organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl N-(4-hy­dr­oxy­benz­yl)-N-[4-(prop-2-yn­yl­oxy)benz­yl]carbamate

aCollege of Medicine, Jiaxing University, Jiaxing 314001, People's Republic of China
*Correspondence e-mail: aolei.1997@163.com

(Received 9 August 2011; accepted 11 September 2011; online 14 September 2011)

In the crystal structure of the title compound, C22H25NO4, inter­molecular O—H⋯O hydrogen bonds involving the hy­droxy group of the 4-(amimometh­yl)phenol fragment and the C=O group connect the mol­ecules into infinite chains along the c axis. Two C atoms of the propyne group are disordered over two sites with occupancy factors of 0.53 (2) and 0.47 (2).

Related literature

For applications of the title compound, see: Späth & König (2010[Späth, A. & König, B. (2010). Beilstein J. Org. Chem. 6, 1-111.]); Juríček et al. (2011[Juríček, M., Kouwer, P. H. J. & Rowan, A. E. (2011). Chem. Commun. 47, 8740-8749.]). For the synthesis of the title compound, see: Kim et al. (2004[Kim, M. K., Kleckley, T. S., Wiemer, A. J., Holstein, S. A., Hohl, R. J. & Wiemer, D. F. (2004). J. Org. Chem. 69, 8186-8193.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25NO4

  • Mr = 367.43

  • Monoclinic, P 21 /c

  • a = 18.6904 (8) Å

  • b = 6.2611 (4) Å

  • c = 17.3567 (7) Å

  • β = 96.791 (1)°

  • V = 2016.87 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.41 × 0.37 × 0.29 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.957, Tmax = 0.976

  • 15741 measured reflections

  • 3750 independent reflections

  • 2099 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.149

  • S = 1.00

  • 3750 reflections

  • 268 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.94 2.745 (2) 167
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amino group is one of the most important functional groups in molecules of biological relevance, of which histamine and dopamine are two representative examples. In the synthesis of amino-contaning compounds, the boc group is commonly used to protect the amino group when performing parallel chemical transformations (Späth et al. , 2010). The acetylene group, due to the presence of the carbon-carbon triple bond, is an ideal functional group for further postmodification by numerous synthetic transformations (Juríček et al. , 2011). In our exploration of structure-activity relationships of amino-contaning compounds, we recently obtained a crystal of an intermediate, which contains both a boc-protecting amino group and an acetylene group. We report its crystal structure here.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle of the rings C1—C6 and C9—C14 is 11.7 (3)°. The bond lengths and angles are within normal ranges (Allen et al., 1987). The C18—N1 distance is 1.348 (3) Å, which is in the range of a typical double C=N bond. Atom O4 has a partial anionic character, as is shown by the lengthening of the C=O bond [1.226 (3) Å] compared to what is normally found for carbonyl groups. This atom acts as a hydrogen-bond acceptor for an intermolecular O—H···O hydrogen bond (Table 1). The hydrogen bonds are forming one-dimensional infinite chains along the c axis (Fig. 2).

Related literature top

For applications of the title compound, see: Späth & König (2010); Juríček et al. (2011). For the synthesis of the title compound, see: Kim et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to the method proposed by Kim et al. (2004). 4-(Amimomethyl)phenol (0.01 mol,1.23 g) and 4-(prop-2-gnyloxy)benzoldehyde were heated in anhydrous methanol for 2 h, then NaBH4 (0.1 mol,0.38 g) was added to the solution. The resulting solution was stirred for 30 minutes, then Boc2O (0.01 mol,2.18 g) was dropped into the solution. Colourless block-shaped single crystals suitable for X-ray structure determination were obtained by slow evaporation of the solution in a mixture of PE:EA(1:1,v:v). Yield: 51.7%.

Refinement top

Two C atoms of the propyne group are disordered over two sites. The occupancy factors refined to 0.53 (2) and 0.47 (2). H atoms were positioned geometrically and refined as riding groups, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, 0.96 for methyl H, 0.97 for methylene H and constrained to ride on their parent atoms, with Uiso(H) = x Ueq(C), where x = 1.2 for aromatic and methylene H, x = 1.0 for H atoms bonded to the disorded C atoms of the propyne group and x = 1.5 for methyl H.

Structure description top

The amino group is one of the most important functional groups in molecules of biological relevance, of which histamine and dopamine are two representative examples. In the synthesis of amino-contaning compounds, the boc group is commonly used to protect the amino group when performing parallel chemical transformations (Späth et al. , 2010). The acetylene group, due to the presence of the carbon-carbon triple bond, is an ideal functional group for further postmodification by numerous synthetic transformations (Juríček et al. , 2011). In our exploration of structure-activity relationships of amino-contaning compounds, we recently obtained a crystal of an intermediate, which contains both a boc-protecting amino group and an acetylene group. We report its crystal structure here.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle of the rings C1—C6 and C9—C14 is 11.7 (3)°. The bond lengths and angles are within normal ranges (Allen et al., 1987). The C18—N1 distance is 1.348 (3) Å, which is in the range of a typical double C=N bond. Atom O4 has a partial anionic character, as is shown by the lengthening of the C=O bond [1.226 (3) Å] compared to what is normally found for carbonyl groups. This atom acts as a hydrogen-bond acceptor for an intermolecular O—H···O hydrogen bond (Table 1). The hydrogen bonds are forming one-dimensional infinite chains along the c axis (Fig. 2).

For applications of the title compound, see: Späth & König (2010); Juríček et al. (2011). For the synthesis of the title compound, see: Kim et al. (2004). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 40% probability level. Only the major disorder component is shown.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the b axis, showing the O—H···O the hydrogen bonds as green dashed lines. H atoms not involved in hydrogen bonding have been omitted. Both disorder compounds of the propyne group are shown.
tert-Butyl N-(4-hydroxybenzyl)-N-[4-(prop-2-ynyloxy)benzyl]carbamate top
Crystal data top
C22H25NO4F(000) = 784
Mr = 367.43Dx = 1.210 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9726 reflections
a = 18.6904 (8) Åθ = 3.0–27.4°
b = 6.2611 (4) ŵ = 0.08 mm1
c = 17.3567 (7) ÅT = 296 K
β = 96.791 (1)°Chunk, colorless
V = 2016.87 (18) Å30.41 × 0.37 × 0.29 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3750 independent reflections
Radiation source: rolling anode2099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.00 pixels mm-1θmax = 25.5°, θmin = 3.0°
ω scansh = 2222
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.957, Tmax = 0.976l = 2119
15741 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.6687P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3750 reflectionsΔρmax = 0.26 e Å3
268 parametersΔρmin = 0.19 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0155 (18)
Crystal data top
C22H25NO4V = 2016.87 (18) Å3
Mr = 367.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.6904 (8) ŵ = 0.08 mm1
b = 6.2611 (4) ÅT = 296 K
c = 17.3567 (7) Å0.41 × 0.37 × 0.29 mm
β = 96.791 (1)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3750 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2099 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.976Rint = 0.038
15741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
3750 reflectionsΔρmin = 0.19 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.17241 (12)0.2936 (3)0.76205 (9)0.0818 (6)
H10.18330.39850.78920.123*
O20.43006 (9)0.6806 (3)0.13104 (10)0.0726 (5)
O30.13748 (8)0.5836 (3)0.40395 (8)0.0592 (5)
O40.19445 (10)0.8841 (3)0.36950 (9)0.0695 (5)
N10.25604 (11)0.6051 (3)0.42845 (10)0.0605 (5)
C10.19319 (13)0.3250 (4)0.68966 (12)0.0564 (6)
C20.22502 (14)0.5106 (4)0.66891 (13)0.0643 (7)
H20.23340.62140.70460.077*
C30.24466 (15)0.5329 (4)0.59494 (13)0.0664 (7)
H30.26630.65930.58160.080*
C40.23302 (11)0.3722 (4)0.54024 (12)0.0513 (6)
C50.20066 (14)0.1883 (4)0.56236 (13)0.0648 (7)
H50.19190.07760.52680.078*
C60.18094 (15)0.1640 (4)0.63598 (14)0.0712 (7)
H60.15920.03780.64930.085*
C70.25534 (14)0.3881 (4)0.45966 (13)0.0633 (7)
H7A0.30320.32760.46040.076*
H7B0.22270.30190.42480.076*
C80.32381 (13)0.7155 (5)0.42417 (13)0.0712 (8)
H8A0.36010.65350.46220.085*
H8B0.31800.86390.43820.085*
C90.35077 (12)0.7072 (4)0.34535 (12)0.0584 (6)
C100.39496 (15)0.8655 (5)0.32395 (15)0.0776 (8)
H100.40670.97800.35810.093*
C110.42283 (15)0.8647 (5)0.25335 (15)0.0762 (8)
H110.45270.97460.24040.091*
C120.40561 (12)0.6991 (4)0.20300 (13)0.0579 (6)
C130.36058 (13)0.5388 (4)0.22214 (14)0.0649 (7)
H130.34850.42710.18770.078*
C140.33342 (13)0.5442 (4)0.29254 (14)0.0652 (7)
H140.30270.43590.30490.078*
C150.48249 (14)0.8306 (4)0.11323 (15)0.0756 (8)
H15A0.51940.84590.15710.091*
H150.46010.96880.10240.091*0.532 (4)
H15B0.50460.74740.07520.091*0.468 (4)
C16A0.5155 (2)0.7544 (7)0.0443 (2)0.0661 (14)0.532 (4)
C17A0.5407 (3)0.6902 (8)0.0069 (2)0.0760 (17)0.532 (4)
H17A0.56150.63720.04910.091*0.532 (4)
C16B0.4509 (3)1.0432 (7)0.0868 (3)0.0689 (17)0.468 (4)
C17B0.4307 (4)1.2108 (7)0.0727 (4)0.086 (2)0.468 (4)
H17B0.41411.34840.06110.103*0.468 (4)
C180.19532 (13)0.7046 (4)0.39779 (12)0.0566 (6)
C190.06391 (13)0.6547 (4)0.37645 (14)0.0623 (6)
C200.05670 (17)0.6953 (5)0.28996 (16)0.0932 (10)
H20A0.08060.82650.28000.140*
H20B0.00660.70540.27030.140*
H20C0.07830.57970.26470.140*
C210.01977 (15)0.4612 (5)0.39359 (16)0.0809 (8)
H21A0.03200.34310.36240.121*
H21B0.03060.49320.38180.121*
H21C0.02990.42450.44750.121*
C220.04566 (18)0.8454 (5)0.4239 (2)0.1049 (11)
H22A0.05870.81600.47800.157*
H22B0.00510.87340.41440.157*
H22C0.07180.96800.40930.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1286 (16)0.0695 (13)0.0529 (10)0.0072 (12)0.0346 (10)0.0001 (9)
O20.0827 (12)0.0748 (13)0.0651 (11)0.0114 (10)0.0292 (9)0.0031 (9)
O30.0653 (10)0.0561 (10)0.0566 (9)0.0006 (8)0.0088 (7)0.0070 (8)
O40.0927 (13)0.0557 (11)0.0608 (10)0.0063 (9)0.0113 (9)0.0095 (8)
N10.0651 (12)0.0708 (14)0.0463 (10)0.0014 (11)0.0101 (9)0.0085 (10)
C10.0717 (15)0.0532 (15)0.0454 (12)0.0012 (12)0.0109 (11)0.0046 (11)
C20.0915 (18)0.0562 (16)0.0455 (13)0.0079 (14)0.0090 (12)0.0060 (11)
C30.0921 (18)0.0566 (16)0.0522 (14)0.0155 (13)0.0155 (13)0.0014 (12)
C40.0559 (13)0.0566 (15)0.0412 (11)0.0052 (11)0.0046 (9)0.0014 (10)
C50.0825 (17)0.0591 (16)0.0529 (14)0.0081 (13)0.0089 (12)0.0107 (12)
C60.102 (2)0.0533 (16)0.0612 (15)0.0136 (14)0.0206 (14)0.0054 (12)
C70.0765 (16)0.0657 (17)0.0485 (13)0.0155 (13)0.0105 (11)0.0065 (11)
C80.0694 (16)0.093 (2)0.0519 (13)0.0119 (15)0.0077 (12)0.0025 (13)
C90.0558 (13)0.0720 (17)0.0475 (12)0.0059 (12)0.0061 (10)0.0016 (12)
C100.0908 (19)0.087 (2)0.0562 (15)0.0329 (17)0.0127 (14)0.0139 (14)
C110.0831 (18)0.084 (2)0.0631 (16)0.0333 (16)0.0160 (13)0.0054 (14)
C120.0586 (13)0.0661 (16)0.0506 (13)0.0006 (12)0.0131 (11)0.0036 (12)
C130.0726 (16)0.0621 (16)0.0632 (15)0.0091 (13)0.0215 (12)0.0066 (12)
C140.0676 (15)0.0668 (17)0.0636 (15)0.0105 (13)0.0179 (12)0.0011 (13)
C150.0773 (18)0.078 (2)0.0759 (17)0.0071 (15)0.0281 (14)0.0091 (15)
C16A0.074 (3)0.065 (3)0.059 (3)0.008 (3)0.006 (2)0.015 (2)
C17A0.099 (4)0.082 (4)0.052 (3)0.004 (3)0.032 (3)0.003 (3)
C16B0.078 (4)0.074 (4)0.058 (3)0.014 (3)0.022 (3)0.009 (3)
C17B0.124 (6)0.056 (4)0.083 (4)0.005 (4)0.030 (4)0.002 (3)
C180.0739 (16)0.0567 (16)0.0407 (12)0.0044 (13)0.0126 (11)0.0007 (11)
C190.0630 (14)0.0604 (16)0.0641 (14)0.0043 (12)0.0096 (12)0.0031 (12)
C200.100 (2)0.100 (2)0.0728 (17)0.0091 (19)0.0149 (16)0.0252 (17)
C210.0818 (18)0.080 (2)0.0820 (19)0.0154 (16)0.0134 (15)0.0000 (15)
C220.091 (2)0.078 (2)0.150 (3)0.0079 (17)0.034 (2)0.037 (2)
Geometric parameters (Å, º) top
O1—C11.372 (3)C10—H100.9300
O1—H10.8200C11—C121.369 (3)
O2—C121.385 (3)C11—H110.9300
O2—C151.417 (3)C12—C131.376 (3)
O3—C181.335 (3)C13—C141.378 (3)
O3—C191.470 (3)C13—H130.9300
O4—C181.226 (3)C14—H140.9300
N1—C181.348 (3)C15—C16A1.488 (3)
N1—C81.452 (3)C15—C16B1.506 (3)
N1—C71.464 (3)C15—H15A0.9700
C1—C21.373 (3)C15—H150.9700
C1—C61.374 (3)C15—H15B0.9700
C2—C31.383 (3)C16A—C17A1.128 (3)
C2—H20.9300C16A—H15B0.5978
C3—C41.383 (3)C17A—H17A0.9300
C3—H30.9300C16B—C17B1.132 (3)
C4—C51.376 (3)C17B—H17B0.9300
C4—C71.509 (3)C19—C221.512 (4)
C5—C61.379 (3)C19—C201.513 (4)
C5—H50.9300C19—C211.515 (4)
C6—H60.9300C20—H20A0.9600
C7—H7A0.9700C20—H20B0.9600
C7—H7B0.9700C20—H20C0.9600
C8—C91.514 (3)C21—H21A0.9600
C8—H8A0.9700C21—H21B0.9600
C8—H8B0.9700C21—H21C0.9600
C9—C101.369 (3)C22—H22A0.9600
C9—C141.384 (3)C22—H22B0.9600
C10—C111.387 (3)C22—H22C0.9600
C1—O1—H1109.5C14—C13—H13120.1
C12—O2—C15116.86 (19)C13—C14—C9121.6 (2)
C18—O3—C19122.50 (19)C13—C14—H14119.2
C18—N1—C8117.3 (2)C9—C14—H14119.2
C18—N1—C7122.1 (2)O2—C15—C16A109.0 (3)
C8—N1—C7120.4 (2)O2—C15—C16B113.3 (3)
C2—C1—O1122.7 (2)C16A—C15—C16B102.9 (3)
C2—C1—C6119.1 (2)O2—C15—H15A109.9
O1—C1—C6118.3 (2)C16A—C15—H15A109.9
C1—C2—C3120.0 (2)C16B—C15—H15A111.6
C1—C2—H2120.0O2—C15—H15109.9
C3—C2—H2120.0C16A—C15—H15109.9
C4—C3—C2121.8 (2)H15A—C15—H15108.3
C4—C3—H3119.1O2—C15—H15B98.9
C2—C3—H3119.1C16B—C15—H15B116.8
C5—C4—C3117.1 (2)H15A—C15—H15B105.5
C5—C4—C7119.5 (2)H15—C15—H15B123.8
C3—C4—C7123.4 (2)C17A—C16A—C15177.7 (5)
C4—C5—C6121.7 (2)C17A—C16A—H15B154.1
C4—C5—H5119.2C16A—C17A—H17A180.0
C6—C5—H5119.2C17B—C16B—C15173.8 (6)
C1—C6—C5120.4 (2)C16B—C17B—H17B180.0
C1—C6—H6119.8O4—C18—O3125.5 (2)
C5—C6—H6119.8O4—C18—N1123.5 (2)
N1—C7—C4114.8 (2)O3—C18—N1111.0 (2)
N1—C7—H7A108.6O3—C19—C22109.0 (2)
C4—C7—H7A108.6O3—C19—C20110.1 (2)
N1—C7—H7B108.6C22—C19—C20114.1 (3)
C4—C7—H7B108.6O3—C19—C21101.8 (2)
H7A—C7—H7B107.5C22—C19—C21111.2 (2)
N1—C8—C9114.55 (19)C20—C19—C21110.0 (2)
N1—C8—H8A108.6C19—C20—H20A109.5
C9—C8—H8A108.6C19—C20—H20B109.5
N1—C8—H8B108.6H20A—C20—H20B109.5
C9—C8—H8B108.6C19—C20—H20C109.5
H8A—C8—H8B107.6H20A—C20—H20C109.5
C10—C9—C14117.1 (2)H20B—C20—H20C109.5
C10—C9—C8119.8 (2)C19—C21—H21A109.5
C14—C9—C8123.1 (2)C19—C21—H21B109.5
C9—C10—C11122.6 (2)H21A—C21—H21B109.5
C9—C10—H10118.7C19—C21—H21C109.5
C11—C10—H10118.7H21A—C21—H21C109.5
C12—C11—C10118.8 (2)H21B—C21—H21C109.5
C12—C11—H11120.6C19—C22—H22A109.5
C10—C11—H11120.6C19—C22—H22B109.5
C11—C12—C13120.2 (2)H22A—C22—H22B109.5
C11—C12—O2124.1 (2)C19—C22—H22C109.5
C13—C12—O2115.7 (2)H22A—C22—H22C109.5
C12—C13—C14119.7 (2)H22B—C22—H22C109.5
C12—C13—H13120.1
O1—C1—C2—C3179.9 (2)C10—C11—C12—C130.9 (4)
C6—C1—C2—C30.4 (4)C10—C11—C12—O2180.0 (2)
C1—C2—C3—C40.1 (4)C15—O2—C12—C117.5 (4)
C2—C3—C4—C50.2 (4)C15—O2—C12—C13173.4 (2)
C2—C3—C4—C7178.4 (2)C11—C12—C13—C140.6 (4)
C3—C4—C5—C60.4 (4)O2—C12—C13—C14179.8 (2)
C7—C4—C5—C6178.3 (2)C12—C13—C14—C90.5 (4)
C2—C1—C6—C50.3 (4)C10—C9—C14—C131.3 (4)
O1—C1—C6—C5179.8 (2)C8—C9—C14—C13178.2 (2)
C4—C5—C6—C10.1 (4)C12—O2—C15—C16A165.7 (3)
C18—N1—C7—C479.6 (3)C12—O2—C15—C16B80.4 (3)
C8—N1—C7—C4105.1 (2)C19—O3—C18—O40.1 (3)
C5—C4—C7—N1151.9 (2)C19—O3—C18—N1178.88 (18)
C3—C4—C7—N129.5 (3)C8—N1—C18—O42.7 (3)
C18—N1—C8—C977.4 (3)C7—N1—C18—O4178.1 (2)
C7—N1—C8—C998.1 (3)C8—N1—C18—O3178.44 (18)
N1—C8—C9—C10154.0 (3)C7—N1—C18—O33.0 (3)
N1—C8—C9—C1426.5 (4)C18—O3—C19—C2264.6 (3)
C14—C9—C10—C111.1 (4)C18—O3—C19—C2061.2 (3)
C8—C9—C10—C11178.5 (3)C18—O3—C19—C21177.9 (2)
C9—C10—C11—C120.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.942.745 (2)167
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H25NO4
Mr367.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.6904 (8), 6.2611 (4), 17.3567 (7)
β (°) 96.791 (1)
V3)2016.87 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.41 × 0.37 × 0.29
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.957, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
15741, 3750, 2099
Rint0.038
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.149, 1.00
No. of reflections3750
No. of parameters268
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.942.745 (2)167
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Mr Jian Ming Gu of the X-ray crystallographic facility of Zhejiang University for assistance with the crystal structure analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–19.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJuríček, M., Kouwer, P. H. J. & Rowan, A. E. (2011). Chem. Commun. 47, 8740–8749.  Google Scholar
First citationKim, M. K., Kleckley, T. S., Wiemer, A. J., Holstein, S. A., Hohl, R. J. & Wiemer, D. F. (2004). J. Org. Chem. 69, 8186–8193.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpäth, A. & König, B. (2010). Beilstein J. Org. Chem. 6, 1–111.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds