organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-1,2-oxazole-3-carb­­oxy­lic acid

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 21 July 2011; accepted 30 August 2011; online 3 September 2011)

In the crystal structure of the title compound, C5H5NO3, all the non-H atoms are approximately coplanar: the carb­oxy O atoms deviating by 0.013 (2) and −0.075 (2) Å from the isoxazole ring plane. In the crystal, the molecules form inversion dimers linked by pairs of O—H⋯O hydrogen bonds and the dimers stack via ππ inter­actions [centroid–centroid distance = 3.234 (2) Å].

Related literature

The title compound is a potent inhibitor of the monoamine oxidase enzyme and multidentate ligand for transition metals, see: Birk & Weihe (2009[Birk, T. & Weihe, H. (2009). J. Chem. Crystallogr. 39, 766-771.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5NO3

  • Mr = 127.10

  • Triclinic, [P \overline 1]

  • a = 4.9125 (10) Å

  • b = 5.6909 (11) Å

  • c = 10.464 (2) Å

  • α = 82.21 (3)°

  • β = 79.72 (3)°

  • γ = 78.96 (3)°

  • V = 280.96 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.975, Tmax = 0.975

  • 2923 measured reflections

  • 1283 independent reflections

  • 1052 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.230

  • S = 1.07

  • 1283 reflections

  • 83 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.98 1.68 2.650 (2) 170
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

5-Methylisoxazole-3-carboxylic acid is a potent inhibitor of the monoamine oxidase enzyme and excellent ligand for transition metals (Birk, et al.,2009) as well as other derivatives of isoxazole. As part of our interest in these compounds, we report here the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. All the non-H atoms of the title compound are located almost in one plane, as the atoms O1 and O2 are shifted just ca 0.0016Å out of the isoxazole ring plane.

The title compound formed dimer via intermolecular O—H···O hydrogen bonds and the dimers packed via ππ stacking interactions (3.234 Å).(Fig. 2).

Related literature top

The title compound is a potent inhibitor of the monoamine oxidase enzyme and excellent ligand for transition metals, see: Birk & Weihe (2009).

Experimental top

The title compound was purchased commercially. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms attached to C atoms and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (CH) or C—H = 0.96 Å and O—H = 0.9796 Å with Uiso(H) = 1.2Ueq(CH) and Uiso(H) = 1.5Ueq(O,CH3).

Structure description top

5-Methylisoxazole-3-carboxylic acid is a potent inhibitor of the monoamine oxidase enzyme and excellent ligand for transition metals (Birk, et al.,2009) as well as other derivatives of isoxazole. As part of our interest in these compounds, we report here the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. All the non-H atoms of the title compound are located almost in one plane, as the atoms O1 and O2 are shifted just ca 0.0016Å out of the isoxazole ring plane.

The title compound formed dimer via intermolecular O—H···O hydrogen bonds and the dimers packed via ππ stacking interactions (3.234 Å).(Fig. 2).

The title compound is a potent inhibitor of the monoamine oxidase enzyme and excellent ligand for transition metals, see: Birk & Weihe (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing view down the a axis showing the three dimensionnal network.Intermolecular hydrogen bonds are shown as dashed lines. H atoms have been omitted for the sake of clarity.
5-Methyl-1,2-oxazole-3-carboxylic acid top
Crystal data top
C5H5NO3Z = 2
Mr = 127.10F(000) = 132
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9125 (10) ÅCell parameters from 1283 reflections
b = 5.6909 (11) Åθ = 3.7–27.5°
c = 10.464 (2) ŵ = 0.13 mm1
α = 82.21 (3)°T = 293 K
β = 79.72 (3)°Prism, colourless
γ = 78.96 (3)°0.20 × 0.20 × 0.20 mm
V = 280.96 (10) Å3
Data collection top
Rigaku SCXmini
diffractometer
1283 independent reflections
Radiation source: fine-focus sealed tube1052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.7°
CCD_Profile_fitting scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.975, Tmax = 0.975l = 1313
2923 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1395P)2]
where P = (Fo2 + 2Fc2)/3
1283 reflections(Δ/σ)max < 0.001
83 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
C5H5NO3γ = 78.96 (3)°
Mr = 127.10V = 280.96 (10) Å3
Triclinic, P1Z = 2
a = 4.9125 (10) ÅMo Kα radiation
b = 5.6909 (11) ŵ = 0.13 mm1
c = 10.464 (2) ÅT = 293 K
α = 82.21 (3)°0.20 × 0.20 × 0.20 mm
β = 79.72 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1283 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1052 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.975Rint = 0.079
2923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0841 restraint
wR(F2) = 0.230H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
1283 reflectionsΔρmin = 0.41 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.2313 (3)0.3175 (2)0.15660 (15)0.0539 (5)
N10.0692 (4)0.1507 (3)0.2343 (2)0.0530 (6)
C20.0502 (4)0.2811 (3)0.29544 (17)0.0401 (5)
C10.2432 (4)0.1560 (3)0.38652 (18)0.0419 (5)
C30.0274 (4)0.5290 (3)0.26092 (19)0.0436 (5)
H30.02930.65510.29150.052*
C40.2024 (4)0.5436 (3)0.17357 (18)0.0428 (5)
O10.2945 (3)0.0687 (3)0.40024 (16)0.0560 (5)
C50.3597 (5)0.7439 (4)0.0956 (2)0.0541 (6)
H5A0.33710.70680.00710.081*
H5B0.28860.88920.09710.081*
H5C0.55530.76550.13230.081*
O20.3450 (3)0.2937 (2)0.44412 (15)0.0551 (5)
H20.4849 (14)0.1977 (10)0.4948 (5)0.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0681 (10)0.0405 (9)0.0617 (10)0.0087 (7)0.0357 (8)0.0030 (7)
N10.0638 (11)0.0374 (10)0.0650 (12)0.0080 (8)0.0332 (9)0.0017 (8)
C20.0447 (10)0.0375 (10)0.0398 (10)0.0074 (7)0.0116 (8)0.0032 (8)
C10.0446 (10)0.0415 (10)0.0408 (10)0.0082 (8)0.0103 (8)0.0028 (8)
C30.0496 (11)0.0391 (11)0.0455 (10)0.0088 (8)0.0139 (8)0.0058 (8)
C40.0495 (10)0.0362 (10)0.0446 (10)0.0066 (8)0.0137 (8)0.0036 (7)
O10.0646 (10)0.0407 (9)0.0655 (10)0.0029 (7)0.0291 (8)0.0015 (7)
C50.0625 (13)0.0463 (12)0.0540 (12)0.0031 (9)0.0220 (10)0.0009 (9)
O20.0624 (10)0.0517 (10)0.0581 (10)0.0081 (8)0.0295 (8)0.0057 (7)
Geometric parameters (Å, º) top
O3—C41.359 (2)C3—C41.347 (3)
O3—N11.388 (2)C3—H30.9300
N1—C21.317 (3)C4—C51.482 (3)
C2—C31.404 (3)C5—H5A0.9600
C2—C11.481 (3)C5—H5B0.9600
C1—O11.249 (2)C5—H5C0.9600
C1—O21.270 (2)O2—H20.9796
C4—O3—N1109.46 (15)C3—C4—O3108.95 (18)
C2—N1—O3104.75 (15)C3—C4—C5134.7 (2)
N1—C2—C3112.28 (18)O3—C4—C5116.31 (18)
N1—C2—C1118.65 (18)C4—C5—H5A109.6
C3—C2—C1129.06 (18)C4—C5—H5B109.4
O1—C1—O2125.6 (2)H5A—C5—H5B109.5
O1—C1—C2119.38 (18)C4—C5—H5C109.5
O2—C1—C2114.99 (17)H5A—C5—H5C109.5
C4—C3—C2104.56 (17)H5B—C5—H5C109.5
C4—C3—H3127.7C1—O2—H2109.6
C2—C3—H3127.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.981.682.650 (2)170
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H5NO3
Mr127.10
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.9125 (10), 5.6909 (11), 10.464 (2)
α, β, γ (°)82.21 (3), 79.72 (3), 78.96 (3)
V3)280.96 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.975, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
2923, 1283, 1052
Rint0.079
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.230, 1.07
No. of reflections1283
No. of parameters83
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.41

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.981.682.650 (2)170.1
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (project 20671019).

References

First citationBirk, T. & Weihe, H. (2009). J. Chem. Crystallogr. 39, 766–771.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds