organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­methyl­anilinium 4-methyl­benzene­sulfonate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: wsj@njcc.edu.cn

(Received 6 September 2011; accepted 22 September 2011; online 30 September 2011)

In the crystal structure of the title compound, C8H12N+·C7H7O3S, N—H⋯O hydrogen bonds link the cations and anions into ribbons parallel to the c axis. N—H⋯S inter­actions also occur.

Related literature

For background to protonated amines, see: Tong & Whitesell (1998[Tong, W. & Whitesell, G. (1998). Pharm. Dev. Technol, 3, 215-223.]); Shanker (1994[Shanker, R. (1994). Pharmaceut. Res. A11, S-236.]). For closely related structures, see: Hemissi et al. (2001[Hemissi, H., Abid, S. & Rzaigui, M. (2001). Z. Kristallogr. New Cryst. Struct., 216, 431-432.]); Bouacida (2008[Bouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.]); Singh et al. (2002[Singh, G., Kapoor, I. P. S., Srivastava, J. & Kaur, J. (2002). J. Therm. Anal. Calorim. 69, 681-691.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+C7H7O3S

  • Mr = 293.37

  • Monoclinic, P 21 /n

  • a = 12.373 (3) Å

  • b = 7.3011 (15) Å

  • c = 17.556 (4) Å

  • β = 106.88 (3)°

  • V = 1517.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.825, Tmax = 1.000

  • 14838 measured reflections

  • 3434 independent reflections

  • 2608 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.229

  • S = 1.05

  • 3434 reflections

  • 181 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 2.13 2.854 (4) 137
N1—H1A⋯S1i 0.89 2.94 3.794 (3) 161
N1—H1B⋯O1ii 0.89 1.89 2.777 (4) 175
N1—H1C⋯O2 0.89 2.01 2.773 (4) 143
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines. The importance of molecular salts as solid forms in pharmaceutical formulations is well known.For a given active ingredient, the isolation and selection of a salt with the appropriate physicochemical properties involves significant screening activity and has been discussed at some length in the literature (Tong & Whitesell et al. 1998; Shanker et al. 1994). Structures containing the dimethylanilinium cation have been already reported with tin chloride (Bouacida et al. 2008), sulfate (Singh et al. 2002), and dihydrogenphosphate. Here we report the synthesis and crystal structure of the title compound, 3,4-dimethylanilinium 4-methylbenzenesulfonate (Fig. 1).

The bond distances and bond angles in the title compound agree very well with the corresponding distances and angles reported for a closely related compound(Hemissi et al. 2001). In this structure, only one type of classical hydrogen bonds are observed, viz. cation–anion (Table 1). All three ammonium H atoms are involved in hydrogen bonds. These interactions result in the formation of cation-anion ribbons along c direction. Dipole-dipole and van der Waals interactions are effective in the molecular packing.

Related literature top

For background to protonated amines, see: Tong & Whitesell (1998); Shanker (1994); For closely related structures, see: Hemissi et al. (2001); Bouacida (2008); Singh et al. (2002)

Experimental top

To a stirred solution of 3,4-dimethylbenzenamine (2.42 g, 0.02 mol) in 30 mL of methanol, 4-Toluene sulfonic acid (3.8 g, 0.02 mol) was added at the room temperature. The precipitate was filtered and washed with a small amount of ethanol 95%. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in water at room temperature.

Refinement top

The H-atoms bonded to the C-atom were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C). The H-atoms bonded to the N-atom were located from a difference map and were allowed to refine freely.

Structure description top

The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines. The importance of molecular salts as solid forms in pharmaceutical formulations is well known.For a given active ingredient, the isolation and selection of a salt with the appropriate physicochemical properties involves significant screening activity and has been discussed at some length in the literature (Tong & Whitesell et al. 1998; Shanker et al. 1994). Structures containing the dimethylanilinium cation have been already reported with tin chloride (Bouacida et al. 2008), sulfate (Singh et al. 2002), and dihydrogenphosphate. Here we report the synthesis and crystal structure of the title compound, 3,4-dimethylanilinium 4-methylbenzenesulfonate (Fig. 1).

The bond distances and bond angles in the title compound agree very well with the corresponding distances and angles reported for a closely related compound(Hemissi et al. 2001). In this structure, only one type of classical hydrogen bonds are observed, viz. cation–anion (Table 1). All three ammonium H atoms are involved in hydrogen bonds. These interactions result in the formation of cation-anion ribbons along c direction. Dipole-dipole and van der Waals interactions are effective in the molecular packing.

For background to protonated amines, see: Tong & Whitesell (1998); Shanker (1994); For closely related structures, see: Hemissi et al. (2001); Bouacida (2008); Singh et al. (2002)

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis showing the hydrogen bondings network.
3,4-Dimethylanilinium 4-methylbenzenesulfonate top
Crystal data top
C8H12N+C7H7O3SF(000) = 624
Mr = 293.37Dx = 1.284 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3434 reflections
a = 12.373 (3) Åθ = 2.6–27.4°
b = 7.3011 (15) ŵ = 0.22 mm1
c = 17.556 (4) ÅT = 293 K
β = 106.88 (3)°Prism, colorless
V = 1517.7 (5) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3434 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 3.0°
CCD_Profile_fitting scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.825, Tmax = 1.000l = 2222
14838 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.123P)2 + 1.5301P]
where P = (Fo2 + 2Fc2)/3
3434 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.71 e Å3
1 restraintΔρmin = 0.71 e Å3
Crystal data top
C8H12N+C7H7O3SV = 1517.7 (5) Å3
Mr = 293.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.373 (3) ŵ = 0.22 mm1
b = 7.3011 (15) ÅT = 293 K
c = 17.556 (4) Å0.20 × 0.20 × 0.20 mm
β = 106.88 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3434 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2608 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.046
14838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0821 restraint
wR(F2) = 0.229H-atom parameters constrained
S = 1.05Δρmax = 0.71 e Å3
3434 reflectionsΔρmin = 0.71 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32958 (7)0.27384 (11)0.06233 (5)0.0414 (3)
N10.4796 (2)0.7784 (4)0.07083 (15)0.0429 (6)
H1A0.51430.74060.03580.064*
H1B0.45970.89520.06150.064*
H1C0.41820.71050.06610.064*
C30.5882 (3)0.7845 (4)0.29494 (18)0.0386 (7)
C40.6969 (3)0.7113 (4)0.30705 (18)0.0413 (7)
C10.5569 (3)0.7596 (4)0.15244 (17)0.0346 (6)
C90.3539 (3)0.2660 (4)0.16787 (19)0.0373 (7)
C100.2706 (3)0.1959 (5)0.1992 (2)0.0473 (8)
H10A0.20310.15220.16540.057*
C20.5186 (3)0.8113 (4)0.21675 (17)0.0368 (7)
H2A0.44740.86320.20790.044*
C60.6634 (3)0.6868 (4)0.16339 (19)0.0424 (7)
H6A0.68800.65400.12000.051*
C140.4558 (3)0.3289 (4)0.21888 (19)0.0430 (7)
H14A0.51190.37350.19830.052*
C120.3897 (4)0.2572 (5)0.3338 (2)0.0511 (9)
O10.4053 (3)0.1381 (4)0.04418 (16)0.0717 (9)
C50.7330 (3)0.6636 (5)0.2409 (2)0.0447 (8)
H5A0.80510.61550.24900.054*
C130.4728 (3)0.3244 (5)0.3013 (2)0.0513 (9)
H13A0.54070.36680.33510.062*
C70.5443 (4)0.8386 (6)0.3646 (2)0.0596 (10)
H7A0.60090.81240.41380.089*
H7B0.47710.77030.36210.089*
H7C0.52750.96720.36180.089*
C110.2890 (3)0.1918 (5)0.2808 (2)0.0544 (9)
H11A0.23320.14460.30110.065*
O20.3571 (4)0.4547 (4)0.04248 (16)0.0895 (12)
C150.4082 (5)0.2539 (7)0.4234 (3)0.0796 (15)
H15A0.48110.30420.44990.119*
H15B0.40440.12990.44060.119*
H15C0.35080.32550.43620.119*
C80.7761 (3)0.6797 (6)0.3905 (2)0.0631 (11)
H8A0.73980.71840.42930.095*
H8B0.84410.74910.39720.095*
H8C0.79430.55190.39770.095*
O30.2122 (3)0.2272 (6)0.0250 (2)0.1043 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0502 (5)0.0355 (4)0.0360 (4)0.0014 (3)0.0084 (3)0.0001 (3)
N10.0532 (16)0.0414 (14)0.0281 (12)0.0017 (12)0.0025 (11)0.0021 (10)
C30.0493 (17)0.0337 (15)0.0296 (14)0.0016 (13)0.0064 (13)0.0014 (11)
C40.0497 (18)0.0320 (15)0.0338 (15)0.0037 (13)0.0010 (13)0.0018 (12)
C10.0418 (16)0.0298 (14)0.0282 (13)0.0003 (11)0.0039 (12)0.0038 (10)
C90.0439 (17)0.0309 (14)0.0396 (15)0.0010 (12)0.0160 (13)0.0003 (12)
C100.0421 (17)0.0441 (18)0.059 (2)0.0026 (14)0.0198 (16)0.0010 (15)
C20.0377 (15)0.0361 (15)0.0344 (15)0.0023 (12)0.0070 (12)0.0029 (12)
C60.0503 (18)0.0408 (17)0.0369 (16)0.0075 (14)0.0138 (14)0.0016 (13)
C140.0473 (17)0.0422 (17)0.0421 (17)0.0079 (14)0.0170 (14)0.0006 (13)
C120.075 (3)0.0411 (18)0.0438 (18)0.0071 (17)0.0276 (18)0.0044 (14)
O10.111 (2)0.0637 (18)0.0456 (14)0.0344 (17)0.0310 (16)0.0082 (13)
C50.0414 (17)0.0413 (17)0.0469 (18)0.0109 (13)0.0059 (14)0.0006 (14)
C130.059 (2)0.051 (2)0.0405 (17)0.0064 (16)0.0094 (16)0.0003 (15)
C70.077 (3)0.066 (2)0.0380 (18)0.007 (2)0.0204 (18)0.0005 (17)
C110.058 (2)0.053 (2)0.063 (2)0.0037 (17)0.0359 (19)0.0102 (17)
O20.171 (4)0.0434 (16)0.0445 (15)0.0182 (19)0.0171 (19)0.0062 (12)
C150.121 (4)0.080 (3)0.045 (2)0.016 (3)0.036 (3)0.008 (2)
C80.073 (3)0.057 (2)0.0400 (18)0.0121 (19)0.0142 (18)0.0014 (16)
O30.057 (2)0.180 (4)0.062 (2)0.021 (2)0.0047 (16)0.005 (2)
Geometric parameters (Å, º) top
S1—O21.432 (3)C6—C51.394 (5)
S1—O31.449 (3)C6—H6A0.9300
S1—O11.461 (3)C14—C131.400 (5)
S1—C91.790 (3)C14—H14A0.9300
N1—C11.480 (4)C12—C131.402 (5)
N1—H1A0.8900C12—C111.405 (6)
N1—H1B0.8900C12—C151.523 (5)
N1—H1C0.8900C5—H5A0.9300
C3—C41.405 (5)C13—H13A0.9300
C3—C21.406 (4)C7—H7A0.9600
C3—C71.527 (5)C7—H7B0.9600
C4—C51.404 (5)C7—H7C0.9600
C4—C81.526 (4)C11—H11A0.9300
C1—C61.381 (4)C15—H15A0.9600
C1—C21.397 (4)C15—H15B0.9600
C9—C141.396 (5)C15—H15C0.9600
C9—C101.399 (4)C8—H8A0.9600
C10—C111.384 (5)C8—H8B0.9600
C10—H10A0.9300C8—H8C0.9600
C2—H2A0.9300
O2—S1—O3112.6 (2)C9—C14—C13119.5 (3)
O2—S1—O1111.1 (2)C9—C14—H14A120.3
O3—S1—O1111.3 (2)C13—C14—H14A120.3
O2—S1—C9107.53 (15)C13—C12—C11117.6 (3)
O3—S1—C9107.81 (19)C13—C12—C15121.2 (4)
O1—S1—C9106.16 (15)C11—C12—C15121.2 (4)
C1—N1—H1A109.5C6—C5—C4121.5 (3)
C1—N1—H1B109.5C6—C5—H5A119.3
H1A—N1—H1B109.5C4—C5—H5A119.3
C1—N1—H1C109.5C14—C13—C12121.4 (3)
H1A—N1—H1C109.5C14—C13—H13A119.3
H1B—N1—H1C109.5C12—C13—H13A119.3
C4—C3—C2119.2 (3)C3—C7—H7A109.5
C4—C3—C7121.6 (3)C3—C7—H7B109.5
C2—C3—C7119.1 (3)H7A—C7—H7B109.5
C5—C4—C3119.3 (3)C3—C7—H7C109.5
C5—C4—C8119.1 (3)H7A—C7—H7C109.5
C3—C4—C8121.5 (3)H7B—C7—H7C109.5
C6—C1—C2121.7 (3)C10—C11—C12121.7 (3)
C6—C1—N1119.5 (3)C10—C11—H11A119.1
C2—C1—N1118.8 (3)C12—C11—H11A119.1
C14—C9—C10120.0 (3)C12—C15—H15A109.5
C14—C9—S1120.2 (2)C12—C15—H15B109.5
C10—C9—S1119.8 (3)H15A—C15—H15B109.5
C11—C10—C9119.8 (3)C12—C15—H15C109.5
C11—C10—H10A120.1H15A—C15—H15C109.5
C9—C10—H10A120.1H15B—C15—H15C109.5
C1—C2—C3119.7 (3)C4—C8—H8A109.5
C1—C2—H2A120.1C4—C8—H8B109.5
C3—C2—H2A120.1H8A—C8—H8B109.5
C1—C6—C5118.5 (3)C4—C8—H8C109.5
C1—C6—H6A120.8H8A—C8—H8C109.5
C5—C6—H6A120.8H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.132.854 (4)137
N1—H1A···S1i0.892.943.794 (3)161
N1—H1B···O1ii0.891.892.777 (4)175
N1—H1C···O20.892.012.773 (4)143
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H12N+C7H7O3S
Mr293.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.373 (3), 7.3011 (15), 17.556 (4)
β (°) 106.88 (3)
V3)1517.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14838, 3434, 2608
Rint0.046
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.229, 1.05
No. of reflections3434
No. of parameters181
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.71

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.132.854 (4)137.4
N1—H1A···S1i0.892.943.794 (3)161.3
N1—H1B···O1ii0.891.892.777 (4)174.8
N1—H1C···O20.892.012.773 (4)142.7
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

References

First citationBouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.  Google Scholar
First citationHemissi, H., Abid, S. & Rzaigui, M. (2001). Z. Kristallogr. New Cryst. Struct., 216, 431–432.  CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShanker, R. (1994). Pharmaceut. Res. A11, S–236.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G., Kapoor, I. P. S., Srivastava, J. & Kaur, J. (2002). J. Therm. Anal. Calorim. 69, 681–691.  Web of Science CrossRef CAS Google Scholar
First citationTong, W. & Whitesell, G. (1998). Pharm. Dev. Technol, 3, 215–223.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds