organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-2-phenyl-1,3-thia­zolidin-4-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India, and cDepartment of Chemistry, Thanthai Hans Roever College, Perambalur 621 212, Tamil Nadu, India
*Correspondence e-mail: hkfun@usm.my

(Received 12 September 2011; accepted 15 September 2011; online 30 September 2011)

In the title compound, C16H15NOS, the thia­zolidine ring, which is essentially planar [maximum deviation = 0.071 (2) Å], makes dihedral angles of 88.01 (8) and 87.21 (8)° with the terminal phenyl rings. The dihedral angle between the phenyl rings is 49.45 (5)°. In the crystal, mol­ecules are linked by a weak inter­molecular C—H⋯O hydrogen bond, forming a supra­molecular chain along the b axis. Furthermore, the crystal packing is stabilized by a weak C—H⋯π inter­action.

Related literature

For details and applications of thia­zolidine-4-ones, see: Dutta et al. (1990[Dutta, M. M., Goswami, B. N. & Kataky, J. C. (1990). J. Indian Chem. Soc. 67, 332-334.]); Jadhav & Ingle (1978[Jadhav, K. P. & Ingle, D. B. (1978). J. Indian Chem. Soc. 4, 424-426.]); Gursoy & Terzioglu (2005[Gursoy, A. & Terzioglu, N. (2005). Turk. J. Chem. 29, 247-254.]); Rawal et al. (2007[Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & Clercq, E. D. (2007). Bioorg. Med. Chem. 15, 1725-1731.]); Shrivastava et al. (2005[Shrivastava, T., Gaikwad, A. K., Haq, W., Sinha, S. & Katti, S. B. (2005). Arkivoc, 2, 120-130.]); Look et al. (1996[Look, G. C., Schullek, J. R., Homes, C. P., Chinn, J. P., Gordon, E. M. & Gallop, M. A. (1996). Bioorg. Med. Chem. Lett. 6, 707-712.]); Anders et al. (2001[Anders, C. J., Bronson, J. J., Andrea, D. S. V., Deshpande, S. M., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2001). Bioorg. Med. Chem. Lett. pp. 715-717.]); Barreca et al. (2001[Barreca, M. L., Chimirri, A., Luca, L. D., Monforte, A., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. pp. 1793-1796.]); Diurno et al. (1992[Diurno, M. V., Mazzoni, O., Calignano, P. E., Giordano, F. & Bolognese, A. (1992). J. Med. Chem. 35, 2910-2912.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NOS

  • Mr = 269.35

  • Monoclinic, P 21 /c

  • a = 13.5734 (15) Å

  • b = 10.1402 (11) Å

  • c = 10.1496 (11) Å

  • β = 104.305 (2)°

  • V = 1353.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.41 × 0.19 × 0.06 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.985

  • 21164 measured reflections

  • 3990 independent reflections

  • 2813 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.05

  • 3990 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O1i 0.93 2.47 3.323 (2) 153
C2—H2ACg1ii 0.93 2.99 3.705 (3) 134
Symmetry codes: (i) x, y-1, z; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

One of the main objectives of organic and medicinal chemistry is the design, synthesis and production of molecules having value as human therapeutic agents. During the past decade, combinatorial chemistry has provided access to chemical libraries based on privileged structures with heterocyclic moiety receiving special attention as they belong to a class of compounds with proven utility in medicinal chemistry. There are numerous biologically active molecules with five-membered rings, containing two hetero atoms. Among them, thiazolidin-4-ones are the most extensively investigated class of compounds, which have many interesting activity profiles namely bactericidal (Dutta et al., 1990), antifungal (Jadhav & Ingle, 1978), anticonvulsant (Gursoy & Terzioglu, 2005), anti-HIV (Rawal et al., 2007), antituberculotic (Shrivastava et al., 2005), COX-1 inhibitors (Look et al., 1996), inhibitors of the bacterial enzyme MurB (Anders et al., 2001), non-nucleoside inhibitors of HIV-RT (Barreca et al., 2001) and anti-histaminic agents (Diurno et al., 1992).

The asymmetric unit of the title compound is shown in Fig. 1. The thiazolidine (S1/N1/C8–C10) ring is essentially planar, with a maximum deviation of 0.071 (2) Å for atom C10. The central thiazolidine (S1/N1/C8–C10) ring makes dihedral angles of 88.01 (8) and 87.21 (8)° with the terminal phenyl (C1–C6) and (C11–C16) rings, respectively. The dihedral angle between the phenyl (C1–C6) and (C11–C16) rings is 49.45 (5)°.

In the crystal structure, (Fig. 2), the molecules are linked by intermolecular weak C—H···O hydrogen bonds forming supramolecular chains along the b-axis. Furthermore, the crystal packing is stabilized by weak C—H···π interactions involving the C11–C16 ring.

Related literature top

For details and applications of thiazolidine-4-ones, see: Dutta et al. (1990); Jadhav & Ingle (1978); Gursoy & Terzioglu (2005); Rawal et al. (2007); Shrivastava et al. (2005); Look et al. (1996); Anders et al. (2001); Barreca et al. (2001); Diurno et al. (1992).

Experimental top

To a well ground intimate mixture of triphenyl phosphine (0.43 g, 1.6 mmol) and benzaldehyde, (0.15 g, 1.5 mmol) in a microwave vial (10 ml) equipped with a magnetic stirring bar, benzylazide, (0.2 g, 1.5 mmol) was added in drop with stirring. Stirring was continued until liberation of nitrogen ceased and then mercaptoacetic acid, (0.15 g, 1.6 mmol) was added to the above mixture and the reaction vessel was sealed with a septum. It was then placed into the cavity of a focused monomode microwave reactor (CEM Discover, benchmate) and operated at 150°C (temperature monitored by a built-in IR sensor), power 80W for 10 minutes. The reaction temperature was maintained by modulating the power level of the reactor. The reaction mixture was allowed to stand at room temperature. Then the residue was purified by column chromatography on silica (petrolium ether–ethyl acetate, 94:6) to afford the 3-benzyl-2-phenylthiazolidin-4-one. Yield: 0.38g (95%); m.p. 152–155°C.

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.93–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

One of the main objectives of organic and medicinal chemistry is the design, synthesis and production of molecules having value as human therapeutic agents. During the past decade, combinatorial chemistry has provided access to chemical libraries based on privileged structures with heterocyclic moiety receiving special attention as they belong to a class of compounds with proven utility in medicinal chemistry. There are numerous biologically active molecules with five-membered rings, containing two hetero atoms. Among them, thiazolidin-4-ones are the most extensively investigated class of compounds, which have many interesting activity profiles namely bactericidal (Dutta et al., 1990), antifungal (Jadhav & Ingle, 1978), anticonvulsant (Gursoy & Terzioglu, 2005), anti-HIV (Rawal et al., 2007), antituberculotic (Shrivastava et al., 2005), COX-1 inhibitors (Look et al., 1996), inhibitors of the bacterial enzyme MurB (Anders et al., 2001), non-nucleoside inhibitors of HIV-RT (Barreca et al., 2001) and anti-histaminic agents (Diurno et al., 1992).

The asymmetric unit of the title compound is shown in Fig. 1. The thiazolidine (S1/N1/C8–C10) ring is essentially planar, with a maximum deviation of 0.071 (2) Å for atom C10. The central thiazolidine (S1/N1/C8–C10) ring makes dihedral angles of 88.01 (8) and 87.21 (8)° with the terminal phenyl (C1–C6) and (C11–C16) rings, respectively. The dihedral angle between the phenyl (C1–C6) and (C11–C16) rings is 49.45 (5)°.

In the crystal structure, (Fig. 2), the molecules are linked by intermolecular weak C—H···O hydrogen bonds forming supramolecular chains along the b-axis. Furthermore, the crystal packing is stabilized by weak C—H···π interactions involving the C11–C16 ring.

For details and applications of thiazolidine-4-ones, see: Dutta et al. (1990); Jadhav & Ingle (1978); Gursoy & Terzioglu (2005); Rawal et al. (2007); Shrivastava et al. (2005); Look et al. (1996); Anders et al. (2001); Barreca et al. (2001); Diurno et al. (1992).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis.
3-Benzyl-2-phenyl-1,3-thiazolidin-4-one top
Crystal data top
C16H15NOSF(000) = 568
Mr = 269.35Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4044 reflections
a = 13.5734 (15) Åθ = 2.9–24.9°
b = 10.1402 (11) ŵ = 0.23 mm1
c = 10.1496 (11) ÅT = 296 K
β = 104.305 (2)°Plate, colourless
V = 1353.6 (3) Å30.41 × 0.19 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3990 independent reflections
Radiation source: fine-focus sealed tube2813 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 30.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.913, Tmax = 0.985k = 1414
21164 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.2789P]
where P = (Fo2 + 2Fc2)/3
3990 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H15NOSV = 1353.6 (3) Å3
Mr = 269.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5734 (15) ŵ = 0.23 mm1
b = 10.1402 (11) ÅT = 296 K
c = 10.1496 (11) Å0.41 × 0.19 × 0.06 mm
β = 104.305 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3990 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2813 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.985Rint = 0.041
21164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3990 reflectionsΔρmin = 0.25 e Å3
172 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04954 (3)0.22379 (4)0.22886 (4)0.04505 (12)
O10.16669 (11)0.46692 (11)0.51751 (13)0.0650 (4)
N10.21308 (9)0.28385 (11)0.41853 (12)0.0389 (3)
C10.34627 (12)0.44309 (17)0.30014 (17)0.0510 (4)
H1A0.27830.46760.28380.061*
C20.40708 (14)0.49962 (19)0.22451 (19)0.0582 (4)
H2A0.37980.56170.15800.070*
C30.50706 (14)0.4646 (2)0.2471 (2)0.0637 (5)
H3A0.54810.50240.19630.076*
C40.54623 (15)0.3732 (2)0.3454 (3)0.0810 (7)
H4A0.61430.34920.36130.097*
C50.48589 (14)0.3161 (2)0.4212 (2)0.0650 (5)
H5A0.51360.25380.48730.078*
C60.38484 (11)0.35067 (14)0.39972 (15)0.0410 (3)
C70.32037 (12)0.29270 (17)0.48752 (16)0.0479 (4)
H7A0.34540.20520.51660.057*
H7B0.32780.34670.56830.057*
C80.14552 (12)0.37589 (14)0.43636 (15)0.0434 (3)
C90.04128 (13)0.35455 (17)0.34511 (19)0.0533 (4)
H9A0.01730.43470.29530.064*
H9B0.00610.33090.39870.064*
C100.17936 (10)0.17886 (13)0.32051 (14)0.0358 (3)
H10A0.22250.17880.25600.043*
C110.18426 (10)0.04347 (13)0.38516 (13)0.0350 (3)
C120.14070 (11)0.02045 (14)0.49347 (15)0.0420 (3)
H12A0.11040.08960.52910.050*
C130.14219 (12)0.10439 (16)0.54857 (17)0.0499 (4)
H13A0.11270.11880.62090.060*
C140.18706 (13)0.20754 (16)0.49698 (19)0.0547 (4)
H14A0.18790.29150.53420.066*
C150.23077 (14)0.18557 (16)0.38958 (19)0.0561 (4)
H15A0.26110.25500.35440.067*
C160.22959 (12)0.06032 (15)0.33392 (16)0.0455 (4)
H16A0.25940.04610.26190.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0441 (2)0.0416 (2)0.0451 (2)0.00081 (16)0.00278 (16)0.00479 (16)
O10.0919 (10)0.0400 (6)0.0633 (7)0.0033 (6)0.0195 (7)0.0119 (6)
N10.0399 (6)0.0325 (6)0.0436 (6)0.0060 (5)0.0088 (5)0.0002 (5)
C10.0404 (8)0.0553 (10)0.0561 (9)0.0005 (7)0.0099 (7)0.0130 (7)
C20.0548 (10)0.0599 (11)0.0594 (10)0.0048 (8)0.0132 (8)0.0154 (8)
C30.0508 (10)0.0721 (13)0.0721 (12)0.0090 (9)0.0225 (9)0.0089 (10)
C40.0441 (10)0.0872 (16)0.1158 (18)0.0105 (10)0.0273 (11)0.0296 (14)
C50.0480 (10)0.0596 (11)0.0852 (13)0.0083 (8)0.0119 (9)0.0229 (10)
C60.0383 (7)0.0363 (7)0.0452 (8)0.0057 (6)0.0041 (6)0.0011 (6)
C70.0456 (8)0.0481 (9)0.0450 (8)0.0090 (7)0.0020 (7)0.0074 (7)
C80.0561 (9)0.0309 (7)0.0462 (8)0.0036 (6)0.0185 (7)0.0023 (6)
C90.0496 (9)0.0456 (9)0.0662 (10)0.0059 (7)0.0173 (8)0.0016 (8)
C100.0372 (7)0.0346 (7)0.0369 (7)0.0029 (5)0.0117 (5)0.0001 (5)
C110.0339 (7)0.0319 (6)0.0382 (7)0.0008 (5)0.0069 (5)0.0012 (5)
C120.0450 (8)0.0365 (7)0.0472 (8)0.0005 (6)0.0165 (6)0.0010 (6)
C130.0495 (9)0.0448 (9)0.0555 (9)0.0074 (7)0.0130 (7)0.0118 (7)
C140.0547 (10)0.0337 (8)0.0667 (11)0.0038 (7)0.0020 (8)0.0079 (7)
C150.0611 (11)0.0368 (8)0.0649 (11)0.0126 (7)0.0050 (9)0.0067 (7)
C160.0471 (8)0.0443 (8)0.0451 (8)0.0074 (7)0.0111 (7)0.0034 (6)
Geometric parameters (Å, º) top
S1—C91.7967 (17)C7—H7A0.9700
S1—C101.8352 (14)C7—H7B0.9700
O1—C81.2231 (18)C8—C91.503 (2)
N1—C81.3515 (19)C9—H9A0.9700
N1—C101.4518 (18)C9—H9B0.9700
N1—C71.4544 (19)C10—C111.5160 (19)
C1—C21.383 (2)C10—H10A0.9800
C1—C61.383 (2)C11—C161.3838 (19)
C1—H1A0.9300C11—C121.391 (2)
C2—C31.366 (3)C12—C131.382 (2)
C2—H2A0.9300C12—H12A0.9300
C3—C41.369 (3)C13—C141.377 (2)
C3—H3A0.9300C13—H13A0.9300
C4—C51.382 (3)C14—C151.382 (3)
C4—H4A0.9300C14—H14A0.9300
C5—C61.380 (2)C15—C161.389 (2)
C5—H5A0.9300C15—H15A0.9300
C6—C71.513 (2)C16—H16A0.9300
C9—S1—C1093.34 (7)C8—C9—S1107.99 (11)
C8—N1—C10119.26 (12)C8—C9—H9A110.1
C8—N1—C7121.65 (13)S1—C9—H9A110.1
C10—N1—C7118.93 (12)C8—C9—H9B110.1
C2—C1—C6121.10 (15)S1—C9—H9B110.1
C2—C1—H1A119.4H9A—C9—H9B108.4
C6—C1—H1A119.4N1—C10—C11113.25 (11)
C3—C2—C1120.23 (17)N1—C10—S1105.43 (9)
C3—C2—H2A119.9C11—C10—S1112.22 (9)
C1—C2—H2A119.9N1—C10—H10A108.6
C2—C3—C4119.27 (17)C11—C10—H10A108.6
C2—C3—H3A120.4S1—C10—H10A108.6
C4—C3—H3A120.4C16—C11—C12119.00 (13)
C3—C4—C5120.83 (18)C16—C11—C10120.14 (13)
C3—C4—H4A119.6C12—C11—C10120.83 (12)
C5—C4—H4A119.6C13—C12—C11120.47 (14)
C6—C5—C4120.54 (17)C13—C12—H12A119.8
C6—C5—H5A119.7C11—C12—H12A119.8
C4—C5—H5A119.7C14—C13—C12120.36 (16)
C5—C6—C1118.02 (15)C14—C13—H13A119.8
C5—C6—C7120.33 (14)C12—C13—H13A119.8
C1—C6—C7121.60 (14)C13—C14—C15119.60 (15)
N1—C7—C6113.35 (12)C13—C14—H14A120.2
N1—C7—H7A108.9C15—C14—H14A120.2
C6—C7—H7A108.9C14—C15—C16120.29 (15)
N1—C7—H7B108.9C14—C15—H15A119.9
C6—C7—H7B108.9C16—C15—H15A119.9
H7A—C7—H7B107.7C11—C16—C15120.28 (15)
O1—C8—N1123.85 (15)C11—C16—H16A119.9
O1—C8—C9123.53 (15)C15—C16—H16A119.9
N1—C8—C9112.62 (13)
C6—C1—C2—C30.1 (3)C8—N1—C10—C11114.56 (14)
C1—C2—C3—C40.1 (3)C7—N1—C10—C1169.99 (16)
C2—C3—C4—C50.2 (4)C8—N1—C10—S18.50 (15)
C3—C4—C5—C60.3 (4)C7—N1—C10—S1166.95 (10)
C4—C5—C6—C10.3 (3)C9—S1—C10—N110.43 (10)
C4—C5—C6—C7177.10 (19)C9—S1—C10—C11113.28 (11)
C2—C1—C6—C50.2 (3)N1—C10—C11—C16131.16 (14)
C2—C1—C6—C7177.17 (16)S1—C10—C11—C16109.62 (13)
C8—N1—C7—C698.30 (17)N1—C10—C11—C1250.93 (18)
C10—N1—C7—C677.04 (17)S1—C10—C11—C1268.30 (15)
C5—C6—C7—N1151.78 (16)C16—C11—C12—C130.4 (2)
C1—C6—C7—N130.9 (2)C10—C11—C12—C13177.59 (13)
C10—N1—C8—O1179.17 (14)C11—C12—C13—C140.1 (2)
C7—N1—C8—O15.5 (2)C12—C13—C14—C150.0 (3)
C10—N1—C8—C91.01 (18)C13—C14—C15—C160.0 (3)
C7—N1—C8—C9174.31 (13)C12—C11—C16—C150.4 (2)
O1—C8—C9—S1172.54 (13)C10—C11—C16—C15177.53 (14)
N1—C8—C9—S17.28 (16)C14—C15—C16—C110.3 (2)
C10—S1—C9—C810.22 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.932.473.323 (2)153
C2—H2A···Cg1ii0.932.993.705 (3)134
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC16H15NOS
Mr269.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.5734 (15), 10.1402 (11), 10.1496 (11)
β (°) 104.305 (2)
V3)1353.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.41 × 0.19 × 0.06
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.913, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
21164, 3990, 2813
Rint0.041
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.05
No. of reflections3990
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.932.473.323 (2)153
C2—H2A···Cg1ii0.932.993.705 (3)134
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAnders, C. J., Bronson, J. J., Andrea, D. S. V., Deshpande, S. M., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2001). Bioorg. Med. Chem. Lett. pp. 715–717.  Google Scholar
First citationBarreca, M. L., Chimirri, A., Luca, L. D., Monforte, A., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. pp. 1793–1796.  Web of Science CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiurno, M. V., Mazzoni, O., Calignano, P. E., Giordano, F. & Bolognese, A. (1992). J. Med. Chem. 35, 2910–2912.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDutta, M. M., Goswami, B. N. & Kataky, J. C. (1990). J. Indian Chem. Soc. 67, 332–334.  CAS Google Scholar
First citationGursoy, A. & Terzioglu, N. (2005). Turk. J. Chem. 29, 247–254.  Google Scholar
First citationJadhav, K. P. & Ingle, D. B. (1978). J. Indian Chem. Soc. 4, 424–426.  Google Scholar
First citationLook, G. C., Schullek, J. R., Homes, C. P., Chinn, J. P., Gordon, E. M. & Gallop, M. A. (1996). Bioorg. Med. Chem. Lett. 6, 707–712.  CrossRef CAS Web of Science Google Scholar
First citationRawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & Clercq, E. D. (2007). Bioorg. Med. Chem. 15, 1725–1731.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShrivastava, T., Gaikwad, A. K., Haq, W., Sinha, S. & Katti, S. B. (2005). Arkivoc, 2, 120–130.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds