10)0.07691 (3)0.01459 (12)
N20.21777 (8)0.35085 (10)0.07780 (3)0.01602 (12)
C10.08495 (9)0.74369 (12)0.00220 (3)0.01637 (14)
H1A0.02460.71990.01180.020*
C20.14204 (10)0.87209 (12)0.04165 (3)0.01873 (15)
H2A0.07070.93690.06200.022*
C30.30261 (10)0.90625 (12)0.05596 (3)0.02026 (15)
H3A0.34040.99510.08560.024*
C40.40764 (10)0.81003 (12)0.02678 (3)0.01878 (15)
H4A0.51730.83180.03700.023*
C50.35271 (9)0.68226 (12)0.01719 (3)0.01632 (14)
H5A0.42430.61680.03720.020*
C60.19152 (9)0.65081 (11)0.03172 (3)0.01421 (13)
C70.14856 (9)0.26348 (11)0.12608 (3)0.01569 (13)
C80.02490 (8)0.37265 (11)0.15780 (3)0.01490 (13)
C90.02436 (8)0.53407 (11)0.12425 (3)0.01441 (13)
C100.22016 (9)0.68417 (11)0.15060 (3)0.01485 (13)
C110.30911 (9)0.55321 (12)0.12616 (3)0.01733 (14)
H11A0.26050.46510.09810.021*
C120.47161 (9)0.55367 (13)0.14369 (3)0.01931 (15)
H12A0.53420.46300.12810.023*
C130.54285 (10)0.68545 (13)0.18366 (4)0.02145 (16)
H13A0.65380.68630.19490.026*
C140.45058 (10)0.81631 (13)0.20720 (4)0.02241 (17)
H14A0.49920.90670.23440.027*
C150.28718 (10)0.81597 (12)0.19112 (3)0.01855 (15)
H15A0.22380.90380.20750.022*
C160.20510 (10)0.07608 (13)0.14161 (4)0.02157 (16)
H16A0.27630.02530.10780.032*
H16B0.26100.08770.17550.032*
H16C0.11510.00780.15180.032*
C170.07517 (9)0.33089 (12)0.21332 (3)0.01724 (14)
H17A0.15140.42120.22880.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0151 (2)0.0131 (3)0.0227 (2)0.00067 (19)0.00134 (19)0.0014 (2)
O20.0227 (3)0.0224 (3)0.0238 (3)0.0006 (2)0.0010 (2)0.0070 (2)
N10.0127 (2)0.0135 (3)0.0167 (2)0.0012 (2)0.00011 (19)0.0005 (2)
N20.0139 (3)0.0141 (3)0.0194 (3)0.0023 (2)0.0007 (2)0.0013 (2)
C10.0155 (3)0.0157 (3)0.0180 (3)0.0027 (2)0.0028 (2)0.0014 (2)
C20.0222 (3)0.0163 (4)0.0179 (3)0.0049 (3)0.0038 (3)0.0003 (3)
C30.0251 (4)0.0160 (4)0.0184 (3)0.0009 (3)0.0004 (3)0.0022 (3)
C40.0173 (3)0.0180 (4)0.0197 (3)0.0016 (3)0.0012 (3)0.0006 (3)
C50.0142 (3)0.0176 (4)0.0169 (3)0.0006 (2)0.0015 (2)0.0008 (2)
C60.0143 (3)0.0136 (3)0.0144 (3)0.0003 (2)0.0013 (2)0.0000 (2)
C70.0135 (3)0.0149 (3)0.0183 (3)0.0003 (2)0.0017 (2)0.0013 (2)
C80.0136 (3)0.0146 (3)0.0160 (3)0.0003 (2)0.0008 (2)0.0001 (2)
C90.0122 (3)0.0143 (3)0.0162 (3)0.0003 (2)0.0007 (2)0.0018 (2)
C100.0138 (3)0.0150 (3)0.0151 (3)0.0018 (2)0.0004 (2)0.0004 (2)
C110.0165 (3)0.0183 (4)0.0168 (3)0.0016 (3)0.0018 (2)0.0028 (3)
C120.0166 (3)0.0222 (4)0.0196 (3)0.0003 (3)0.0044 (2)0.0003 (3)
C130.0154 (3)0.0261 (4)0.0220 (3)0.0046 (3)0.0003 (3)0.0010 (3)
C140.0207 (4)0.0236 (4)0.0215 (3)0.0067 (3)0.0009 (3)0.0043 (3)
C150.0190 (3)0.0175 (4)0.0186 (3)0.0034 (3)0.0014 (2)0.0036 (3)
C160.0189 (3)0.0168 (4)0.0274 (3)0.0031 (3)0.0011 (3)0.0052 (3)
C170.0160 (3)0.0179 (4)0.0170 (3)0.0013 (3)0.0001 (2)0.0007 (2)
Geometric parameters (Å, º) top
O1—C91.3514 (10)C7—C161.4916 (12)
O1—C101.4047 (9)C8—C91.3899 (11)
O2—C171.2194 (10)C8—C171.4505 (10)
N1—C91.3496 (9)C10—C151.3850 (11)
N1—N21.3825 (10)C10—C111.3858 (11)
N1—C61.4254 (10)C11—C121.3945 (11)
N2—C71.3276 (10)C11—H11A0.9500
C1—C21.3937 (11)C12—C131.3892 (12)
C1—C61.3942 (10)C12—H12A0.9500
C1—H1A0.9500C13—C141.3931 (13)
C2—C31.3925 (12)C13—H13A0.9500
C2—H2A0.9500C14—C151.3981 (12)
C3—C41.3914 (12)C14—H14A0.9500
C3—H3A0.9500C15—H15A0.9500
C4—C51.3882 (11)C16—H16A0.9800
C4—H4A0.9500C16—H16B0.9800
C5—C61.3947 (10)C16—H16C0.9800
C5—H5A0.9500C17—H17A0.9500
C7—C81.4250 (11)
C9—O1—C10117.63 (6)N1—C9—C8107.99 (7)
C9—N1—N2111.06 (6)O1—C9—C8132.91 (7)
C9—N1—C6129.53 (7)C15—C10—C11122.33 (7)
N2—N1—C6119.24 (6)C15—C10—O1116.53 (7)
C7—N2—N1105.37 (6)C11—C10—O1121.06 (7)
C2—C1—C6118.77 (7)C10—C11—C12118.50 (7)
C2—C1—H1A120.6C10—C11—H11A120.8
C6—C1—H1A120.6C12—C11—H11A120.8
C3—C2—C1120.64 (7)C13—C12—C11120.65 (8)
C3—C2—H2A119.7C13—C12—H12A119.7
C1—C2—H2A119.7C11—C12—H12A119.7
C4—C3—C2119.88 (7)C12—C13—C14119.59 (8)
C4—C3—H3A120.1C12—C13—H13A120.2
C2—C3—H3A120.1C14—C13—H13A120.2
C5—C4—C3120.22 (7)C13—C14—C15120.68 (8)
C5—C4—H4A119.9C13—C14—H14A119.7
C3—C4—H4A119.9C15—C14—H14A119.7
C4—C5—C6119.46 (7)C10—C15—C14118.23 (8)
C4—C5—H5A120.3C10—C15—H15A120.9
C6—C5—H5A120.3C14—C15—H15A120.9
C1—C6—C5121.02 (7)C7—C16—H16A109.5
C1—C6—N1120.81 (7)C7—C16—H16B109.5
C5—C6—N1118.16 (7)H16A—C16—H16B109.5
N2—C7—C8111.50 (7)C7—C16—H16C109.5
N2—C7—C16120.23 (7)H16A—C16—H16C109.5
C8—C7—C16128.27 (7)H16B—C16—H16C109.5
C9—C8—C7104.08 (6)O2—C17—C8124.45 (8)
C9—C8—C17127.11 (7)O2—C17—H17A117.8
C7—C8—C17128.78 (7)C8—C17—H17A117.8
N1—C9—O1118.89 (7)
C9—N1—N2—C70.74 (8)C6—N1—C9—O10.07 (12)
C6—N1—N2—C7176.34 (6)N2—N1—C9—C80.53 (9)
C6—C1—C2—C30.36 (12)C6—N1—C9—C8175.55 (7)
C1—C2—C3—C40.75 (12)C10—O1—C9—N1137.81 (7)
C2—C3—C4—C51.03 (12)C10—O1—C9—C848.05 (11)
C3—C4—C5—C60.20 (12)C7—C8—C9—N10.11 (8)
C2—C1—C6—C51.21 (11)C17—C8—C9—N1178.21 (7)
C2—C1—C6—N1179.97 (7)C7—C8—C9—O1174.49 (8)
C4—C5—C6—C10.93 (12)C17—C8—C9—O13.61 (14)
C4—C5—C6—N1179.79 (7)C9—O1—C10—C15142.16 (7)
C9—N1—C6—C149.63 (11)C9—O1—C10—C1141.12 (10)
N2—N1—C6—C1135.69 (8)C15—C10—C11—C120.73 (12)
C9—N1—C6—C5131.51 (8)O1—C10—C11—C12177.26 (7)
N2—N1—C6—C543.17 (10)C10—C11—C12—C131.55 (12)
N1—N2—C7—C80.67 (9)C11—C12—C13—C141.12 (13)
N1—N2—C7—C16179.53 (7)C12—C13—C14—C150.17 (13)
N2—C7—C8—C90.37 (9)C11—C10—C15—C140.52 (12)
C16—C7—C8—C9179.11 (8)O1—C10—C15—C14176.16 (7)
N2—C7—C8—C17177.70 (7)C13—C14—C15—C100.97 (13)
C16—C7—C8—C171.05 (14)C9—C8—C17—O2178.74 (8)
N2—N1—C9—O1174.96 (6)C7—C8—C17—O21.10 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cg1i0.952.623.5052 (8)156
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H14N2O2
Mr278.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.6207 (1), 7.1695 (1), 22.9228 (3)
β (°) 99.168 (1)
V3)1398.67 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.961, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
24894, 6610, 5063
Rint0.035
(sin θ/λ)max1)0.829
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.06
No. of reflections6610
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cg1i0.952.623.5052 (8)156
Symmetry code: (i) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationGirisha, K. S., Kalluraya, B., Narayana, V. & Padmashree. (2010). Eur. J. Med. Chem. 45, 4640–4644.  Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Venkatesh, M. (2011). Acta Cryst. E67, o475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds