organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1,3-Benzo­thia­zol-2-yl)-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 September 2011; accepted 15 September 2011; online 30 September 2011)

The central five-membered ring of the title compound, C18H15N3OS, is almost planar (r.m.s. deviation = 0.028 Å) and the benzothia­zole fused-ring system is close to coplanar with this ring [dihedral angle = 6.1 (1)°]. The phenyl substituent is twisted by 62.5 (1)°.

Related literature

For the structure of the reactant 4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, see: Chakibe et al. (2010[Chakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010). Acta Cryst. E66, o1096.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N3OS

  • Mr = 321.39

  • Monoclinic, P 21 /c

  • a = 8.7428 (2) Å

  • b = 25.7551 (5) Å

  • c = 6.9660 (1) Å

  • β = 97.460 (1)°

  • V = 1555.27 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.900, Tmax = 0.979

  • 18953 measured reflections

  • 3569 independent reflections

  • 2418 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.01

  • 3569 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the study, the tertiary nitrogen atom of the five-membered ring of 4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (Chakibe et al., 2010) is used to displace iodine from methyl iode to give the title compound; the carbon-carbon double-bond in the reactant is consequently converted to a double bond (Scheme I, Fig. 1). The central five-membered ring and the benzothiazolyl fused-ring is nearly co-planar (dihedral angle 6.1 (1) °). The phenyl substituent is twisted by 62.5 (1) ° with respect to the five-membered ring.

Related literature top

For the structure of the reactant, see: Chakibe et al. (2010).

Experimental top

To a solution of (E)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (1 g, 3.25 mmol) in DMF (50 ml) was added sodium carbonate (2.5 g, 23 mmol), tetra-n-butylammonium bromide (0.15 g, 1 mmol) and methyl iodide (7.1 g, 50 mmol). The mixture was stirred for 24 h. The solid material was removed b filtration and the solution was evaporated. The residue was washed with dichloromethane and hexane, and was recrystallized from ethanol to afford the title compound as colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C). Omitted from the refinement was the (0 2 0) reflection.

Structure description top

In the study, the tertiary nitrogen atom of the five-membered ring of 4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (Chakibe et al., 2010) is used to displace iodine from methyl iode to give the title compound; the carbon-carbon double-bond in the reactant is consequently converted to a double bond (Scheme I, Fig. 1). The central five-membered ring and the benzothiazolyl fused-ring is nearly co-planar (dihedral angle 6.1 (1) °). The phenyl substituent is twisted by 62.5 (1) ° with respect to the five-membered ring.

For the structure of the reactant, see: Chakibe et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C18H15N3OS at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(1,3-Benzothiazol-2-yl)-1,5-dimethyl-2-phenyl-1H-pyrazol- 3(2H)-one top
Crystal data top
C18H15N3OSF(000) = 672
Mr = 321.39Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3894 reflections
a = 8.7428 (2) Åθ = 2.5–24.6°
b = 25.7551 (5) ŵ = 0.22 mm1
c = 6.9660 (1) ÅT = 293 K
β = 97.460 (1)°Prism, colorless
V = 1555.27 (5) Å30.50 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3569 independent reflections
Radiation source: fine-focus sealed tube2418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.900, Tmax = 0.979k = 2933
18953 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.296P]
where P = (Fo2 + 2Fc2)/3
3569 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H15N3OSV = 1555.27 (5) Å3
Mr = 321.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7428 (2) ŵ = 0.22 mm1
b = 25.7551 (5) ÅT = 293 K
c = 6.9660 (1) Å0.50 × 0.10 × 0.10 mm
β = 97.460 (1)°
Data collection top
Bruker APEXII
diffractometer
3569 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2418 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.979Rint = 0.053
18953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
3569 reflectionsΔρmin = 0.27 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.92125 (7)0.46686 (2)0.19736 (8)0.04602 (18)
N10.8107 (2)0.43170 (7)0.5013 (3)0.0485 (5)
N20.6696 (2)0.60559 (6)0.3813 (2)0.0450 (4)
N30.6087 (2)0.58549 (6)0.5419 (2)0.0436 (4)
O10.80712 (19)0.57089 (6)0.1499 (2)0.0555 (4)
C10.9552 (2)0.40265 (8)0.2603 (3)0.0435 (5)
C21.0365 (3)0.36554 (8)0.1694 (3)0.0531 (6)
H21.08320.37400.06090.064*
C31.0459 (3)0.31630 (9)0.2442 (4)0.0611 (7)
H31.10030.29100.18620.073*
C40.9756 (3)0.30371 (9)0.4045 (4)0.0682 (7)
H40.98180.26980.45100.082*
C50.8967 (3)0.34025 (9)0.4969 (4)0.0657 (7)
H50.85060.33130.60530.079*
C60.8869 (2)0.39090 (8)0.4253 (3)0.0462 (5)
C70.8201 (2)0.47347 (7)0.3978 (3)0.0399 (5)
C80.7531 (2)0.56620 (8)0.3030 (3)0.0417 (5)
C90.7516 (2)0.52318 (7)0.4329 (3)0.0387 (5)
C100.6676 (2)0.53751 (7)0.5781 (3)0.0398 (5)
C110.6421 (3)0.50940 (9)0.7570 (3)0.0514 (6)
H11A0.53340.50640.76300.077*
H11B0.68970.52820.86790.077*
H11C0.68680.47540.75590.077*
C120.5534 (3)0.62109 (9)0.6788 (3)0.0527 (6)
H12A0.54370.60310.79720.079*
H12B0.45460.63460.62530.079*
H12C0.62520.64920.70450.079*
C130.5892 (3)0.64466 (7)0.2625 (3)0.0414 (5)
C140.4314 (3)0.64253 (9)0.2115 (3)0.0532 (6)
H140.37320.61670.26060.064*
C150.3615 (3)0.67960 (10)0.0859 (4)0.0657 (7)
H150.25530.67870.04970.079*
C160.4484 (4)0.71801 (10)0.0139 (4)0.0673 (8)
H160.40070.74280.07050.081*
C170.6046 (4)0.71958 (9)0.0666 (4)0.0627 (7)
H170.66290.74540.01750.075*
C180.6759 (3)0.68310 (8)0.1916 (3)0.0508 (5)
H180.78200.68440.22810.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0543 (3)0.0407 (3)0.0427 (3)0.0044 (2)0.0050 (2)0.0038 (2)
N10.0525 (11)0.0414 (10)0.0524 (11)0.0046 (8)0.0100 (9)0.0068 (8)
N20.0576 (11)0.0379 (9)0.0397 (9)0.0063 (8)0.0079 (8)0.0048 (7)
N30.0568 (11)0.0403 (10)0.0334 (9)0.0041 (8)0.0047 (8)0.0002 (7)
O10.0732 (11)0.0503 (9)0.0456 (9)0.0109 (8)0.0180 (8)0.0067 (7)
C10.0397 (11)0.0404 (11)0.0480 (12)0.0006 (9)0.0033 (9)0.0008 (9)
C20.0500 (13)0.0493 (13)0.0590 (14)0.0057 (11)0.0036 (11)0.0051 (11)
C30.0572 (15)0.0471 (14)0.0778 (17)0.0078 (11)0.0044 (13)0.0065 (12)
C40.0668 (17)0.0390 (13)0.099 (2)0.0085 (12)0.0103 (15)0.0110 (13)
C50.0698 (16)0.0469 (14)0.0841 (18)0.0074 (12)0.0240 (14)0.0183 (13)
C60.0429 (12)0.0386 (11)0.0560 (13)0.0005 (9)0.0026 (10)0.0061 (9)
C70.0398 (11)0.0391 (11)0.0383 (10)0.0017 (9)0.0043 (8)0.0018 (8)
C80.0485 (12)0.0376 (11)0.0381 (11)0.0028 (9)0.0016 (9)0.0011 (8)
C90.0424 (11)0.0360 (10)0.0353 (10)0.0003 (9)0.0036 (8)0.0004 (8)
C100.0433 (11)0.0389 (11)0.0342 (10)0.0014 (9)0.0067 (8)0.0005 (8)
C110.0613 (14)0.0524 (13)0.0392 (11)0.0003 (11)0.0020 (10)0.0049 (10)
C120.0629 (15)0.0518 (13)0.0438 (12)0.0052 (11)0.0077 (11)0.0078 (10)
C130.0561 (13)0.0316 (10)0.0365 (10)0.0055 (9)0.0052 (9)0.0033 (8)
C140.0567 (14)0.0439 (12)0.0582 (14)0.0007 (11)0.0043 (11)0.0035 (10)
C150.0643 (16)0.0681 (17)0.0617 (16)0.0190 (13)0.0025 (13)0.0022 (13)
C160.098 (2)0.0560 (15)0.0487 (14)0.0268 (15)0.0123 (14)0.0137 (11)
C170.094 (2)0.0384 (13)0.0596 (15)0.0055 (13)0.0241 (14)0.0075 (11)
C180.0626 (14)0.0399 (12)0.0506 (13)0.0025 (11)0.0100 (11)0.0024 (10)
Geometric parameters (Å, º) top
S1—C11.727 (2)C8—C91.432 (3)
S1—C71.755 (2)C9—C101.376 (3)
N1—C71.304 (2)C10—C111.483 (3)
N1—C61.386 (3)C11—H11A0.9600
N2—C81.401 (3)C11—H11B0.9600
N2—N31.399 (2)C11—H11C0.9600
N2—C131.428 (2)C12—H12A0.9600
N3—C101.350 (2)C12—H12B0.9600
N3—C121.451 (3)C12—H12C0.9600
O1—C81.227 (2)C13—C181.377 (3)
C1—C21.392 (3)C13—C141.381 (3)
C1—C61.395 (3)C14—C151.382 (3)
C2—C31.369 (3)C14—H140.9300
C2—H20.9300C15—C161.381 (4)
C3—C41.382 (4)C15—H150.9300
C3—H30.9300C16—C171.368 (4)
C4—C51.375 (4)C16—H160.9300
C4—H40.9300C17—C181.374 (3)
C5—C61.395 (3)C17—H170.9300
C5—H50.9300C18—H180.9300
C7—C91.448 (3)
C1—S1—C788.78 (10)C8—C9—C7122.65 (19)
C7—N1—C6110.27 (18)N3—C10—C9109.58 (17)
C8—N2—N3108.35 (15)N3—C10—C11120.60 (19)
C8—N2—C13121.79 (16)C9—C10—C11129.77 (19)
N3—N2—C13120.94 (17)C10—C11—H11A109.5
C10—N3—N2108.24 (16)C10—C11—H11B109.5
C10—N3—C12127.40 (17)H11A—C11—H11B109.5
N2—N3—C12119.07 (16)C10—C11—H11C109.5
C2—C1—C6121.6 (2)H11A—C11—H11C109.5
C2—C1—S1128.56 (18)H11B—C11—H11C109.5
C6—C1—S1109.83 (16)N3—C12—H12A109.5
C3—C2—C1118.1 (2)N3—C12—H12B109.5
C3—C2—H2120.9H12A—C12—H12B109.5
C1—C2—H2120.9N3—C12—H12C109.5
C2—C3—C4120.9 (2)H12A—C12—H12C109.5
C2—C3—H3119.5H12B—C12—H12C109.5
C4—C3—H3119.5C18—C13—C14121.0 (2)
C5—C4—C3121.4 (2)C18—C13—N2117.5 (2)
C5—C4—H4119.3C14—C13—N2121.43 (19)
C3—C4—H4119.3C15—C14—C13118.7 (2)
C4—C5—C6119.0 (2)C15—C14—H14120.7
C4—C5—H5120.5C13—C14—H14120.7
C6—C5—H5120.5C14—C15—C16120.4 (3)
N1—C6—C5125.6 (2)C14—C15—H15119.8
N1—C6—C1115.37 (18)C16—C15—H15119.8
C5—C6—C1119.0 (2)C17—C16—C15120.1 (2)
N1—C7—C9125.38 (19)C17—C16—H16120.0
N1—C7—S1115.75 (15)C15—C16—H16120.0
C9—C7—S1118.85 (15)C16—C17—C18120.3 (2)
O1—C8—N2123.08 (18)C16—C17—H17119.9
O1—C8—C9131.43 (19)C18—C17—H17119.9
N2—C8—C9105.45 (17)C17—C18—C13119.6 (2)
C10—C9—C8107.86 (17)C17—C18—H18120.2
C10—C9—C7129.34 (18)C13—C18—H18120.2
C8—N2—N3—C107.4 (2)N2—C8—C9—C101.0 (2)
C13—N2—N3—C10155.18 (17)O1—C8—C9—C70.5 (4)
C8—N2—N3—C12163.59 (18)N2—C8—C9—C7176.98 (18)
C13—N2—N3—C1248.6 (3)N1—C7—C9—C101.4 (3)
C7—S1—C1—C2179.4 (2)S1—C7—C9—C10179.71 (16)
C7—S1—C1—C60.61 (15)N1—C7—C9—C8173.65 (19)
C6—C1—C2—C31.2 (3)S1—C7—C9—C84.7 (3)
S1—C1—C2—C3178.77 (17)N2—N3—C10—C96.8 (2)
C1—C2—C3—C40.4 (4)C12—N3—C10—C9160.4 (2)
C2—C3—C4—C51.3 (4)N2—N3—C10—C11171.05 (18)
C3—C4—C5—C60.5 (4)C12—N3—C10—C1117.4 (3)
C7—N1—C6—C5178.3 (2)C8—C9—C10—N33.6 (2)
C7—N1—C6—C10.0 (3)C7—C9—C10—N3172.02 (19)
C4—C5—C6—N1179.4 (2)C8—C9—C10—C11174.0 (2)
C4—C5—C6—C11.1 (4)C7—C9—C10—C1110.4 (4)
C2—C1—C6—N1179.51 (19)C8—N2—C13—C1874.5 (2)
S1—C1—C6—N10.5 (2)N3—N2—C13—C18142.02 (19)
C2—C1—C6—C52.0 (3)C8—N2—C13—C14101.9 (2)
S1—C1—C6—C5177.98 (18)N3—N2—C13—C1441.5 (3)
C6—N1—C7—C9178.88 (19)C18—C13—C14—C150.5 (3)
C6—N1—C7—S10.5 (2)N2—C13—C14—C15175.8 (2)
C1—S1—C7—N10.67 (16)C13—C14—C15—C160.2 (4)
C1—S1—C7—C9179.16 (17)C14—C15—C16—C170.0 (4)
N3—N2—C8—O1172.67 (19)C15—C16—C17—C180.2 (4)
C13—N2—C8—O125.2 (3)C16—C17—C18—C130.5 (3)
N3—N2—C8—C95.1 (2)C14—C13—C18—C170.7 (3)
C13—N2—C8—C9152.51 (18)N2—C13—C18—C17175.78 (19)
O1—C8—C9—C10176.5 (2)

Experimental details

Crystal data
Chemical formulaC18H15N3OS
Mr321.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.7428 (2), 25.7551 (5), 6.9660 (1)
β (°) 97.460 (1)
V3)1555.27 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.900, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
18953, 3569, 2418
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.01
No. of reflections3569
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010). Acta Cryst. E66, o1096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds