metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dicaesium di­aqua­bis­­(methyl­ene­di­phospho­nato-κ2O,O′)cobaltate(II)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9330, South Africa
*Correspondence e-mail: vandermerwe@gmail.com

(Received 24 August 2011; accepted 30 August 2011; online 14 September 2011)

The asymmetric unit of the title compound, Cs2[Co(CH4O6P2)2(H2O)2], is comprised of one bidentate methyl­enediphospho­nate ligand and one water mol­ecule which are coordinated to the CoII atom, as well as a caesium counter-cation. The Co atom occupies a special position on a crystallographic inversion center. The caesium ion is octa­hedrally coordinated by six O atoms with Cs—O distances ranging from 3.119 (2) to 3.296 (2) Å. A three-dimensional network is formed through O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Fleisch (1991[Fleisch, H. (1991). Drugs, 42, 919-944.]); Neville-Webbe et al. (2002[Neville-Webbe, H. L., Holen, I. & Coleman, R. E. (2002). Cancer Treat. Rev. 28, 305-319.]); Van der Merwe et al. (2010[Van der Merwe, K., Visser, H. G. & Venter, J. A. (2010). Acta Cryst. E66, m1011-m1012.]). For bond lengths and bond angles in related structures, see: Bao et al. (2003[Bao, S., Zheng, L., Liu, Y., Xu, W. & Feng, S. (2003). Inorg. Chem. 42, 5037-5039.]); Cao et al. (2007[Cao, D., Li, Y. & Zheng, L. (2007). Inorg. Chem. 46, 7571-7578.]); Gong et al. (2006[Gong, Y., Tang, W., Hou, W., Zha, Z. & Hu, C. (2006). Inorg. Chem. 45, 4987-4995.]); Van der Merwe et al. (2009[Van der Merwe, K. A., Visser, H. G. & Venter, J. A. (2009). Acta Cryst. E65, m1394.]); Visser et al. (2010[Visser, H. G., Venter, J. A. & Van der Merwe, K. A. (2010). Acta Cryst. E66, m159.]); Yin et al. (2003[Yin, P., Gao, S., Zheng, L. & Xin, X. (2003). Chem. Mater. 15, 3233-3236.]).

[Scheme 1]

Experimental

Crystal data
  • Cs2[Co(CH4O6P2)2(H2O)2]

  • Mr = 708.75

  • Triclinic, [P \overline 1]

  • a = 7.333 (5) Å

  • b = 7.412 (5) Å

  • c = 7.666 (5) Å

  • α = 74.621 (5)°

  • β = 83.064 (5)°

  • γ = 86.496 (5)°

  • V = 398.6 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.96 mm−1

  • T = 293 K

  • 0.38 × 0.07 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.210, Tmax = 0.755

  • 4203 measured reflections

  • 1904 independent reflections

  • 1827 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.044

  • S = 0.75

  • 1904 reflections

  • 132 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.92 (2) 1.94 (2) 2.860 (3) 173 (3)
O5—H5B⋯O4ii 0.85 (2) 1.69 (3) 2.518 (3) 164 (7)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This work is part of an ongoing investigation aimed at synthesizing and characterizing new methylene diphosphonate complexes and expanding on our knowledge of the interactions of the methylene diphosphonate ligand with various metal centers. (Van der Merwe et al. (2009) & Van der Merwe et al. (2010)).

Methylene diphosphonates (O3PCH2PO3) has a diversified coordination capability with metal ions, due to the single methyl group which divides the two phosphonate groups. The formation of a stable six-membered ring comprised of M—O—P—C—P—O is favoured (Bao et al. (2003). Bisphosphonates adhere strongly to hydroxyapatite crystals and constrain their formation and dissolution (Fleisch (1991)). This physicochemical in vivo effect may result in the prevention of soft tissue calcification or even prevent normal calcification. The bis(phosphonic acid) has a high affinity for bone surfaces and it is also non-hydrolyzable (Neville-Webbe et al. (2002).

The asymmetric unit of the title compound, Cs2[Co(CH4O6P2)2(H2O)2], is comprised of one bidentate methylene diphosphonate ligand and one water molecule which are coordinated to the CoII atom, as well as a non-coordinated caesium cation. The Co atom occupies a special position on a crystallographic inversion center. The caesium ion is octahedrally coordinated to six oxygen atoms with Cs—O distances ranging from 3.119 (2) to 3.296 (2) Å. The two methylene diphosphonate ligands chelate to the central cobalt metal via four oxygen atoms (O2/O2' and O7/O7') from the phosphonate groups. This leads to the formation of two six-membered rings.

The CoII metal center has a slightly distorted octahedral geometry with O—Co—O angles ranging between 85.35 (8) ° and 94.65 (8) °. The Co—O bond lengths vary between 2.0761 (18) and 2.1272 (19) Å. These distances correspond to literature values (Bao et al. (2003); Cao et al. (2007); Gong et al. (2006); Van der Merwe et al. (2009); Visser et al. (2010); Yin et al. (2003).

A three-dimensional network is provided by O—H–O hydrogen bonds (Table 2).

Related literature top

For related structures, see: Fleisch (1991); Neville-Webbe et al. (2002); Van der Merwe et al. (2010). For bond lengths and bond angles in related structures, see: Bao et al. (2003); Cao et al. (2007); Gong et al. (2006); Van der Merwe et al. (2009); Visser et al. (2010); Yin et al. (2003).

Experimental top

[Co(NH3)6]Cl3(0,1700 g, 0,714 mmol) was dissolved in distilled water (10 cm3) and the pH of the solution was lowered to 1.87 using hydrochloric acid. The solution was heated for 30 minutes at 313.15 K. Methylene diphosphonate (0.251 g, 1.43 mmol) was dissolved in distilled water (7 cm3) and the pH of the solution was elevated to 1.93 using caesium chloride. Both solutions were combined and the pH was adjusted to 2.04, the pink solution was heated for 3 h at 353.15 K. Pink crystals, suitable for X-ray diffraction, was obtained. (Yield: 7.2%)

Refinement top

All H atoms were located from difference Fourier maps and were refined isotropically without further restraints. The highest residual electron density was located 0.88 Å from P1.

Structure description top

This work is part of an ongoing investigation aimed at synthesizing and characterizing new methylene diphosphonate complexes and expanding on our knowledge of the interactions of the methylene diphosphonate ligand with various metal centers. (Van der Merwe et al. (2009) & Van der Merwe et al. (2010)).

Methylene diphosphonates (O3PCH2PO3) has a diversified coordination capability with metal ions, due to the single methyl group which divides the two phosphonate groups. The formation of a stable six-membered ring comprised of M—O—P—C—P—O is favoured (Bao et al. (2003). Bisphosphonates adhere strongly to hydroxyapatite crystals and constrain their formation and dissolution (Fleisch (1991)). This physicochemical in vivo effect may result in the prevention of soft tissue calcification or even prevent normal calcification. The bis(phosphonic acid) has a high affinity for bone surfaces and it is also non-hydrolyzable (Neville-Webbe et al. (2002).

The asymmetric unit of the title compound, Cs2[Co(CH4O6P2)2(H2O)2], is comprised of one bidentate methylene diphosphonate ligand and one water molecule which are coordinated to the CoII atom, as well as a non-coordinated caesium cation. The Co atom occupies a special position on a crystallographic inversion center. The caesium ion is octahedrally coordinated to six oxygen atoms with Cs—O distances ranging from 3.119 (2) to 3.296 (2) Å. The two methylene diphosphonate ligands chelate to the central cobalt metal via four oxygen atoms (O2/O2' and O7/O7') from the phosphonate groups. This leads to the formation of two six-membered rings.

The CoII metal center has a slightly distorted octahedral geometry with O—Co—O angles ranging between 85.35 (8) ° and 94.65 (8) °. The Co—O bond lengths vary between 2.0761 (18) and 2.1272 (19) Å. These distances correspond to literature values (Bao et al. (2003); Cao et al. (2007); Gong et al. (2006); Van der Merwe et al. (2009); Visser et al. (2010); Yin et al. (2003).

A three-dimensional network is provided by O—H–O hydrogen bonds (Table 2).

For related structures, see: Fleisch (1991); Neville-Webbe et al. (2002); Van der Merwe et al. (2010). For bond lengths and bond angles in related structures, see: Bao et al. (2003); Cao et al. (2007); Gong et al. (2006); Van der Merwe et al. (2009); Visser et al. (2010); Yin et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 1 - x, -y, 1 - z].
Dicaesium diaquabis(methylenediphosphonato-κ2O,O')cobaltate(II) top
Crystal data top
Cs2[Co(CH4O6P2)2(H2O)2]Z = 1
Mr = 708.75F(000) = 253
Triclinic, P1Dx = 2.953 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.333 (5) ÅCell parameters from 3160 reflections
b = 7.412 (5) Åθ = 2.8–28.4°
c = 7.666 (5) ŵ = 5.96 mm1
α = 74.621 (5)°T = 293 K
β = 83.064 (5)°Needle, pink
γ = 86.496 (5)°0.38 × 0.07 × 0.05 mm
V = 398.6 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1827 reflections with I > 2σ(I)
φ and ω scansRint = 0.015
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
θmax = 28°, θmin = 3.7°
Tmin = 0.210, Tmax = 0.755h = 99
4203 measured reflectionsk = 99
1904 independent reflectionsl = 1010
Refinement top
Refinement on F211 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.4899P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.044(Δ/σ)max = 0.002
S = 0.75Δρmax = 0.47 e Å3
1904 reflectionsΔρmin = 0.48 e Å3
132 parameters
Crystal data top
Cs2[Co(CH4O6P2)2(H2O)2]γ = 86.496 (5)°
Mr = 708.75V = 398.6 (5) Å3
Triclinic, P1Z = 1
a = 7.333 (5) ÅMo Kα radiation
b = 7.412 (5) ŵ = 5.96 mm1
c = 7.666 (5) ÅT = 293 K
α = 74.621 (5)°0.38 × 0.07 × 0.05 mm
β = 83.064 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
1904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1827 reflections with I > 2σ(I)
Tmin = 0.210, Tmax = 0.755Rint = 0.015
4203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01511 restraints
wR(F2) = 0.044H atoms treated by a mixture of independent and constrained refinement
S = 0.75Δρmax = 0.47 e Å3
1904 reflectionsΔρmin = 0.48 e Å3
132 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.284577 (17)0.954858 (18)0.692901 (17)0.00965 (6)
Co10.50.50.50.00595 (9)
P10.26392 (7)0.34252 (8)0.22866 (8)0.00590 (11)
P20.19616 (7)0.74778 (8)0.25147 (8)0.00589 (11)
O10.2886 (2)0.4437 (2)0.7201 (2)0.0112 (3)
O20.3857 (2)0.3210 (2)0.3786 (2)0.0088 (3)
O30.0667 (2)0.2706 (2)0.3122 (2)0.0086 (3)
O40.3336 (2)0.2396 (2)0.0861 (2)0.0086 (3)
O50.1822 (2)0.9384 (2)0.1036 (2)0.0109 (3)
O60.0107 (2)0.7058 (2)0.3621 (2)0.0102 (3)
O70.3541 (2)0.7427 (2)0.3623 (2)0.0086 (3)
C10.2397 (3)0.5858 (3)0.1121 (3)0.0071 (4)
H1A0.313 (4)0.383 (4)0.837 (3)0.023 (9)*
H1B0.185 (4)0.410 (6)0.704 (6)0.063 (15)*
H20.048 (5)0.287 (5)0.417 (3)0.035 (10)*
H30.145 (3)0.599 (4)0.033 (4)0.018 (8)*
H40.357 (3)0.616 (4)0.046 (4)0.015 (8)*
H5A0.156 (9)0.935 (9)0.002 (5)0.022*0.5
H5B0.239 (8)1.030 (7)0.116 (9)0.022*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.01010 (9)0.00910 (9)0.00854 (9)0.00056 (5)0.00040 (5)0.00068 (6)
Co10.00540 (19)0.00593 (19)0.0067 (2)0.00035 (15)0.00109 (15)0.00174 (16)
P10.0061 (2)0.0053 (2)0.0063 (3)0.00119 (19)0.0007 (2)0.0015 (2)
P20.0060 (2)0.0060 (3)0.0057 (3)0.00059 (19)0.0006 (2)0.0014 (2)
O10.0084 (8)0.0160 (9)0.0088 (8)0.0027 (7)0.0002 (6)0.0019 (7)
O20.0097 (7)0.0077 (7)0.0092 (8)0.0008 (6)0.0028 (6)0.0015 (6)
O30.0076 (7)0.0110 (8)0.0077 (8)0.0033 (6)0.0007 (6)0.0032 (6)
O40.0098 (7)0.0072 (7)0.0096 (8)0.0012 (6)0.0008 (6)0.0040 (6)
O50.0173 (8)0.0063 (7)0.0093 (8)0.0012 (6)0.0063 (7)0.0002 (6)
O60.0072 (7)0.0139 (8)0.0096 (8)0.0017 (6)0.0012 (6)0.0040 (6)
O70.0096 (7)0.0067 (7)0.0098 (8)0.0003 (6)0.0032 (6)0.0016 (6)
C10.0087 (9)0.0066 (10)0.0056 (10)0.0009 (8)0.0011 (8)0.0005 (8)
Geometric parameters (Å, º) top
Cs1—O5i3.119 (3)P2—O61.5158 (18)
Cs1—O3ii3.165 (2)P2—O51.5663 (19)
Cs1—O2iii3.162 (2)P2—C11.799 (2)
Cs1—O2iv3.173 (2)O1—H1A0.922 (17)
Cs1—O6v3.192 (2)O1—H1B0.846 (19)
Cs1—O4iii3.485 (2)O2—Cs1iii3.162 (2)
Cs1—O7vi3.490 (2)O2—Cs1vii3.173 (2)
Co1—O2iii2.0761 (18)O3—Cs1ii3.165 (2)
Co1—O22.0761 (18)O3—H20.840 (19)
Co1—O1iii2.1209 (19)O4—Cs1iii3.485 (2)
Co1—O12.1209 (19)O5—Cs1viii3.119 (3)
Co1—O7iii2.1272 (19)O5—H5A0.83 (2)
Co1—O72.1272 (19)O5—H5B0.85 (2)
P1—O21.5087 (18)O6—Cs1v3.192 (2)
P1—O41.5158 (18)O7—Cs1vi3.490 (2)
P1—O31.5732 (18)C1—H30.963 (14)
P1—C11.796 (3)C1—H40.951 (14)
P2—O71.5099 (18)
O5i—Cs1—O3ii91.51 (5)O7—Co1—Cs1iii128.78 (6)
O5i—Cs1—O2iii113.53 (4)O2iii—Co1—Cs1vi45.80 (6)
O3ii—Cs1—O2iii103.25 (7)O2—Co1—Cs1vi134.20 (6)
O5i—Cs1—O2iv125.59 (5)O1iii—Co1—Cs1vi60.18 (5)
O3ii—Cs1—O2iv120.31 (5)O1—Co1—Cs1vi119.82 (5)
O2iii—Cs1—O2iv101.31 (5)O7iii—Co1—Cs1vi125.13 (6)
O5i—Cs1—O6v82.95 (5)O7—Co1—Cs1vi54.87 (6)
O3ii—Cs1—O6v81.36 (7)Cs1iii—Co1—Cs1vi123.10 (4)
O2iii—Cs1—O6v162.47 (4)O2iii—Co1—Cs1vii134.20 (6)
O2iv—Cs1—O6v62.52 (5)O2—Co1—Cs1vii45.80 (6)
O5i—Cs1—O4iii73.40 (5)O1iii—Co1—Cs1vii119.82 (5)
O3ii—Cs1—O4iii124.24 (6)O1—Co1—Cs1vii60.18 (5)
O2iii—Cs1—O4iii44.75 (5)O7iii—Co1—Cs1vii54.87 (6)
O2iv—Cs1—O4iii111.44 (5)O7—Co1—Cs1vii125.13 (6)
O6v—Cs1—O4iii144.68 (4)Cs1iii—Co1—Cs1vii56.90 (4)
O5i—Cs1—O7vi94.14 (4)Cs1vi—Co1—Cs1vii180
O3ii—Cs1—O7vi170.61 (4)O2—P1—O4114.76 (10)
O2iii—Cs1—O7vi81.34 (7)O2—P1—O3109.86 (10)
O2iv—Cs1—O7vi50.37 (5)O4—P1—O3107.73 (9)
O6v—Cs1—O7vi91.89 (7)O2—P1—C1109.55 (10)
O4iii—Cs1—O7vi64.74 (6)O4—P1—C1107.05 (11)
O5i—Cs1—C1i44.75 (6)O3—P1—C1107.62 (10)
O3ii—Cs1—C1i72.92 (5)O2—P1—Cs1iii51.16 (7)
O2iii—Cs1—C1i78.47 (6)O4—P1—Cs1iii63.66 (7)
O2iv—Cs1—C1i165.97 (5)O3—P1—Cs1iii124.40 (8)
O6v—Cs1—C1i118.91 (5)C1—P1—Cs1iii127.77 (8)
O4iii—Cs1—C1i58.52 (5)O2—P1—Cs1vii49.06 (7)
O7vi—Cs1—C1i116.25 (5)O4—P1—Cs1vii103.57 (8)
O5i—Cs1—O1iv74.68 (4)O3—P1—Cs1vii68.88 (7)
O3ii—Cs1—O1iv126.32 (5)C1—P1—Cs1vii148.54 (8)
O2iii—Cs1—O1iv130.04 (5)Cs1iii—P1—Cs1vii61.70 (2)
O2iv—Cs1—O1iv50.97 (5)O7—P2—O6114.83 (11)
O6v—Cs1—O1iv46.06 (5)O7—P2—O5111.69 (10)
O4iii—Cs1—O1iv101.41 (4)O6—P2—O5109.44 (10)
O7vi—Cs1—O1iv48.72 (4)O7—P2—C1110.57 (10)
C1i—Cs1—O1iv118.60 (6)O6—P2—C1108.09 (10)
O5i—Cs1—O3iv125.42 (5)O5—P2—C1101.32 (11)
O3ii—Cs1—O3iv78.65 (6)O7—P2—Cs1v124.05 (8)
O2iii—Cs1—O3iv121.02 (5)O5—P2—Cs1v65.52 (7)
O2iv—Cs1—O3iv42.33 (5)C1—P2—Cs1v125.05 (8)
O6v—Cs1—O3iv42.63 (4)O7—P2—Cs1viii118.54 (7)
O4iii—Cs1—O3iv152.49 (4)O6—P2—Cs1viii125.77 (7)
O7vi—Cs1—O3iv91.97 (5)C1—P2—Cs1viii61.03 (8)
C1i—Cs1—O3iv148.87 (5)Cs1v—P2—Cs1viii94.916 (19)
O1iv—Cs1—O3iv69.55 (5)Co1—O1—Cs1vii89.88 (6)
O5i—Cs1—O5v55.64 (5)Co1—O1—H1A122 (2)
O3ii—Cs1—O5v56.50 (6)Cs1vii—O1—H1A81 (2)
O2iii—Cs1—O5v153.15 (4)Co1—O1—H1B120 (3)
O2iv—Cs1—O5v104.38 (5)Cs1vii—O1—H1B66 (3)
O6v—Cs1—O5v41.87 (4)H1A—O1—H1B108 (3)
O4iii—Cs1—O5v128.47 (5)P1—O2—Co1135.98 (10)
O7vi—Cs1—O5v121.54 (5)P1—O2—Cs1iii107.03 (9)
C1i—Cs1—O5v78.50 (5)Co1—O2—Cs1iii103.97 (7)
O1iv—Cs1—O5v73.92 (4)P1—O2—Cs1vii109.88 (8)
O3iv—Cs1—O5v75.37 (5)Co1—O2—Cs1vii106.22 (8)
O5i—Cs1—P1iii94.28 (4)Cs1iii—O2—Cs1vii78.69 (5)
O3ii—Cs1—P1iii115.59 (6)P1—O3—Cs1ii150.94 (9)
O2iii—Cs1—P1iii21.82 (3)P1—O3—Cs1vii87.66 (8)
O2iv—Cs1—P1iii106.97 (4)Cs1ii—O3—Cs1vii101.35 (6)
O6v—Cs1—P1iii162.96 (3)P1—O3—H2108 (3)
O4iii—Cs1—P1iii22.94 (3)Cs1ii—O3—H2101 (3)
O7vi—Cs1—P1iii71.49 (6)Cs1vii—O3—H259 (3)
C1i—Cs1—P1iii67.80 (4)P1—O4—Cs1iii93.39 (8)
O1iv—Cs1—P1iii116.98 (4)P2—O5—Cs1viii120.07 (9)
O3iv—Cs1—P1iii138.50 (3)P2—O5—Cs1v91.93 (8)
O5v—Cs1—P1iii145.78 (4)Cs1viii—O5—Cs1v124.36 (5)
O2iii—Co1—O2180P2—O5—H5A118 (5)
O2iii—Co1—O1iii90.76 (8)Cs1v—O5—H5A99 (5)
O2—Co1—O1iii89.24 (8)P2—O5—H5B117 (5)
O2iii—Co1—O189.24 (8)Cs1viii—O5—H5B103 (5)
O2—Co1—O190.76 (8)Cs1v—O5—H5B100 (5)
O1iii—Co1—O1180H5A—O5—H5B121 (6)
O2iii—Co1—O7iii94.65 (8)P2—O6—Cs1v115.52 (9)
O2—Co1—O7iii85.35 (8)P2—O7—Co1126.62 (10)
O1iii—Co1—O7iii91.47 (7)P2—O7—Cs1vi131.62 (9)
O1—Co1—O7iii88.53 (7)Co1—O7—Cs1vi95.23 (7)
O2iii—Co1—O785.35 (8)P1—C1—P2116.79 (13)
O2—Co1—O794.65 (8)P1—C1—Cs1viii149.47 (11)
O1iii—Co1—O788.53 (7)P2—C1—Cs1viii93.21 (10)
O1—Co1—O791.47 (7)P1—C1—H3108.1 (19)
O7iii—Co1—O7180.00 (9)P2—C1—H3110.1 (19)
O2iii—Co1—Cs1iii132.78 (6)Cs1viii—C1—H362.8 (19)
O2—Co1—Cs1iii47.22 (6)P1—C1—H4104.3 (19)
O1iii—Co1—Cs1iii63.15 (5)P2—C1—H4105.3 (19)
O1—Co1—Cs1iii116.85 (5)Cs1viii—C1—H459.3 (18)
O7iii—Co1—Cs1iii51.22 (6)H3—C1—H4112 (3)
O2iii—Co1—O1—Cs1vii144.21 (6)C1—P2—O5—Cs1viii8.70 (12)
O2—Co1—O1—Cs1vii35.79 (6)Cs1v—P2—O5—Cs1viii132.22 (9)
O7iii—Co1—O1—Cs1vii49.55 (6)O7—P2—O5—Cs1v118.75 (9)
O7—Co1—O1—Cs1vii130.45 (6)O6—P2—O5—Cs1v9.54 (9)
Cs1iii—Co1—O1—Cs1vii5.22 (5)C1—P2—O5—Cs1v123.53 (8)
Cs1vi—Co1—O1—Cs1vii180Cs1viii—P2—O5—Cs1v132.22 (9)
O4—P1—O2—Co1130.04 (13)O7—P2—O6—Cs1v114.18 (10)
O3—P1—O2—Co1108.42 (14)O5—P2—O6—Cs1v12.34 (11)
C1—P1—O2—Co19.60 (17)C1—P2—O6—Cs1v121.88 (10)
Cs1iii—P1—O2—Co1132.87 (17)Cs1viii—P2—O6—Cs1v55.00 (10)
Cs1vii—P1—O2—Co1143.29 (18)O6—P2—O7—Co180.65 (14)
O4—P1—O2—Cs1iii2.83 (11)O5—P2—O7—Co1154.00 (11)
O3—P1—O2—Cs1iii118.71 (9)C1—P2—O7—Co141.97 (15)
C1—P1—O2—Cs1iii123.27 (9)Cs1v—P2—O7—Co1131.64 (9)
Cs1vii—P1—O2—Cs1iii83.84 (8)Cs1viii—P2—O7—Co1109.34 (10)
O4—P1—O2—Cs1vii86.67 (11)O6—P2—O7—Cs1vi135.06 (11)
O3—P1—O2—Cs1vii34.87 (11)O5—P2—O7—Cs1vi9.70 (14)
C1—P1—O2—Cs1vii152.89 (9)C1—P2—O7—Cs1vi102.32 (13)
Cs1iii—P1—O2—Cs1vii83.84 (8)Cs1v—P2—O7—Cs1vi84.06 (12)
O1iii—Co1—O2—P180.87 (15)Cs1viii—P2—O7—Cs1vi34.96 (13)
O1—Co1—O2—P199.13 (15)O2iii—Co1—O7—P2168.93 (12)
O7iii—Co1—O2—P1172.41 (15)O2—Co1—O7—P211.07 (12)
O7—Co1—O2—P17.59 (15)O1iii—Co1—O7—P2100.19 (13)
Cs1iii—Co1—O2—P1133.77 (17)O1—Co1—O7—P279.81 (13)
Cs1vi—Co1—O2—P135.83 (17)Cs1iii—Co1—O7—P247.08 (14)
Cs1vii—Co1—O2—P1144.17 (17)Cs1vi—Co1—O7—P2154.02 (14)
O1iii—Co1—O2—Cs1iii52.90 (7)Cs1vii—Co1—O7—P225.98 (14)
O1—Co1—O2—Cs1iii127.10 (7)O2iii—Co1—O7—Cs1vi37.05 (6)
O7iii—Co1—O2—Cs1iii38.64 (6)O2—Co1—O7—Cs1vi142.95 (6)
O7—Co1—O2—Cs1iii141.36 (6)O1iii—Co1—O7—Cs1vi53.82 (6)
Cs1vi—Co1—O2—Cs1iii97.94 (6)O1—Co1—O7—Cs1vi126.18 (6)
Cs1vii—Co1—O2—Cs1iii82.06 (6)Cs1iii—Co1—O7—Cs1vi106.94 (4)
O1iii—Co1—O2—Cs1vii134.96 (7)Cs1vii—Co1—O7—Cs1vi180
O1—Co1—O2—Cs1vii45.04 (7)O2—P1—C1—P244.78 (16)
O7iii—Co1—O2—Cs1vii43.42 (6)O4—P1—C1—P2169.80 (12)
O7—Co1—O2—Cs1vii136.58 (6)O3—P1—C1—P274.63 (14)
Cs1iii—Co1—O2—Cs1vii82.06 (6)Cs1iii—P1—C1—P2100.25 (12)
Cs1vi—Co1—O2—Cs1vii180Cs1vii—P1—C1—P23.5 (2)
O2—P1—O3—Cs1ii136.98 (17)O2—P1—C1—Cs1viii123.58 (19)
O4—P1—O3—Cs1ii11.3 (2)O4—P1—C1—Cs1viii1.4 (2)
C1—P1—O3—Cs1ii103.8 (2)O3—P1—C1—Cs1viii117.01 (19)
Cs1iii—P1—O3—Cs1ii81.1 (2)Cs1iii—P1—C1—Cs1viii68.1 (2)
Cs1vii—P1—O3—Cs1ii109.40 (19)Cs1vii—P1—C1—Cs1viii164.84 (9)
O2—P1—O3—Cs1vii27.58 (9)O7—P2—C1—P162.05 (15)
O4—P1—O3—Cs1vii98.08 (9)O6—P2—C1—P164.42 (15)
C1—P1—O3—Cs1vii146.80 (8)O5—P2—C1—P1179.41 (12)
Cs1iii—P1—O3—Cs1vii28.30 (7)Cs1v—P2—C1—P1111.48 (11)
O2—P1—O4—Cs1iii2.46 (9)Cs1viii—P2—C1—P1174.11 (15)
O3—P1—O4—Cs1iii120.24 (8)O7—P2—C1—Cs1viii112.06 (8)
C1—P1—O4—Cs1iii124.27 (8)O6—P2—C1—Cs1viii121.47 (8)
Cs1vii—P1—O4—Cs1iii48.42 (5)O5—P2—C1—Cs1viii6.48 (9)
O7—P2—O5—Cs1viii109.03 (10)Cs1v—P2—C1—Cs1viii74.41 (7)
O6—P2—O5—Cs1viii122.68 (10)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y+2, z+1; (vi) x+1, y+2, z+1; (vii) x, y1, z; (viii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.92 (2)1.94 (2)2.860 (3)173 (3)
O5—H5B···O4iv0.85 (2)1.69 (3)2.518 (3)164 (7)
Symmetry codes: (i) x, y, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaCs2[Co(CH4O6P2)2(H2O)2]
Mr708.75
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.333 (5), 7.412 (5), 7.666 (5)
α, β, γ (°)74.621 (5), 83.064 (5), 86.496 (5)
V3)398.6 (5)
Z1
Radiation typeMo Kα
µ (mm1)5.96
Crystal size (mm)0.38 × 0.07 × 0.05
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.210, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
4203, 1904, 1827
Rint0.015
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.044, 0.75
No. of reflections1904
No. of parameters132
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.922 (17)1.943 (18)2.860 (3)173 (3)
O5—H5B···O4ii0.85 (2)1.69 (3)2.518 (3)164 (7)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.
 

Acknowledgements

The University of the Free State and Professor A. Roodt are gratefully acknowledged for financial support.

References

First citationBao, S., Zheng, L., Liu, Y., Xu, W. & Feng, S. (2003). Inorg. Chem. 42, 5037–5039.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, D., Li, Y. & Zheng, L. (2007). Inorg. Chem. 46, 7571–7578.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFleisch, H. (1991). Drugs, 42, 919–944.  CrossRef CAS Web of Science Google Scholar
First citationGong, Y., Tang, W., Hou, W., Zha, Z. & Hu, C. (2006). Inorg. Chem. 45, 4987–4995.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeville-Webbe, H. L., Holen, I. & Coleman, R. E. (2002). Cancer Treat. Rev. 28, 305–319.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan der Merwe, K. A., Visser, H. G. & Venter, J. A. (2009). Acta Cryst. E65, m1394.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVan der Merwe, K., Visser, H. G. & Venter, J. A. (2010). Acta Cryst. E66, m1011–m1012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVisser, H. G., Venter, J. A. & Van der Merwe, K. A. (2010). Acta Cryst. E66, m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, P., Gao, S., Zheng, L. & Xin, X. (2003). Chem. Mater. 15, 3233–3236.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds