organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1R,3S)-6,7-Dimeth­­oxy-1-phenyl-1,2,3,4-tetra­hydro­isoquinolin-3-yl]-4-phenyl-1,3-thia­zole

aSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 12 September 2011; accepted 14 September 2011; online 30 September 2011)

In the title compound, C26H24N2O2S, the dihedral angle between the thia­zole ring and the adjacent phenyl ring is 3.02 (15)°. The N-containing six-membered ring of the tetra­hydro­isoquinoline unit adopts a half-chair conformation. The dihedral angle between the least-squares plane of the tetra­hydro­isoquinoline ring system and its nearest phenyl ring is 76.90 (13)°. No classical hydrogen bonds nor ππ inter­actions were found in the crystal structure.

Related literature

For reactions associated with TIQ ligands, see: Chakka et al. (2010[Chakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972-980.]); Naicker et al. (2010[Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859-2867.]). For related structures, see: Naicker et al. (2011a[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011a). Acta Cryst. E67, o67.],b[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o1403.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N2O2S

  • Mr = 428.53

  • Orthorhombic, P 21 21 21

  • a = 5.9178 (2) Å

  • b = 16.6269 (9) Å

  • c = 22.8564 (11) Å

  • V = 2248.95 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.32 × 0.16 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.886, Tmax = 0.978

  • 92668 measured reflections

  • 4948 independent reflections

  • 3141 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.109

  • S = 1.21

  • 4948 reflections

  • 285 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2094 Friedel pairs

  • Flack parameter: 0.01 (10)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our studies on the synthesis and application of new tetrahydroisoquinoline compounds for catalysis of asymmetric hydogenation reactions (Chakka et al., 2010) and the Diels-Alder reaction (Naicker et al., 2010), the title compound, a novel ligand containing a TIQ backbone with thiazole moiety, and its' analogues are currently being tested in our laboratory for the asymmetric Henry reaction.

The absolute stereochemistry was confirmed to be R and S at C1 and C9 positions, respectively, by two-dimensional NMR studies. From the crystal structure it is evident that the N-containing six-membered ring assumes a half chair conformation [Q = 0.446 (4) Å, θ = 54.0 (5)° and φ = 315.6 (6)°]. The torsion angle for C1—N1—C9—C10 is 57.9 (4)°. The maximum displacements from the C1/C2/C7–C9/N1 plane are 0.256 Å for N1 and 0.314 Å for C9 (Fig. 1). This is similar to our previously reported structures which also assume half chair conformations (Naicker et al., 2011a, b). There are no hydrogen bonding interactions nor ππ interactions in the crystal structure.

Related literature top

For reactions associated with TIQ ligands, see: Chakka et al. (2010); Naicker et al. (2010). For related structures, see: Naicker et al. (2011a,b).

Experimental top

A solution of Cbz protected thiazole compound (0.100 g, 0.177 mmol, 1 eq.) in dry DCM (4 ml) under argon atmosphere was treated with dipropylsulfide (0.788 ml, 5.338 mmol, 30 eq.), boron trifluoride diethyl etherate (0.230 ml, 10 eq.) and stirred at room temperature for 1.5 h, then dipropylsulfide (0.499 ml, 2.336 mmol, 20 eq.) was added, the reaction was allowed to proceed for another 2 h. The reaction was monitored by TLC using EtOAc/Hexane (20:80, Rf = 1/2). The mixture was then poured into water (5 ml) and 10% aqueous NH4OH (10 ml) was added and extracted with ethylacetate (30 ml) followed by washing with water (2 × 10 ml). The organic layer was separated and dried over anhydrous MgSO4 and the solvent evaporated under reduced pressure to afford crude thiazole, which was purified by column chromatography using silica gel (deactivated with 5% Et3N) using 95:5 hexane/Et3N - 10:90:5% EtOAc /hexane/Et3N as the eluent to yield approximately 0.05 g (65%) of pure thiazole compound. M.p. = 388–390 K

Crystals suitable for X-ray analysis were grown at room temperature from a solution of EtOAc/hexane.

Refinement top

All H atoms, except atom H1N, were placed in idealized positions (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) set at 1.2 or 1.5 times those of their parent atoms. The H1N was refined freely [N1—H1N = 0.927 (17) Å].

Structure description top

As a part of our studies on the synthesis and application of new tetrahydroisoquinoline compounds for catalysis of asymmetric hydogenation reactions (Chakka et al., 2010) and the Diels-Alder reaction (Naicker et al., 2010), the title compound, a novel ligand containing a TIQ backbone with thiazole moiety, and its' analogues are currently being tested in our laboratory for the asymmetric Henry reaction.

The absolute stereochemistry was confirmed to be R and S at C1 and C9 positions, respectively, by two-dimensional NMR studies. From the crystal structure it is evident that the N-containing six-membered ring assumes a half chair conformation [Q = 0.446 (4) Å, θ = 54.0 (5)° and φ = 315.6 (6)°]. The torsion angle for C1—N1—C9—C10 is 57.9 (4)°. The maximum displacements from the C1/C2/C7–C9/N1 plane are 0.256 Å for N1 and 0.314 Å for C9 (Fig. 1). This is similar to our previously reported structures which also assume half chair conformations (Naicker et al., 2011a, b). There are no hydrogen bonding interactions nor ππ interactions in the crystal structure.

For reactions associated with TIQ ligands, see: Chakka et al. (2010); Naicker et al. (2010). For related structures, see: Naicker et al. (2011a,b).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms have been omitted for clarity.
2-[(1R,3S)-6,7-Dimethoxy-1-phenyl-1,2,3,4- tetrahydroisoquinolin-3-yl]-4-phenyl-1,3-thiazole top
Crystal data top
C26H24N2O2SF(000) = 904
Mr = 428.53Dx = 1.266 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 92668 reflections
a = 5.9178 (2) Åθ = 3.0–27.1°
b = 16.6269 (9) ŵ = 0.17 mm1
c = 22.8564 (11) ÅT = 293 K
V = 2248.95 (18) Å3Block, colourless
Z = 40.32 × 0.16 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
4948 independent reflections
Radiation source: fine-focus sealed tube3141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
1.2° φ scans and ω scansθmax = 27.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.886, Tmax = 0.978k = 2121
92668 measured reflectionsl = 2929
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.075 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.4897P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max = 0.001
S = 1.21Δρmax = 0.18 e Å3
4948 reflectionsΔρmin = 0.13 e Å3
285 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0072 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2094 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (10)
Crystal data top
C26H24N2O2SV = 2248.95 (18) Å3
Mr = 428.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9178 (2) ŵ = 0.17 mm1
b = 16.6269 (9) ÅT = 293 K
c = 22.8564 (11) Å0.32 × 0.16 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
4948 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3141 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.978Rint = 0.093
92668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.075H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.18 e Å3
S = 1.21Δρmin = 0.13 e Å3
4948 reflectionsAbsolute structure: Flack (1983), 2094 Friedel pairs
285 parametersAbsolute structure parameter: 0.01 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31297 (13)0.27081 (5)0.16545 (4)0.0756 (3)
O11.3723 (4)0.11255 (15)0.43058 (11)0.0981 (8)
O21.4727 (4)0.02633 (14)0.34014 (11)0.0864 (7)
N10.5823 (4)0.23535 (15)0.27440 (10)0.0623 (6)
H1N0.490 (4)0.1910 (13)0.2803 (11)0.069 (9)*
N20.6162 (4)0.18000 (14)0.12153 (10)0.0564 (6)
C10.7220 (5)0.23931 (17)0.32849 (12)0.0620 (7)
H10.62420.22100.36040.074*
C20.9256 (5)0.18372 (17)0.32871 (13)0.0595 (7)
C31.0545 (6)0.17525 (19)0.37999 (13)0.0708 (9)
H31.01660.20540.41290.085*
C41.2354 (6)0.1235 (2)0.38266 (14)0.0717 (9)
C51.2916 (5)0.07670 (17)0.33380 (15)0.0663 (8)
C61.1660 (5)0.08514 (16)0.28383 (14)0.0643 (8)
H61.20220.05420.25120.077*
C70.9852 (5)0.13892 (16)0.28054 (12)0.0590 (7)
C80.8571 (5)0.14618 (16)0.22391 (13)0.0651 (8)
H8A0.75860.10000.21950.078*
H8B0.96320.14610.19160.078*
C90.7172 (4)0.22227 (16)0.22165 (11)0.0552 (7)
H90.82090.26790.21750.066*
C100.5672 (4)0.22039 (16)0.16855 (12)0.0542 (7)
C110.2745 (5)0.23434 (18)0.09645 (12)0.0668 (8)
H110.14930.24550.07320.080*
C120.4483 (5)0.18743 (16)0.07989 (12)0.0543 (7)
C130.4750 (5)0.14401 (16)0.02377 (12)0.0556 (7)
C140.6676 (6)0.09961 (18)0.01269 (14)0.0673 (8)
H140.78190.09800.04060.081*
C150.6937 (7)0.0574 (2)0.03919 (15)0.0804 (10)
H150.82430.02770.04600.096*
C160.5244 (8)0.0598 (2)0.08076 (16)0.0882 (11)
H160.54000.03150.11560.106*
C170.3339 (7)0.1041 (2)0.07042 (17)0.0935 (11)
H170.22090.10640.09870.112*
C180.3074 (6)0.1455 (2)0.01871 (14)0.0746 (9)
H180.17580.17480.01220.089*
C190.7776 (5)0.32691 (17)0.34164 (12)0.0592 (7)
C200.6135 (6)0.3740 (2)0.36789 (14)0.0801 (10)
H200.47330.35180.37670.096*
C210.6556 (7)0.4538 (2)0.38112 (16)0.0941 (12)
H210.54300.48490.39830.113*
C220.8609 (7)0.4872 (2)0.36917 (15)0.0852 (11)
H220.89020.54050.37910.102*
C231.0220 (6)0.44213 (19)0.34258 (16)0.0833 (10)
H231.16070.46520.33330.100*
C240.9825 (5)0.36207 (18)0.32905 (13)0.0707 (8)
H241.09560.33180.31130.085*
C251.3075 (9)0.1475 (3)0.48294 (17)0.153 (2)
H25A1.41600.13460.51270.230*
H25B1.16180.12740.49420.230*
H25C1.29980.20480.47820.230*
C261.5162 (7)0.0274 (2)0.29331 (17)0.1042 (12)
H26A1.64610.05960.30240.156*
H26B1.54450.00280.25820.156*
H26C1.38760.06160.28750.156*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0669 (5)0.0765 (5)0.0833 (6)0.0138 (4)0.0023 (5)0.0113 (5)
O10.108 (2)0.1159 (19)0.0704 (16)0.0031 (16)0.0193 (15)0.0182 (14)
O20.0864 (16)0.0804 (15)0.0922 (17)0.0051 (14)0.0139 (14)0.0272 (14)
N10.0589 (14)0.0688 (16)0.0591 (15)0.0141 (13)0.0045 (13)0.0059 (13)
N20.0537 (14)0.0571 (14)0.0586 (15)0.0013 (12)0.0042 (12)0.0025 (12)
C10.0660 (17)0.0680 (18)0.0521 (17)0.0134 (16)0.0078 (15)0.0001 (15)
C20.0680 (18)0.0550 (16)0.0553 (19)0.0132 (15)0.0013 (16)0.0076 (15)
C30.088 (2)0.067 (2)0.0572 (19)0.015 (2)0.0008 (19)0.0066 (16)
C40.083 (2)0.075 (2)0.058 (2)0.0156 (19)0.0130 (18)0.0236 (18)
C50.072 (2)0.0569 (18)0.070 (2)0.0090 (17)0.004 (2)0.0211 (17)
C60.073 (2)0.0554 (17)0.065 (2)0.0027 (17)0.0031 (18)0.0074 (15)
C70.0682 (19)0.0512 (16)0.0577 (18)0.0083 (16)0.0037 (16)0.0059 (15)
C80.073 (2)0.0579 (17)0.0642 (18)0.0008 (16)0.0060 (16)0.0030 (15)
C90.0561 (16)0.0525 (16)0.0569 (17)0.0083 (14)0.0004 (14)0.0011 (14)
C100.0524 (15)0.0470 (15)0.0632 (18)0.0039 (13)0.0024 (15)0.0046 (16)
C110.0632 (19)0.0667 (18)0.071 (2)0.0064 (17)0.0118 (16)0.0021 (16)
C120.0542 (17)0.0480 (16)0.0608 (19)0.0026 (14)0.0030 (15)0.0087 (14)
C130.0574 (18)0.0494 (16)0.0601 (18)0.0087 (15)0.0013 (15)0.0080 (14)
C140.070 (2)0.0705 (19)0.062 (2)0.0012 (18)0.0015 (17)0.0013 (16)
C150.085 (2)0.071 (2)0.085 (3)0.004 (2)0.011 (2)0.0061 (19)
C160.100 (3)0.089 (3)0.076 (3)0.035 (2)0.007 (2)0.019 (2)
C170.091 (3)0.113 (3)0.077 (3)0.029 (3)0.017 (2)0.011 (2)
C180.0670 (19)0.084 (2)0.073 (2)0.0108 (19)0.0110 (19)0.0016 (18)
C190.0670 (19)0.0643 (18)0.0465 (16)0.0024 (16)0.0002 (15)0.0030 (14)
C200.070 (2)0.091 (3)0.079 (2)0.002 (2)0.0061 (17)0.017 (2)
C210.102 (3)0.085 (3)0.095 (3)0.016 (2)0.004 (2)0.029 (2)
C220.108 (3)0.063 (2)0.084 (3)0.002 (2)0.015 (2)0.0087 (18)
C230.082 (2)0.065 (2)0.103 (3)0.0104 (19)0.002 (2)0.008 (2)
C240.069 (2)0.0606 (19)0.082 (2)0.0033 (17)0.0095 (18)0.0037 (17)
C250.166 (4)0.223 (6)0.071 (3)0.033 (5)0.032 (3)0.015 (3)
C260.108 (3)0.080 (2)0.125 (3)0.022 (2)0.005 (3)0.017 (2)
Geometric parameters (Å, º) top
S1—C111.705 (3)C12—C131.480 (4)
S1—C101.724 (3)C13—C141.381 (4)
O1—C41.374 (4)C13—C181.388 (4)
O1—C251.385 (4)C14—C151.386 (4)
O2—C51.368 (4)C14—H140.9300
O2—C261.417 (4)C15—C161.381 (5)
N1—C91.462 (3)C15—H150.9300
N1—C11.489 (3)C16—C171.368 (5)
N1—H1N0.927 (17)C16—H160.9300
N2—C101.300 (3)C17—C181.376 (5)
N2—C121.381 (3)C17—H170.9300
C1—C21.519 (4)C18—H180.9300
C1—C191.523 (4)C19—C241.377 (4)
C1—H10.9800C19—C201.385 (4)
C2—C71.375 (4)C20—C211.382 (5)
C2—C31.406 (4)C20—H200.9300
C3—C41.376 (4)C21—C221.364 (5)
C3—H30.9300C21—H210.9300
C4—C51.401 (4)C22—C231.357 (5)
C5—C61.370 (4)C22—H220.9300
C6—C71.397 (4)C23—C241.386 (4)
C6—H60.9300C23—H230.9300
C7—C81.505 (4)C24—H240.9300
C8—C91.513 (4)C25—H25A0.9600
C8—H8A0.9700C25—H25B0.9600
C8—H8B0.9700C25—H25C0.9600
C9—C101.504 (4)C26—H26A0.9600
C9—H90.9800C26—H26B0.9600
C11—C121.345 (4)C26—H26C0.9600
C11—H110.9300
C11—S1—C1088.95 (14)C11—C12—C13127.4 (3)
C4—O1—C25118.1 (3)N2—C12—C13118.5 (2)
C5—O2—C26116.6 (3)C14—C13—C18118.1 (3)
C9—N1—C1112.8 (2)C14—C13—C12120.5 (3)
C9—N1—H1N108.9 (17)C18—C13—C12121.4 (3)
C1—N1—H1N103.9 (17)C13—C14—C15121.3 (3)
C10—N2—C12111.3 (2)C13—C14—H14119.4
N1—C1—C2114.6 (2)C15—C14—H14119.4
N1—C1—C19109.0 (2)C16—C15—C14119.5 (4)
C2—C1—C19114.2 (2)C16—C15—H15120.2
N1—C1—H1106.1C14—C15—H15120.2
C2—C1—H1106.1C17—C16—C15119.7 (3)
C19—C1—H1106.1C17—C16—H16120.2
C7—C2—C3118.3 (3)C15—C16—H16120.2
C7—C2—C1122.0 (3)C16—C17—C18120.8 (4)
C3—C2—C1119.6 (3)C16—C17—H17119.6
C4—C3—C2121.5 (3)C18—C17—H17119.6
C4—C3—H3119.3C17—C18—C13120.7 (3)
C2—C3—H3119.3C17—C18—H18119.7
O1—C4—C3125.2 (3)C13—C18—H18119.7
O1—C4—C5115.0 (3)C24—C19—C20117.9 (3)
C3—C4—C5119.8 (3)C24—C19—C1123.7 (3)
O2—C5—C6125.2 (3)C20—C19—C1118.4 (3)
O2—C5—C4116.2 (3)C21—C20—C19120.7 (3)
C6—C5—C4118.6 (3)C21—C20—H20119.6
C5—C6—C7121.7 (3)C19—C20—H20119.6
C5—C6—H6119.1C22—C21—C20120.5 (4)
C7—C6—H6119.1C22—C21—H21119.7
C2—C7—C6120.0 (3)C20—C21—H21119.7
C2—C7—C8121.1 (3)C23—C22—C21119.3 (3)
C6—C7—C8118.9 (3)C23—C22—H22120.3
C7—C8—C9111.8 (2)C21—C22—H22120.3
C7—C8—H8A109.2C22—C23—C24120.8 (3)
C9—C8—H8A109.2C22—C23—H23119.6
C7—C8—H8B109.2C24—C23—H23119.6
C9—C8—H8B109.2C19—C24—C23120.6 (3)
H8A—C8—H8B107.9C19—C24—H24119.7
N1—C9—C10110.3 (2)C23—C24—H24119.7
N1—C9—C8113.3 (2)O1—C25—H25A109.5
C10—C9—C8109.5 (2)O1—C25—H25B109.5
N1—C9—H9107.9H25A—C25—H25B109.5
C10—C9—H9107.9O1—C25—H25C109.5
C8—C9—H9107.9H25A—C25—H25C109.5
N2—C10—C9123.1 (2)H25B—C25—H25C109.5
N2—C10—S1114.3 (2)O2—C26—H26A109.5
C9—C10—S1122.6 (2)O2—C26—H26B109.5
C12—C11—S1111.4 (2)H26A—C26—H26B109.5
C12—C11—H11124.3O2—C26—H26C109.5
S1—C11—H11124.3H26A—C26—H26C109.5
C11—C12—N2114.1 (2)H26B—C26—H26C109.5
C9—N1—C1—C235.5 (3)C8—C9—C10—N226.3 (3)
C9—N1—C1—C1994.0 (3)N1—C9—C10—S127.5 (3)
N1—C1—C2—C75.4 (3)C8—C9—C10—S1152.8 (2)
C19—C1—C2—C7121.4 (3)C11—S1—C10—N20.0 (2)
N1—C1—C2—C3172.5 (2)C11—S1—C10—C9179.2 (2)
C19—C1—C2—C360.6 (3)C10—S1—C11—C120.3 (2)
C7—C2—C3—C40.3 (4)S1—C11—C12—N20.4 (3)
C1—C2—C3—C4177.7 (2)S1—C11—C12—C13178.9 (2)
C25—O1—C4—C39.3 (5)C10—N2—C12—C110.4 (3)
C25—O1—C4—C5170.6 (4)C10—N2—C12—C13179.0 (2)
C2—C3—C4—O1178.9 (3)C11—C12—C13—C14178.3 (3)
C2—C3—C4—C51.2 (4)N2—C12—C13—C142.4 (4)
C26—O2—C5—C67.4 (4)C11—C12—C13—C182.7 (4)
C26—O2—C5—C4173.5 (3)N2—C12—C13—C18176.6 (3)
O1—C4—C5—O20.4 (4)C18—C13—C14—C150.2 (4)
C3—C4—C5—O2179.6 (2)C12—C13—C14—C15178.9 (3)
O1—C4—C5—C6178.8 (2)C13—C14—C15—C160.1 (5)
C3—C4—C5—C61.3 (4)C14—C15—C16—C170.4 (5)
O2—C5—C6—C7179.0 (2)C15—C16—C17—C180.9 (6)
C4—C5—C6—C70.1 (4)C16—C17—C18—C130.9 (5)
C3—C2—C7—C61.7 (4)C14—C13—C18—C170.3 (5)
C1—C2—C7—C6176.3 (2)C12—C13—C18—C17179.3 (3)
C3—C2—C7—C8178.9 (2)N1—C1—C19—C24101.3 (3)
C1—C2—C7—C83.2 (4)C2—C1—C19—C2428.4 (4)
C5—C6—C7—C21.6 (4)N1—C1—C19—C2078.9 (3)
C5—C6—C7—C8178.9 (3)C2—C1—C19—C20151.4 (3)
C2—C7—C8—C917.6 (4)C24—C19—C20—C210.2 (5)
C6—C7—C8—C9162.9 (2)C1—C19—C20—C21179.6 (3)
C1—N1—C9—C10179.0 (2)C19—C20—C21—C220.8 (5)
C1—N1—C9—C858.0 (3)C20—C21—C22—C231.9 (6)
C7—C8—C9—N148.1 (3)C21—C22—C23—C241.9 (5)
C7—C8—C9—C10171.6 (2)C20—C19—C24—C230.2 (4)
C12—N2—C10—C9178.9 (2)C1—C19—C24—C23179.6 (3)
C12—N2—C10—S10.2 (3)C22—C23—C24—C190.9 (5)
N1—C9—C10—N2151.6 (2)

Experimental details

Crystal data
Chemical formulaC26H24N2O2S
Mr428.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.9178 (2), 16.6269 (9), 22.8564 (11)
V3)2248.95 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.32 × 0.16 × 0.13
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.886, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
92668, 4948, 3141
Rint0.093
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.109, 1.21
No. of reflections4948
No. of parameters285
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.13
Absolute structureFlack (1983), 2094 Friedel pairs
Absolute structure parameter0.01 (10)

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank Dr Hong Su of the University of Capetown for the data collection and structure refinement.

References

First citationChakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972–980.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011a). Acta Cryst. E67, o67.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o1403.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859–2867.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds