metal-organic compounds
Bis(acrylonitrile-κN)dichlorido(η4-cycloocta-1,5-diene)ruthenium(II)
aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
*Correspondence e-mail: harrychiririwa@yahoo.com
In the title complex, [RuCl2(C8H12)(C3H3N)2], the metal ion is coordinated to centers of each of the double bonds of the cycloocta-1,5-diene ligand, to two chloride ions (in cis positions) and to two N-atom donors from two acrylonitrile molecules that complete the coordination sphere for the neutral complex. The coordination about the RuII atom can thus be considered octahedral with slight trigonal distortion. The three C atoms of one of the acrylonitrile ligands are disordered over two sets of sites in a 0.581 (13):0.419 (13) ratio.
Related literature
For a review of related compounds, see: Chiririwa et al. (2011). For the synthesis of starting materials, see: Ashworth et al. (1987)
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811035380/jh2321sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811035380/jh2321Isup2.hkl
A suspension of [{RuCl2(COD)}x] (0.5 g) in acrylonitrile (25 ml) was refluxed for 12 h. The orange solution was filtered hot and concentrated on a steam bath to half volume and cooled to 0 °C overnight affording orange crystals in 50% yield suitable for X-ray diffraction studies.
The methylene, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. The acrylonitrile ligand is disordered over 3 well resolved positions. The disorder involves three C atoms which assume positions that make an almost symmetrical system. Unfortunately this disorder could not be resolved.
The present ruthenium complex, Fig.1, has been synthesized in a similar way as done earlier for the acetonitrile derivative (Chiririwa et al. 2011). Organonitrile solvate complexes are widely useful for synthesis of organometallic compounds because of facile substitution at the solvate coordination sites. Similarly, 1,5-cyclooctadiene complexes have found considerable use in organometallic chemistry as well.
The two acrylonitrile ligands are not trans to each other, as the N(2)—Ru—N(1) angle is 164.62 (11)° whereas the same angle is 163.15 (6)° in the acetonitrile derivative. This is attributed to repulsion by the alkene bonds of the COD ligand. One of the acrylonitrile ligands is slightly bent as we observed earlier in the acetonitrile derivative. The N(2)—C(21)—C(22) bond angle is 179.2 (3)°. This is probably due to packing forces.
It turned out that in the
the disorder involves three carbon atoms between the 3 positions with site occupation factors of 84:16. A l l alternative positions refined quite well without any kind of restraints and the C atoms assume positions that make an almost symmetrical system.For a review of related compounds, see: Chiririwa et al. (2011). For the synthesis of starting materials, see: Ashworth et al. (1987)
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[RuCl2(C8H12)(C3H3N)2] | F(000) = 776 |
Mr = 386.27 | Dx = 1.684 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3596 reflections |
a = 7.1079 (8) Å | θ = 2.7–28.2° |
b = 26.818 (3) Å | µ = 1.37 mm−1 |
c = 8.1555 (10) Å | T = 100 K |
β = 101.408 (2)° | Rectangular, orange |
V = 1523.9 (3) Å3 | 0.22 × 0.09 × 0.04 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 3093 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.040 |
Graphite monochromator | θmax = 28.3°, θmin = 1.5° |
φ and ω scans | h = −9→8 |
12653 measured reflections | k = −35→35 |
3776 independent reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0254P)2 + 2.2348P] where P = (Fo2 + 2Fc2)/3 |
3776 reflections | (Δ/σ)max = 0.001 |
200 parameters | Δρmax = 1.14 e Å−3 |
0 restraints | Δρmin = −1.11 e Å−3 |
[RuCl2(C8H12)(C3H3N)2] | V = 1523.9 (3) Å3 |
Mr = 386.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.1079 (8) Å | µ = 1.37 mm−1 |
b = 26.818 (3) Å | T = 100 K |
c = 8.1555 (10) Å | 0.22 × 0.09 × 0.04 mm |
β = 101.408 (2)° |
Bruker APEXII CCD diffractometer | 3093 reflections with I > 2σ(I) |
12653 measured reflections | Rint = 0.040 |
3776 independent reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.14 e Å−3 |
3776 reflections | Δρmin = −1.11 e Å−3 |
200 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.The Following Model and Quality ALERTS were generated -(Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 7 Noted. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ru1 | 0.50503 (3) | 0.634032 (9) | 0.06561 (3) | 0.01778 (7) | |
Cl1 | 0.75368 (12) | 0.59883 (4) | 0.27841 (13) | 0.0487 (3) | |
Cl2 | 0.39293 (11) | 0.68818 (3) | 0.26070 (9) | 0.02385 (16) | |
C1 | 0.3571 (5) | 0.67769 (12) | −0.1549 (4) | 0.0284 (7) | |
H1 | 0.3868 | 0.7064 | −0.0866 | 0.034* | |
C2 | 0.2289 (4) | 0.64408 (13) | −0.1127 (4) | 0.0286 (7) | |
H2 | 0.1739 | 0.6513 | −0.0182 | 0.034* | |
C3 | 0.1699 (5) | 0.59630 (15) | −0.2071 (5) | 0.0404 (9) | |
H3A | 0.088 | 0.6047 | −0.3165 | 0.048* | |
H3B | 0.0917 | 0.5762 | −0.1436 | 0.048* | |
C4 | 0.3393 (5) | 0.56453 (14) | −0.2372 (5) | 0.0403 (9) | |
H4A | 0.3016 | 0.529 | −0.2387 | 0.048* | |
H4B | 0.3651 | 0.5727 | −0.3491 | 0.048* | |
C5 | 0.5230 (4) | 0.57127 (12) | −0.1091 (5) | 0.0283 (7) | |
H5 | 0.5447 | 0.5507 | −0.0124 | 0.034* | |
C6 | 0.6595 (4) | 0.60595 (13) | −0.1271 (4) | 0.0273 (7) | |
H6 | 0.7733 | 0.6072 | −0.0434 | 0.033* | |
C7 | 0.6410 (5) | 0.64203 (13) | −0.2703 (4) | 0.0333 (8) | |
H7A | 0.6502 | 0.6233 | −0.373 | 0.04* | |
H7B | 0.7503 | 0.6656 | −0.2476 | 0.04* | |
C8 | 0.4539 (6) | 0.67198 (14) | −0.3029 (4) | 0.0369 (9) | |
H8A | 0.4812 | 0.7057 | −0.3421 | 0.044* | |
H8B | 0.3627 | 0.6557 | −0.3947 | 0.044* | |
C23 | 0.2232 (5) | 0.48525 (13) | 0.3860 (4) | 0.0343 (8) | |
H23A | 0.3572 | 0.4795 | 0.3995 | 0.041* | |
H23B | 0.1468 | 0.4638 | 0.4388 | 0.041* | |
N1 | 0.6921 (4) | 0.68978 (11) | 0.0491 (3) | 0.0305 (7) | |
C11A | 0.7543 (16) | 0.7291 (4) | 0.0267 (11) | 0.0137 (18) | 0.419 (13) |
C12A | 0.8507 (12) | 0.7726 (3) | −0.0172 (8) | 0.015 (2) | 0.419 (13) |
H12A | 0.7749 | 0.8 | −0.0659 | 0.018* | 0.419 (13) |
C13A | 1.0368 (13) | 0.7766 (3) | 0.0062 (10) | 0.022 (2) | 0.419 (13) |
H13A | 1.116 | 0.7498 | 0.0546 | 0.027* | 0.419 (13) |
H13B | 1.0932 | 0.8063 | −0.0253 | 0.027* | 0.419 (13) |
C11B | 0.8206 (11) | 0.7163 (3) | 0.0505 (9) | 0.0170 (14) | 0.581 (13) |
C12B | 0.9662 (8) | 0.7536 (2) | 0.0446 (6) | 0.0183 (17) | 0.581 (13) |
H12B | 1.0946 | 0.7477 | 0.1006 | 0.022* | 0.581 (13) |
C13B | 0.9232 (10) | 0.7954 (3) | −0.0371 (7) | 0.0249 (18) | 0.581 (13) |
H13C | 0.7951 | 0.8016 | −0.0934 | 0.03* | 0.581 (13) |
H13D | 1.0202 | 0.8196 | −0.04 | 0.03* | 0.581 (13) |
N2 | 0.3376 (4) | 0.58267 (10) | 0.1480 (4) | 0.0267 (6) | |
C21 | 0.2527 (5) | 0.55592 (12) | 0.2127 (4) | 0.0277 (7) | |
C22 | 0.1436 (5) | 0.52268 (13) | 0.2946 (4) | 0.0288 (7) | |
H22 | 0.0094 | 0.5279 | 0.2824 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01229 (11) | 0.01244 (12) | 0.02730 (13) | −0.00135 (9) | 0.00074 (8) | 0.00569 (10) |
Cl1 | 0.0245 (4) | 0.0659 (7) | 0.0537 (6) | 0.0169 (4) | 0.0029 (4) | 0.0357 (5) |
Cl2 | 0.0281 (4) | 0.0196 (4) | 0.0208 (3) | −0.0016 (3) | −0.0026 (3) | 0.0012 (3) |
C1 | 0.0391 (18) | 0.0215 (16) | 0.0185 (14) | 0.0115 (14) | −0.0093 (13) | −0.0031 (12) |
C2 | 0.0191 (14) | 0.0326 (19) | 0.0292 (16) | 0.0094 (13) | −0.0074 (12) | −0.0133 (14) |
C3 | 0.0209 (16) | 0.048 (2) | 0.051 (2) | −0.0056 (16) | 0.0036 (15) | −0.0299 (19) |
C4 | 0.0284 (17) | 0.032 (2) | 0.066 (2) | −0.0121 (16) | 0.0226 (17) | −0.0284 (19) |
C5 | 0.0253 (16) | 0.0136 (15) | 0.052 (2) | 0.0035 (13) | 0.0211 (14) | −0.0012 (14) |
C6 | 0.0191 (14) | 0.0271 (18) | 0.0379 (17) | −0.0002 (13) | 0.0110 (13) | 0.0002 (14) |
C7 | 0.042 (2) | 0.0281 (19) | 0.0309 (17) | −0.0093 (16) | 0.0109 (15) | −0.0038 (14) |
C8 | 0.058 (2) | 0.030 (2) | 0.0201 (15) | 0.0067 (18) | 0.0004 (15) | −0.0025 (14) |
C23 | 0.039 (2) | 0.0249 (18) | 0.045 (2) | −0.0067 (16) | 0.0227 (16) | −0.0051 (16) |
N1 | 0.0380 (16) | 0.0328 (17) | 0.0196 (12) | −0.0209 (14) | 0.0030 (11) | 0.0011 (12) |
C11A | 0.016 (5) | 0.009 (4) | 0.015 (4) | 0.004 (3) | −0.001 (3) | 0.004 (3) |
C12A | 0.019 (4) | 0.011 (4) | 0.014 (3) | 0.000 (3) | 0.004 (3) | 0.000 (3) |
C13A | 0.020 (5) | 0.019 (4) | 0.026 (4) | −0.005 (4) | −0.001 (3) | 0.003 (3) |
C11B | 0.017 (3) | 0.016 (4) | 0.017 (3) | 0.007 (3) | −0.001 (2) | 0.000 (2) |
C12B | 0.014 (3) | 0.018 (3) | 0.021 (3) | −0.002 (2) | −0.001 (2) | −0.002 (2) |
C13B | 0.023 (3) | 0.029 (4) | 0.021 (3) | −0.005 (3) | 0.001 (2) | 0.001 (3) |
N2 | 0.0216 (13) | 0.0173 (14) | 0.0450 (16) | −0.0011 (11) | 0.0155 (12) | −0.0004 (12) |
C21 | 0.0246 (16) | 0.0177 (16) | 0.0448 (19) | −0.0023 (13) | 0.0163 (14) | −0.0074 (14) |
C22 | 0.0235 (16) | 0.0261 (18) | 0.0420 (18) | −0.0075 (14) | 0.0191 (14) | −0.0071 (15) |
Ru1—N2 | 2.021 (3) | C7—C8 | 1.532 (5) |
Ru1—N1 | 2.023 (3) | C7—H7A | 0.99 |
Ru1—C2 | 2.216 (3) | C7—H7B | 0.99 |
Ru1—C6 | 2.219 (3) | C8—H8A | 0.99 |
Ru1—C5 | 2.225 (3) | C8—H8B | 0.99 |
Ru1—C1 | 2.228 (3) | C23—C22 | 1.310 (5) |
Ru1—Cl2 | 2.4035 (8) | C23—H23A | 0.95 |
Ru1—Cl1 | 2.4111 (9) | C23—H23B | 0.95 |
C1—C2 | 1.373 (5) | N1—C11B | 1.156 (7) |
C1—C8 | 1.511 (5) | N1—C11A | 1.171 (9) |
C1—H1 | 0.95 | C11A—C12A | 1.434 (13) |
C2—C3 | 1.511 (5) | C12A—C13A | 1.303 (14) |
C2—H2 | 0.95 | C12A—H12A | 0.95 |
C3—C4 | 1.534 (5) | C13A—H13A | 0.95 |
C3—H3A | 0.99 | C13A—H13B | 0.95 |
C3—H3B | 0.99 | C11B—C12B | 1.447 (10) |
C4—C5 | 1.513 (5) | C12B—C13B | 1.309 (11) |
C4—H4A | 0.99 | C12B—H12B | 0.95 |
C4—H4B | 0.99 | C13B—H13C | 0.95 |
C5—C6 | 1.373 (4) | C13B—H13D | 0.95 |
C5—H5 | 0.95 | N2—C21 | 1.132 (4) |
C6—C7 | 1.503 (5) | C21—C22 | 1.431 (4) |
C6—H6 | 0.95 | C22—H22 | 0.95 |
N2—Ru1—N1 | 164.62 (11) | C3—C4—H4B | 108.6 |
N2—Ru1—C2 | 78.32 (13) | H4A—C4—H4B | 107.5 |
N1—Ru1—C2 | 112.03 (13) | C6—C5—C4 | 122.6 (3) |
N2—Ru1—C6 | 114.26 (11) | C6—C5—Ru1 | 71.78 (19) |
N1—Ru1—C6 | 77.28 (12) | C4—C5—Ru1 | 112.4 (2) |
C2—Ru1—C6 | 94.29 (12) | C6—C5—H5 | 118.7 |
N2—Ru1—C5 | 79.02 (11) | C4—C5—H5 | 118.7 |
N1—Ru1—C5 | 113.25 (12) | Ru1—C5—H5 | 85.9 |
C2—Ru1—C5 | 80.06 (12) | C5—C6—C7 | 124.3 (3) |
C6—Ru1—C5 | 35.98 (11) | C5—C6—Ru1 | 72.24 (19) |
N2—Ru1—C1 | 114.32 (13) | C7—C6—Ru1 | 110.7 (2) |
N1—Ru1—C1 | 76.67 (12) | C5—C6—H6 | 117.8 |
C2—Ru1—C1 | 36.00 (13) | C7—C6—H6 | 117.8 |
C6—Ru1—C1 | 80.07 (12) | Ru1—C6—H6 | 87.1 |
C5—Ru1—C1 | 87.62 (12) | C6—C7—C8 | 114.3 (3) |
N2—Ru1—Cl2 | 84.11 (8) | C6—C7—H7A | 108.7 |
N1—Ru1—Cl2 | 84.59 (9) | C8—C7—H7A | 108.7 |
C2—Ru1—Cl2 | 89.67 (9) | C6—C7—H7B | 108.7 |
C6—Ru1—Cl2 | 161.63 (9) | C8—C7—H7B | 108.7 |
C5—Ru1—Cl2 | 161.70 (8) | H7A—C7—H7B | 107.6 |
C1—Ru1—Cl2 | 92.95 (9) | C1—C8—C7 | 115.6 (3) |
N2—Ru1—Cl1 | 83.67 (8) | C1—C8—H8A | 108.4 |
N1—Ru1—Cl1 | 86.52 (9) | C7—C8—H8A | 108.4 |
C2—Ru1—Cl1 | 161.43 (10) | C1—C8—H8B | 108.4 |
C6—Ru1—Cl1 | 88.96 (9) | C7—C8—H8B | 108.4 |
C5—Ru1—Cl1 | 92.18 (10) | H8A—C8—H8B | 107.4 |
C1—Ru1—Cl1 | 161.56 (10) | C22—C23—H23A | 120 |
Cl2—Ru1—Cl1 | 92.97 (3) | C22—C23—H23B | 120 |
C2—C1—C8 | 124.3 (3) | H23A—C23—H23B | 120 |
C2—C1—Ru1 | 71.52 (18) | C11B—N1—Ru1 | 169.3 (5) |
C8—C1—Ru1 | 112.0 (2) | C11A—N1—Ru1 | 161.6 (6) |
C2—C1—H1 | 117.9 | N1—C11A—C12A | 170.1 (10) |
C8—C1—H1 | 117.9 | C13A—C12A—C11A | 123.5 (9) |
Ru1—C1—H1 | 86.4 | C13A—C12A—H12A | 118.3 |
C1—C2—C3 | 124.1 (3) | C11A—C12A—H12A | 118.3 |
C1—C2—Ru1 | 72.48 (17) | C12A—C13A—H13A | 120 |
C3—C2—Ru1 | 110.6 (2) | C12A—C13A—H13B | 120 |
C1—C2—H2 | 118 | H13A—C13A—H13B | 120 |
C3—C2—H2 | 118 | N1—C11B—C12B | 173.7 (8) |
Ru1—C2—H2 | 86.9 | C13B—C12B—C11B | 120.9 (7) |
C2—C3—C4 | 113.9 (3) | C13B—C12B—H12B | 119.6 |
C2—C3—H3A | 108.8 | C11B—C12B—H12B | 119.6 |
C4—C3—H3A | 108.8 | C12B—C13B—H13C | 120 |
C2—C3—H3B | 108.8 | C12B—C13B—H13D | 120 |
C4—C3—H3B | 108.8 | H13C—C13B—H13D | 120 |
H3A—C3—H3B | 107.7 | C21—N2—Ru1 | 171.8 (3) |
C5—C4—C3 | 114.9 (3) | N2—C21—C22 | 179.2 (3) |
C5—C4—H4A | 108.6 | C23—C22—C21 | 122.0 (3) |
C3—C4—H4A | 108.6 | C23—C22—H22 | 119 |
C5—C4—H4B | 108.6 | C21—C22—H22 | 119 |
N2—Ru1—C1—C2 | −0.5 (2) | N1—Ru1—C5—C4 | −116.6 (2) |
N1—Ru1—C1—C2 | −169.1 (2) | C2—Ru1—C5—C4 | −6.8 (3) |
C6—Ru1—C1—C2 | 111.7 (2) | C6—Ru1—C5—C4 | −118.5 (4) |
C5—Ru1—C1—C2 | 76.3 (2) | C1—Ru1—C5—C4 | −42.2 (3) |
Cl2—Ru1—C1—C2 | −85.38 (18) | Cl2—Ru1—C5—C4 | 49.9 (5) |
Cl1—Ru1—C1—C2 | 166.0 (2) | Cl1—Ru1—C5—C4 | 156.2 (2) |
N2—Ru1—C1—C8 | −120.9 (2) | C4—C5—C6—C7 | 2.2 (5) |
N1—Ru1—C1—C8 | 70.5 (3) | Ru1—C5—C6—C7 | −103.3 (3) |
C2—Ru1—C1—C8 | −120.4 (3) | C4—C5—C6—Ru1 | 105.5 (3) |
C6—Ru1—C1—C8 | −8.7 (2) | N2—Ru1—C6—C5 | 12.6 (2) |
C5—Ru1—C1—C8 | −44.1 (3) | N1—Ru1—C6—C5 | −178.2 (2) |
Cl2—Ru1—C1—C8 | 154.2 (2) | C2—Ru1—C6—C5 | −66.5 (2) |
Cl1—Ru1—C1—C8 | 45.7 (4) | C1—Ru1—C6—C5 | −99.7 (2) |
C8—C1—C2—C3 | 1.1 (5) | Cl2—Ru1—C6—C5 | −168.5 (2) |
Ru1—C1—C2—C3 | −103.4 (3) | Cl1—Ru1—C6—C5 | 95.1 (2) |
C8—C1—C2—Ru1 | 104.5 (3) | N2—Ru1—C6—C7 | 133.4 (2) |
N2—Ru1—C2—C1 | 179.5 (2) | N1—Ru1—C6—C7 | −57.4 (2) |
N1—Ru1—C2—C1 | 11.4 (2) | C2—Ru1—C6—C7 | 54.3 (2) |
C6—Ru1—C2—C1 | −66.6 (2) | C5—Ru1—C6—C7 | 120.8 (3) |
C5—Ru1—C2—C1 | −99.8 (2) | C1—Ru1—C6—C7 | 21.1 (2) |
Cl2—Ru1—C2—C1 | 95.47 (18) | Cl2—Ru1—C6—C7 | −47.7 (4) |
Cl1—Ru1—C2—C1 | −166.1 (2) | Cl1—Ru1—C6—C7 | −144.0 (2) |
N2—Ru1—C2—C3 | −59.9 (3) | C5—C6—C7—C8 | 51.7 (5) |
N1—Ru1—C2—C3 | 132.0 (3) | Ru1—C6—C7—C8 | −30.5 (3) |
C6—Ru1—C2—C3 | 54.0 (3) | C2—C1—C8—C7 | −87.3 (4) |
C5—Ru1—C2—C3 | 20.8 (3) | Ru1—C1—C8—C7 | −5.3 (4) |
C1—Ru1—C2—C3 | 120.6 (3) | C6—C7—C8—C1 | 24.1 (4) |
Cl2—Ru1—C2—C3 | −144.0 (3) | N2—Ru1—N1—C11B | 72 (2) |
Cl1—Ru1—C2—C3 | −45.6 (4) | C2—Ru1—N1—C11B | −157 (2) |
C1—C2—C3—C4 | 50.4 (5) | C6—Ru1—N1—C11B | −68 (2) |
Ru1—C2—C3—C4 | −31.9 (4) | C5—Ru1—N1—C11B | −69 (2) |
C2—C3—C4—C5 | 27.1 (5) | C1—Ru1—N1—C11B | −150 (2) |
C3—C4—C5—C6 | −90.6 (4) | Cl2—Ru1—N1—C11B | 115 (2) |
C3—C4—C5—Ru1 | −8.5 (4) | Cl1—Ru1—N1—C11B | 22 (2) |
N2—Ru1—C5—C6 | −168.3 (2) | N2—Ru1—N1—C11A | −101.0 (15) |
N1—Ru1—C5—C6 | 1.9 (2) | C2—Ru1—N1—C11A | 29.3 (15) |
C2—Ru1—C5—C6 | 111.8 (2) | C6—Ru1—N1—C11A | 118.8 (15) |
C1—Ru1—C5—C6 | 76.3 (2) | C5—Ru1—N1—C11A | 117.7 (15) |
Cl2—Ru1—C5—C6 | 168.5 (2) | C1—Ru1—N1—C11A | 36.2 (15) |
Cl1—Ru1—C5—C6 | −85.2 (2) | Cl2—Ru1—N1—C11A | −58.1 (15) |
N2—Ru1—C5—C4 | 73.1 (3) | Cl1—Ru1—N1—C11A | −151.4 (15) |
Experimental details
Crystal data | |
Chemical formula | [RuCl2(C8H12)(C3H3N)2] |
Mr | 386.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.1079 (8), 26.818 (3), 8.1555 (10) |
β (°) | 101.408 (2) |
V (Å3) | 1523.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.37 |
Crystal size (mm) | 0.22 × 0.09 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12653, 3776, 3093 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.075, 1.03 |
No. of reflections | 3776 |
No. of parameters | 200 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.14, −1.11 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged.
References
Ashworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40(3), 183–188. Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chiririwa, H., Meijboom, R., Owalude, S. O., Eke, U. B. & Arderne, C. (2011). Acta Cryst. E67, m1096. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The present ruthenium complex, Fig.1, has been synthesized in a similar way as done earlier for the acetonitrile derivative (Chiririwa et al. 2011). Organonitrile solvate complexes are widely useful for synthesis of organometallic compounds because of facile substitution at the solvate coordination sites. Similarly, 1,5-cyclooctadiene complexes have found considerable use in organometallic chemistry as well.
The two acrylonitrile ligands are not trans to each other, as the N(2)—Ru—N(1) angle is 164.62 (11)° whereas the same angle is 163.15 (6)° in the acetonitrile derivative. This is attributed to repulsion by the alkene bonds of the COD ligand. One of the acrylonitrile ligands is slightly bent as we observed earlier in the acetonitrile derivative. The N(2)—C(21)—C(22) bond angle is 179.2 (3)°. This is probably due to packing forces.
It turned out that in the crystal structure the disorder involves three carbon atoms between the 3 positions with site occupation factors of 84:16. A l l alternative positions refined quite well without any kind of restraints and the C atoms assume positions that make an almost symmetrical system.