metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acrylo­nitrile-κN)di­chlorido(η4-cyclo­octa-1,5-diene)ruthenium(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
*Correspondence e-mail: harrychiririwa@yahoo.com

(Received 24 August 2011; accepted 30 August 2011; online 14 September 2011)

In the title complex, [RuCl2(C8H12)(C3H3N)2], the metal ion is coordinated to centers of each of the double bonds of the cyclo­octa-1,5-diene ligand, to two chloride ions (in cis positions) and to two N-atom donors from two acrylonitrile mol­ecules that complete the coordination sphere for the neutral complex. The coordination about the RuII atom can thus be considered octa­hedral with slight trigonal distortion. The three C atoms of one of the acrylonitrile ligands are disordered over two sets of sites in a 0.581 (13):0.419 (13) ratio.

Related literature

For a review of related compounds, see: Chiririwa et al. (2011[Chiririwa, H., Meijboom, R., Owalude, S. O., Eke, U. B. & Arderne, C. (2011). Acta Cryst. E67, m1096.]). For the synthesis of starting materials, see: Ashworth et al. (1987[Ashworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40(3), 183-188.])

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C8H12)(C3H3N)2]

  • Mr = 386.27

  • Monoclinic, P 21 /c

  • a = 7.1079 (8) Å

  • b = 26.818 (3) Å

  • c = 8.1555 (10) Å

  • β = 101.408 (2)°

  • V = 1523.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 100 K

  • 0.22 × 0.09 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 12653 measured reflections

  • 3776 independent reflections

  • 3093 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.075

  • S = 1.03

  • 3776 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −1.11 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The present ruthenium complex, Fig.1, has been synthesized in a similar way as done earlier for the acetonitrile derivative (Chiririwa et al. 2011). Organonitrile solvate complexes are widely useful for synthesis of organometallic compounds because of facile substitution at the solvate coordination sites. Similarly, 1,5-cyclooctadiene complexes have found considerable use in organometallic chemistry as well.

The two acrylonitrile ligands are not trans to each other, as the N(2)—Ru—N(1) angle is 164.62 (11)° whereas the same angle is 163.15 (6)° in the acetonitrile derivative. This is attributed to repulsion by the alkene bonds of the COD ligand. One of the acrylonitrile ligands is slightly bent as we observed earlier in the acetonitrile derivative. The N(2)—C(21)—C(22) bond angle is 179.2 (3)°. This is probably due to packing forces.

It turned out that in the crystal structure the disorder involves three carbon atoms between the 3 positions with site occupation factors of 84:16. A l l alternative positions refined quite well without any kind of restraints and the C atoms assume positions that make an almost symmetrical system.

Related literature top

For a review of related compounds, see: Chiririwa et al. (2011). For the synthesis of starting materials, see: Ashworth et al. (1987)

Experimental top

A suspension of [{RuCl2(COD)}x] (0.5 g) in acrylonitrile (25 ml) was refluxed for 12 h. The orange solution was filtered hot and concentrated on a steam bath to half volume and cooled to 0 °C overnight affording orange crystals in 50% yield suitable for X-ray diffraction studies.

Refinement top

The methylene, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. The acrylonitrile ligand is disordered over 3 well resolved positions. The disorder involves three C atoms which assume positions that make an almost symmetrical system. Unfortunately this disorder could not be resolved.

Structure description top

The present ruthenium complex, Fig.1, has been synthesized in a similar way as done earlier for the acetonitrile derivative (Chiririwa et al. 2011). Organonitrile solvate complexes are widely useful for synthesis of organometallic compounds because of facile substitution at the solvate coordination sites. Similarly, 1,5-cyclooctadiene complexes have found considerable use in organometallic chemistry as well.

The two acrylonitrile ligands are not trans to each other, as the N(2)—Ru—N(1) angle is 164.62 (11)° whereas the same angle is 163.15 (6)° in the acetonitrile derivative. This is attributed to repulsion by the alkene bonds of the COD ligand. One of the acrylonitrile ligands is slightly bent as we observed earlier in the acetonitrile derivative. The N(2)—C(21)—C(22) bond angle is 179.2 (3)°. This is probably due to packing forces.

It turned out that in the crystal structure the disorder involves three carbon atoms between the 3 positions with site occupation factors of 84:16. A l l alternative positions refined quite well without any kind of restraints and the C atoms assume positions that make an almost symmetrical system.

For a review of related compounds, see: Chiririwa et al. (2011). For the synthesis of starting materials, see: Ashworth et al. (1987)

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Some lables have been omitted for clarity.
Bis(acrylonitrile-κN)dichlorido(η4-cycloocta-1,5-diene)ruthenium(II) top
Crystal data top
[RuCl2(C8H12)(C3H3N)2]F(000) = 776
Mr = 386.27Dx = 1.684 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3596 reflections
a = 7.1079 (8) Åθ = 2.7–28.2°
b = 26.818 (3) ŵ = 1.37 mm1
c = 8.1555 (10) ÅT = 100 K
β = 101.408 (2)°Rectangular, orange
V = 1523.9 (3) Å30.22 × 0.09 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3093 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 28.3°, θmin = 1.5°
φ and ω scansh = 98
12653 measured reflectionsk = 3535
3776 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0254P)2 + 2.2348P]
where P = (Fo2 + 2Fc2)/3
3776 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 1.11 e Å3
Crystal data top
[RuCl2(C8H12)(C3H3N)2]V = 1523.9 (3) Å3
Mr = 386.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1079 (8) ŵ = 1.37 mm1
b = 26.818 (3) ÅT = 100 K
c = 8.1555 (10) Å0.22 × 0.09 × 0.04 mm
β = 101.408 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3093 reflections with I > 2σ(I)
12653 measured reflectionsRint = 0.040
3776 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.03Δρmax = 1.14 e Å3
3776 reflectionsΔρmin = 1.11 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.The Following Model and Quality ALERTS were generated -(Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 7 Noted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.50503 (3)0.634032 (9)0.06561 (3)0.01778 (7)
Cl10.75368 (12)0.59883 (4)0.27841 (13)0.0487 (3)
Cl20.39293 (11)0.68818 (3)0.26070 (9)0.02385 (16)
C10.3571 (5)0.67769 (12)0.1549 (4)0.0284 (7)
H10.38680.70640.08660.034*
C20.2289 (4)0.64408 (13)0.1127 (4)0.0286 (7)
H20.17390.65130.01820.034*
C30.1699 (5)0.59630 (15)0.2071 (5)0.0404 (9)
H3A0.0880.60470.31650.048*
H3B0.09170.57620.14360.048*
C40.3393 (5)0.56453 (14)0.2372 (5)0.0403 (9)
H4A0.30160.5290.23870.048*
H4B0.36510.57270.34910.048*
C50.5230 (4)0.57127 (12)0.1091 (5)0.0283 (7)
H50.54470.55070.01240.034*
C60.6595 (4)0.60595 (13)0.1271 (4)0.0273 (7)
H60.77330.60720.04340.033*
C70.6410 (5)0.64203 (13)0.2703 (4)0.0333 (8)
H7A0.65020.62330.3730.04*
H7B0.75030.66560.24760.04*
C80.4539 (6)0.67198 (14)0.3029 (4)0.0369 (9)
H8A0.48120.70570.34210.044*
H8B0.36270.65570.39470.044*
C230.2232 (5)0.48525 (13)0.3860 (4)0.0343 (8)
H23A0.35720.47950.39950.041*
H23B0.14680.46380.43880.041*
N10.6921 (4)0.68978 (11)0.0491 (3)0.0305 (7)
C11A0.7543 (16)0.7291 (4)0.0267 (11)0.0137 (18)0.419 (13)
C12A0.8507 (12)0.7726 (3)0.0172 (8)0.015 (2)0.419 (13)
H12A0.77490.80.06590.018*0.419 (13)
C13A1.0368 (13)0.7766 (3)0.0062 (10)0.022 (2)0.419 (13)
H13A1.1160.74980.05460.027*0.419 (13)
H13B1.09320.80630.02530.027*0.419 (13)
C11B0.8206 (11)0.7163 (3)0.0505 (9)0.0170 (14)0.581 (13)
C12B0.9662 (8)0.7536 (2)0.0446 (6)0.0183 (17)0.581 (13)
H12B1.09460.74770.10060.022*0.581 (13)
C13B0.9232 (10)0.7954 (3)0.0371 (7)0.0249 (18)0.581 (13)
H13C0.79510.80160.09340.03*0.581 (13)
H13D1.02020.81960.040.03*0.581 (13)
N20.3376 (4)0.58267 (10)0.1480 (4)0.0267 (6)
C210.2527 (5)0.55592 (12)0.2127 (4)0.0277 (7)
C220.1436 (5)0.52268 (13)0.2946 (4)0.0288 (7)
H220.00940.52790.28240.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01229 (11)0.01244 (12)0.02730 (13)0.00135 (9)0.00074 (8)0.00569 (10)
Cl10.0245 (4)0.0659 (7)0.0537 (6)0.0169 (4)0.0029 (4)0.0357 (5)
Cl20.0281 (4)0.0196 (4)0.0208 (3)0.0016 (3)0.0026 (3)0.0012 (3)
C10.0391 (18)0.0215 (16)0.0185 (14)0.0115 (14)0.0093 (13)0.0031 (12)
C20.0191 (14)0.0326 (19)0.0292 (16)0.0094 (13)0.0074 (12)0.0133 (14)
C30.0209 (16)0.048 (2)0.051 (2)0.0056 (16)0.0036 (15)0.0299 (19)
C40.0284 (17)0.032 (2)0.066 (2)0.0121 (16)0.0226 (17)0.0284 (19)
C50.0253 (16)0.0136 (15)0.052 (2)0.0035 (13)0.0211 (14)0.0012 (14)
C60.0191 (14)0.0271 (18)0.0379 (17)0.0002 (13)0.0110 (13)0.0002 (14)
C70.042 (2)0.0281 (19)0.0309 (17)0.0093 (16)0.0109 (15)0.0038 (14)
C80.058 (2)0.030 (2)0.0201 (15)0.0067 (18)0.0004 (15)0.0025 (14)
C230.039 (2)0.0249 (18)0.045 (2)0.0067 (16)0.0227 (16)0.0051 (16)
N10.0380 (16)0.0328 (17)0.0196 (12)0.0209 (14)0.0030 (11)0.0011 (12)
C11A0.016 (5)0.009 (4)0.015 (4)0.004 (3)0.001 (3)0.004 (3)
C12A0.019 (4)0.011 (4)0.014 (3)0.000 (3)0.004 (3)0.000 (3)
C13A0.020 (5)0.019 (4)0.026 (4)0.005 (4)0.001 (3)0.003 (3)
C11B0.017 (3)0.016 (4)0.017 (3)0.007 (3)0.001 (2)0.000 (2)
C12B0.014 (3)0.018 (3)0.021 (3)0.002 (2)0.001 (2)0.002 (2)
C13B0.023 (3)0.029 (4)0.021 (3)0.005 (3)0.001 (2)0.001 (3)
N20.0216 (13)0.0173 (14)0.0450 (16)0.0011 (11)0.0155 (12)0.0004 (12)
C210.0246 (16)0.0177 (16)0.0448 (19)0.0023 (13)0.0163 (14)0.0074 (14)
C220.0235 (16)0.0261 (18)0.0420 (18)0.0075 (14)0.0191 (14)0.0071 (15)
Geometric parameters (Å, º) top
Ru1—N22.021 (3)C7—C81.532 (5)
Ru1—N12.023 (3)C7—H7A0.99
Ru1—C22.216 (3)C7—H7B0.99
Ru1—C62.219 (3)C8—H8A0.99
Ru1—C52.225 (3)C8—H8B0.99
Ru1—C12.228 (3)C23—C221.310 (5)
Ru1—Cl22.4035 (8)C23—H23A0.95
Ru1—Cl12.4111 (9)C23—H23B0.95
C1—C21.373 (5)N1—C11B1.156 (7)
C1—C81.511 (5)N1—C11A1.171 (9)
C1—H10.95C11A—C12A1.434 (13)
C2—C31.511 (5)C12A—C13A1.303 (14)
C2—H20.95C12A—H12A0.95
C3—C41.534 (5)C13A—H13A0.95
C3—H3A0.99C13A—H13B0.95
C3—H3B0.99C11B—C12B1.447 (10)
C4—C51.513 (5)C12B—C13B1.309 (11)
C4—H4A0.99C12B—H12B0.95
C4—H4B0.99C13B—H13C0.95
C5—C61.373 (4)C13B—H13D0.95
C5—H50.95N2—C211.132 (4)
C6—C71.503 (5)C21—C221.431 (4)
C6—H60.95C22—H220.95
N2—Ru1—N1164.62 (11)C3—C4—H4B108.6
N2—Ru1—C278.32 (13)H4A—C4—H4B107.5
N1—Ru1—C2112.03 (13)C6—C5—C4122.6 (3)
N2—Ru1—C6114.26 (11)C6—C5—Ru171.78 (19)
N1—Ru1—C677.28 (12)C4—C5—Ru1112.4 (2)
C2—Ru1—C694.29 (12)C6—C5—H5118.7
N2—Ru1—C579.02 (11)C4—C5—H5118.7
N1—Ru1—C5113.25 (12)Ru1—C5—H585.9
C2—Ru1—C580.06 (12)C5—C6—C7124.3 (3)
C6—Ru1—C535.98 (11)C5—C6—Ru172.24 (19)
N2—Ru1—C1114.32 (13)C7—C6—Ru1110.7 (2)
N1—Ru1—C176.67 (12)C5—C6—H6117.8
C2—Ru1—C136.00 (13)C7—C6—H6117.8
C6—Ru1—C180.07 (12)Ru1—C6—H687.1
C5—Ru1—C187.62 (12)C6—C7—C8114.3 (3)
N2—Ru1—Cl284.11 (8)C6—C7—H7A108.7
N1—Ru1—Cl284.59 (9)C8—C7—H7A108.7
C2—Ru1—Cl289.67 (9)C6—C7—H7B108.7
C6—Ru1—Cl2161.63 (9)C8—C7—H7B108.7
C5—Ru1—Cl2161.70 (8)H7A—C7—H7B107.6
C1—Ru1—Cl292.95 (9)C1—C8—C7115.6 (3)
N2—Ru1—Cl183.67 (8)C1—C8—H8A108.4
N1—Ru1—Cl186.52 (9)C7—C8—H8A108.4
C2—Ru1—Cl1161.43 (10)C1—C8—H8B108.4
C6—Ru1—Cl188.96 (9)C7—C8—H8B108.4
C5—Ru1—Cl192.18 (10)H8A—C8—H8B107.4
C1—Ru1—Cl1161.56 (10)C22—C23—H23A120
Cl2—Ru1—Cl192.97 (3)C22—C23—H23B120
C2—C1—C8124.3 (3)H23A—C23—H23B120
C2—C1—Ru171.52 (18)C11B—N1—Ru1169.3 (5)
C8—C1—Ru1112.0 (2)C11A—N1—Ru1161.6 (6)
C2—C1—H1117.9N1—C11A—C12A170.1 (10)
C8—C1—H1117.9C13A—C12A—C11A123.5 (9)
Ru1—C1—H186.4C13A—C12A—H12A118.3
C1—C2—C3124.1 (3)C11A—C12A—H12A118.3
C1—C2—Ru172.48 (17)C12A—C13A—H13A120
C3—C2—Ru1110.6 (2)C12A—C13A—H13B120
C1—C2—H2118H13A—C13A—H13B120
C3—C2—H2118N1—C11B—C12B173.7 (8)
Ru1—C2—H286.9C13B—C12B—C11B120.9 (7)
C2—C3—C4113.9 (3)C13B—C12B—H12B119.6
C2—C3—H3A108.8C11B—C12B—H12B119.6
C4—C3—H3A108.8C12B—C13B—H13C120
C2—C3—H3B108.8C12B—C13B—H13D120
C4—C3—H3B108.8H13C—C13B—H13D120
H3A—C3—H3B107.7C21—N2—Ru1171.8 (3)
C5—C4—C3114.9 (3)N2—C21—C22179.2 (3)
C5—C4—H4A108.6C23—C22—C21122.0 (3)
C3—C4—H4A108.6C23—C22—H22119
C5—C4—H4B108.6C21—C22—H22119
N2—Ru1—C1—C20.5 (2)N1—Ru1—C5—C4116.6 (2)
N1—Ru1—C1—C2169.1 (2)C2—Ru1—C5—C46.8 (3)
C6—Ru1—C1—C2111.7 (2)C6—Ru1—C5—C4118.5 (4)
C5—Ru1—C1—C276.3 (2)C1—Ru1—C5—C442.2 (3)
Cl2—Ru1—C1—C285.38 (18)Cl2—Ru1—C5—C449.9 (5)
Cl1—Ru1—C1—C2166.0 (2)Cl1—Ru1—C5—C4156.2 (2)
N2—Ru1—C1—C8120.9 (2)C4—C5—C6—C72.2 (5)
N1—Ru1—C1—C870.5 (3)Ru1—C5—C6—C7103.3 (3)
C2—Ru1—C1—C8120.4 (3)C4—C5—C6—Ru1105.5 (3)
C6—Ru1—C1—C88.7 (2)N2—Ru1—C6—C512.6 (2)
C5—Ru1—C1—C844.1 (3)N1—Ru1—C6—C5178.2 (2)
Cl2—Ru1—C1—C8154.2 (2)C2—Ru1—C6—C566.5 (2)
Cl1—Ru1—C1—C845.7 (4)C1—Ru1—C6—C599.7 (2)
C8—C1—C2—C31.1 (5)Cl2—Ru1—C6—C5168.5 (2)
Ru1—C1—C2—C3103.4 (3)Cl1—Ru1—C6—C595.1 (2)
C8—C1—C2—Ru1104.5 (3)N2—Ru1—C6—C7133.4 (2)
N2—Ru1—C2—C1179.5 (2)N1—Ru1—C6—C757.4 (2)
N1—Ru1—C2—C111.4 (2)C2—Ru1—C6—C754.3 (2)
C6—Ru1—C2—C166.6 (2)C5—Ru1—C6—C7120.8 (3)
C5—Ru1—C2—C199.8 (2)C1—Ru1—C6—C721.1 (2)
Cl2—Ru1—C2—C195.47 (18)Cl2—Ru1—C6—C747.7 (4)
Cl1—Ru1—C2—C1166.1 (2)Cl1—Ru1—C6—C7144.0 (2)
N2—Ru1—C2—C359.9 (3)C5—C6—C7—C851.7 (5)
N1—Ru1—C2—C3132.0 (3)Ru1—C6—C7—C830.5 (3)
C6—Ru1—C2—C354.0 (3)C2—C1—C8—C787.3 (4)
C5—Ru1—C2—C320.8 (3)Ru1—C1—C8—C75.3 (4)
C1—Ru1—C2—C3120.6 (3)C6—C7—C8—C124.1 (4)
Cl2—Ru1—C2—C3144.0 (3)N2—Ru1—N1—C11B72 (2)
Cl1—Ru1—C2—C345.6 (4)C2—Ru1—N1—C11B157 (2)
C1—C2—C3—C450.4 (5)C6—Ru1—N1—C11B68 (2)
Ru1—C2—C3—C431.9 (4)C5—Ru1—N1—C11B69 (2)
C2—C3—C4—C527.1 (5)C1—Ru1—N1—C11B150 (2)
C3—C4—C5—C690.6 (4)Cl2—Ru1—N1—C11B115 (2)
C3—C4—C5—Ru18.5 (4)Cl1—Ru1—N1—C11B22 (2)
N2—Ru1—C5—C6168.3 (2)N2—Ru1—N1—C11A101.0 (15)
N1—Ru1—C5—C61.9 (2)C2—Ru1—N1—C11A29.3 (15)
C2—Ru1—C5—C6111.8 (2)C6—Ru1—N1—C11A118.8 (15)
C1—Ru1—C5—C676.3 (2)C5—Ru1—N1—C11A117.7 (15)
Cl2—Ru1—C5—C6168.5 (2)C1—Ru1—N1—C11A36.2 (15)
Cl1—Ru1—C5—C685.2 (2)Cl2—Ru1—N1—C11A58.1 (15)
N2—Ru1—C5—C473.1 (3)Cl1—Ru1—N1—C11A151.4 (15)

Experimental details

Crystal data
Chemical formula[RuCl2(C8H12)(C3H3N)2]
Mr386.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1079 (8), 26.818 (3), 8.1555 (10)
β (°) 101.408 (2)
V3)1523.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.22 × 0.09 × 0.04
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12653, 3776, 3093
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 1.03
No. of reflections3776
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 1.11

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged.

References

First citationAshworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40(3), 183–188.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiririwa, H., Meijboom, R., Owalude, S. O., Eke, U. B. & Arderne, C. (2011). Acta Cryst. E67, m1096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds