metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(di­ethyl ether)tetra-μ4-oxido-octa­kis­(penta­fluoro­phen­yl)octa­zinc

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 25 August 2011; accepted 12 September 2011; online 17 September 2011)

Mol­ecules of the title compound, [Zn8(C6F5)8O4(C4H10O)4], are located on a special position of site symmetry [\overline{4}]. As a result, there is just one quarter-mol­ecule in the asymmetric unit. The title compound features a Zn4O4 cube. Each Zn atom in the cube carries a pentafluorophenyl substituent. Each O atom is bonded to a further Zn atom, which is connected to a pentafluorophenyl substituent and the O atom of a diethyl ether mol­ecule. All ether C atoms are disordered over two sets of sites with a site occupation factor of 0.51 (2) for the major occupied site.

Related literature

For background to metal organyls bearing pentafluorophenyl groups, see: Noltes & van den Hurk (1964[Noltes, J. G. & van den Hurk, J. W. G. (1964). J. Organomet. Chem. 1, 377-383.]); Hayashi et al. (2011[Hayashi, M., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). Z. Anorg. Allg. Chem. 637, 646-649.]); Sun et al. (1998[Sun, Y., Piers, W. E. & Parvez, M. (1998). Can. J. Chem. 76, 513-517.]); Weidenbruch et al. (1989[Weidenbruch, M., Herrndorf, M., Schäfer, A., Pohl, S. & Saak, W. (1989). J. Organomet. Chem. 361, 139-145.]). For the chemical shift values of the signals observed in the 1H NMR spectrum of free Et2O in [D8]THF, see: Fulmer et al. (2010[Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176-2179.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn8(C6F5)8O4(C4H10O)4]

  • Mr = 2219.92

  • Cubic, [P \overline 43n ]

  • a = 23.4948 (6) Å

  • V = 12969.3 (6) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 173 K

  • 0.35 × 0.33 × 0.32 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.498, Tmax = 0.525

  • 75864 measured reflections

  • 4000 independent reflections

  • 3655 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.08

  • 4000 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1839 Friedel pairs

  • Flack parameter: −0.002 (19)

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since the first synthesis of Zn[C6F5]2 in 1964 many applications of synthesized pentafluorophenyl organyls have been documented (Noltes & van den Hurk, 1964). Despite the long existence and common usage of Zn[C6F5]2, its reactivity towards water has not yet been investigated well. Very recently we have studied the chemical behavior of a series of mesityl derivatives of group 12 elements (Hayashi et al., 2011). It has been shown that the Zn derivative Zn[Mes]2 is more reactive towards acids than M[Mes]2 (M = Cd, Hg). In this paper we report the crystal structure of the product which was obtained from the 1 : 1 reaction of (Et2O)2Zn[C6F5]2 with water. Bis(pentafluorophenyl)zinc was synthesized by slight modification of the method reported in the literature via conversion of Mg[C6F5]Br with ZnCl2 in diethyl ether (Noltes & van den Hurk, 1964; Sun et al., 1998). It is interesting to note that the partial hydrolysis of (Et2O)2Zn[C6F5]2 yields the oxide [C6F5(Et2O)ZnOZnC6F5]4 whereas the 1 : 1 reaction of the corresponding Cd[C6F5]2 with water produces the hydroxy derivative [C6F5CdOH]4 (Weidenbruch et al., 1989). In the solid state the Cd hydroxide [C6F5CdOH]4 also displays a heterocubane structure.

Molecules of the title compound, C64H40F40O8Zn8, are located on a special position of site symmetry 4. As a result of that, there is just a quarter of a molecule in the asymmetric unit. The title compound features an Zn4O4 cube. Each Zn atom in the cube carries a pentafluorophenyl substituent. Each O atom is bonded to a further Zn atom which is connected to a pentafluorophenyl substituent and the O atom of a diethyl ether molecule.

Related literature top

For background to pentafluorophenyl organyls, see: Noltes & van den Hurk (1964); Hayashi et al. (2011); Sun et al. (1998); Weidenbruch et al. (1989). For the chemical shift values for the signals observed in the 1H NMR spectrum of free Et2O in [D8]THF, see: Fulmer et al. (2010).

Experimental top

All transformations were carried out under an atmosphere of dry nitrogen using Schlenk techniques. Solvents (diethyl ether, toluene) were freshly distilled from sodium/benzophenone and hexane from sodium prior to use. NMR spectra were recorded on a Bruker Avance 300 (1H, 19F{1H} and a DPX 250 (13C{1H}). Chemical shift values (1H, 13C{1H}) are reported in p.p.m. relative to SiMe4 and were referenced to residual solvent signals. The 19F{1H} NMR chemical shift values were referenced to external CFCl3. The MALDI spectrum was recorded on a FISONS Instruments VG TofSpec using ATT as a matrix. Abbreviations: d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, n.o. = signal not observed.

In a round bottom flask anhydrous ZnCl2 (5.40 g, 39.6 mmol) was suspended in diethyl ether (50 ml) and cooled to -30°C. Under stirring, a solution of Mg[C6F5]Br in diethyl ether (79.4 mmol, 100 ml) was added via canula and the mixture was allowed to warm to room temperature over night. Insoluble material was removed by filtration and the solvent was evaporated under reduced pressure. A viscous brown slurry was obtained which was heated to 140°C for a period of approximately 3 h. The residue obtained was dissolved in a 2 : 1 mixture of toluene and hexane and stored at -30°C for 24 h. After the first crystal crop of (Et2O)2Zn[C6F5]2 had been separated the mother liquor was stored at -30°C for a period of approximately two months yielding crystals of the title compound. This can be attributed to the intrusion of moisture over the period of storage. 1H (300.0 MHz, [D8]THF, 25°C): δ = 3.39 (q, 3JH—H = 7.0 Hz, O(CH2CH3)2) (the chemical shift values for the signals observed in the 1H NMR spectrum equal the values published for free Et2O in [D8]THF; Fulmer et al., 2010), 1.11 p.p.m. (t, 3JH—H = 7.0 Hz, O(CH2CH3)2); 13C{1H} NMR (62.9 MHz, [D8]THF, 25°C): δ = 149.5 (br d, 1JC—F = 226 Hz, (o-C6F5)-a or b), 149.2 (br d, 1JC—F = 223 Hz, (o-C6F5)-a or b), 140.5 (br d, 1JC—F = 258 Hz, (p-C6F5)-a,b), 137.1 p.p.m. (br d, 1JC—F = 249 Hz, (m-C6F5)-a,b), Et2O Signals, n.o. (ZnC); 19F{1H} NMR (282.3 MHz, [D8]THF, 25°C): δ = -111.42 (m, (o-C6F5)-a or b), -114.53 (m, (o-C6F5)-a or b), -156.20 (t, 3JF—F = 19 Hz, (p-C6F5)-a or b), -156.58 (t, 3JF—F = 19 Hz, (p-C6F5)-a or b), -161.32 (m, (m-C6F5)-a or b), -161.65 p.p.m. (m, (m-C6F5)-a or b). MALDI+ m/z (%): 554.89 (100) [C6F5(Et2O)ZnOZnC6F5+1]+, calcd for [C6F5(Et2O)ZnOZnC6F5+1]+: 554.91 (100).

Refinement top

H atoms were geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C) or U(H) = 1.5 Ueq(Cmethyl)] using a riding model with CH(methylene) = 0.99Å or CH(methyl) = 0.98 Å, respectively.

Structure description top

Since the first synthesis of Zn[C6F5]2 in 1964 many applications of synthesized pentafluorophenyl organyls have been documented (Noltes & van den Hurk, 1964). Despite the long existence and common usage of Zn[C6F5]2, its reactivity towards water has not yet been investigated well. Very recently we have studied the chemical behavior of a series of mesityl derivatives of group 12 elements (Hayashi et al., 2011). It has been shown that the Zn derivative Zn[Mes]2 is more reactive towards acids than M[Mes]2 (M = Cd, Hg). In this paper we report the crystal structure of the product which was obtained from the 1 : 1 reaction of (Et2O)2Zn[C6F5]2 with water. Bis(pentafluorophenyl)zinc was synthesized by slight modification of the method reported in the literature via conversion of Mg[C6F5]Br with ZnCl2 in diethyl ether (Noltes & van den Hurk, 1964; Sun et al., 1998). It is interesting to note that the partial hydrolysis of (Et2O)2Zn[C6F5]2 yields the oxide [C6F5(Et2O)ZnOZnC6F5]4 whereas the 1 : 1 reaction of the corresponding Cd[C6F5]2 with water produces the hydroxy derivative [C6F5CdOH]4 (Weidenbruch et al., 1989). In the solid state the Cd hydroxide [C6F5CdOH]4 also displays a heterocubane structure.

Molecules of the title compound, C64H40F40O8Zn8, are located on a special position of site symmetry 4. As a result of that, there is just a quarter of a molecule in the asymmetric unit. The title compound features an Zn4O4 cube. Each Zn atom in the cube carries a pentafluorophenyl substituent. Each O atom is bonded to a further Zn atom which is connected to a pentafluorophenyl substituent and the O atom of a diethyl ether molecule.

For background to pentafluorophenyl organyls, see: Noltes & van den Hurk (1964); Hayashi et al. (2011); Sun et al. (1998); Weidenbruch et al. (1989). For the chemical shift values for the signals observed in the 1H NMR spectrum of free Et2O in [D8]THF, see: Fulmer et al. (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with displacement ellipsoids at the 30% probability level; H atoms and the minor occupied disordered atoms have been omitted for clarity. Colour codes: C: grey, F: light green, O: red, Zn: blue.
[Figure 2] Fig. 2. Perspective view of central core of the title compound with displacement ellipsoids at the 30% probability level; Ether C atoms, F and H atoms have been omitted for clarity. Colour codes: C: grey, F: light green, O: red, Zn: blue.
[Figure 3] Fig. 3. Preparation of the title compound.
Tetrakis(diethyl ether)tetra-µ4-oxido-octakis(pentafluorophenyl)octazinc top
Crystal data top
[Zn8(C6F5)8O4(C4H10O)4]Dx = 1.705 Mg m3
Mr = 2219.92Mo Kα radiation, λ = 0.71073 Å
Cubic, P43nCell parameters from 44493 reflections
Hall symbol: P -4n 2 3θ = 2.5–25.8°
a = 23.4948 (6) ŵ = 2.31 mm1
V = 12969.3 (6) Å3T = 173 K
Z = 6Block, colourless
F(000) = 65280.35 × 0.33 × 0.32 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
4000 independent reflections
Radiation source: fine-focus sealed tube3655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 2728
Tmin = 0.498, Tmax = 0.525k = 1828
75864 measured reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0574P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.57 e Å3
4000 reflectionsΔρmin = 0.40 e Å3
271 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00131 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1839 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.002 (19)
Crystal data top
[Zn8(C6F5)8O4(C4H10O)4]Z = 6
Mr = 2219.92Mo Kα radiation
Cubic, P43nµ = 2.31 mm1
a = 23.4948 (6) ÅT = 173 K
V = 12969.3 (6) Å30.35 × 0.33 × 0.32 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
4000 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
3655 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.525Rint = 0.096
75864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.57 e Å3
S = 1.08Δρmin = 0.40 e Å3
4000 reflectionsAbsolute structure: Flack (1983), 1839 Friedel pairs
271 parametersAbsolute structure parameter: 0.002 (19)
0 restraints
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50037 (3)0.061641 (18)0.20605 (2)0.03607 (14)
Zn20.48836 (2)0.12803 (2)0.33083 (3)0.04580 (17)
O10.50255 (15)0.06020 (12)0.29312 (12)0.0371 (6)
C10.4214 (3)0.1702 (3)0.3561 (3)0.0620 (16)
C20.4150 (3)0.1966 (3)0.4078 (3)0.077 (2)
C30.3657 (5)0.2226 (4)0.4255 (4)0.110 (3)
C40.3189 (5)0.2225 (5)0.3911 (6)0.135 (5)
C50.3221 (3)0.1967 (4)0.3404 (5)0.114 (4)
C60.3732 (3)0.1700 (3)0.3230 (4)0.078 (2)
C110.51854 (19)0.1320 (2)0.1628 (2)0.0425 (10)
C120.5218 (2)0.18472 (19)0.1880 (2)0.0441 (11)
C130.5437 (3)0.2323 (2)0.1619 (3)0.0557 (14)
C140.5638 (3)0.2287 (2)0.1076 (3)0.0542 (13)
C150.5611 (3)0.1768 (3)0.0799 (2)0.0552 (13)
C160.5389 (2)0.1301 (2)0.1077 (2)0.0483 (12)
F20.4605 (3)0.1988 (2)0.44346 (18)0.1052 (16)
F30.3626 (4)0.2482 (3)0.4764 (3)0.179 (4)
F40.2699 (4)0.2452 (4)0.4065 (4)0.230 (6)
F50.2763 (2)0.1940 (3)0.3044 (4)0.169 (3)
F60.37461 (18)0.1443 (2)0.2707 (2)0.0906 (13)
F120.5028 (2)0.19094 (11)0.24282 (12)0.0634 (8)
F130.5465 (2)0.28246 (13)0.18992 (18)0.0851 (12)
F140.58640 (19)0.27394 (15)0.08172 (19)0.0782 (11)
F150.5811 (2)0.17297 (16)0.02661 (16)0.0878 (13)
F160.53988 (18)0.08019 (14)0.07952 (15)0.0698 (10)
O20.5635 (2)0.1608 (3)0.3571 (3)0.100 (2)
C210.6146 (17)0.1819 (17)0.3404 (17)0.146 (15)*0.38 (2)
H21A0.62650.16340.30440.175*0.38 (2)
H21B0.64370.17330.36970.175*0.38 (2)
C21'0.5649 (6)0.2278 (6)0.3605 (6)0.082 (4)*0.62 (2)
H21C0.52930.24330.34420.099*0.62 (2)
H21D0.56710.23970.40080.099*0.62 (2)
C220.6107 (12)0.2494 (8)0.3312 (10)0.265 (12)
H22A0.58330.26560.35830.397*0.38 (2)
H22B0.59810.25750.29230.397*0.38 (2)
H22C0.64820.26650.33750.397*0.38 (2)
H22D0.61710.28900.34280.397*0.62 (2)
H22E0.60300.24800.29030.397*0.62 (2)
H22F0.64470.22680.33980.397*0.62 (2)
C230.5877 (7)0.1302 (8)0.4201 (8)0.079 (5)*0.49 (2)
H23A0.62380.10990.41250.095*0.49 (2)
H23B0.59590.16090.44790.095*0.49 (2)
C240.5464 (9)0.0897 (8)0.4457 (8)0.089 (6)*0.49 (2)
H24A0.56580.06630.47430.133*0.49 (2)
H24B0.53070.06520.41590.133*0.49 (2)
H24C0.51550.11100.46390.133*0.49 (2)
C23'0.6024 (6)0.1326 (6)0.3793 (6)0.069 (5)*0.51 (2)
H23C0.63460.15760.39010.083*0.51 (2)
H23D0.61650.10310.35270.083*0.51 (2)
C24'0.5754 (9)0.1044 (9)0.4335 (8)0.086 (5)*0.51 (2)
H24D0.60400.08080.45260.129*0.51 (2)
H24E0.54310.08060.42210.129*0.51 (2)
H24F0.56220.13410.45960.129*0.51 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0371 (3)0.0301 (2)0.0410 (3)0.0003 (2)0.0001 (3)0.00158 (19)
Zn20.0421 (3)0.0406 (3)0.0547 (3)0.0011 (2)0.0038 (2)0.0109 (2)
O10.0337 (14)0.0367 (14)0.0410 (14)0.0009 (14)0.0006 (15)0.0018 (12)
C10.066 (4)0.047 (3)0.073 (4)0.006 (3)0.025 (3)0.010 (3)
C20.085 (5)0.067 (4)0.078 (5)0.028 (4)0.026 (4)0.010 (3)
C30.137 (9)0.108 (7)0.084 (6)0.046 (6)0.057 (6)0.008 (5)
C40.109 (8)0.163 (10)0.133 (9)0.086 (8)0.072 (8)0.056 (8)
C50.059 (5)0.123 (7)0.160 (9)0.030 (5)0.027 (5)0.080 (7)
C60.062 (4)0.068 (4)0.103 (6)0.012 (3)0.022 (4)0.035 (4)
C110.042 (2)0.039 (2)0.047 (3)0.0014 (19)0.0014 (19)0.004 (2)
C120.052 (3)0.032 (2)0.049 (3)0.0018 (19)0.008 (2)0.0038 (19)
C130.066 (3)0.033 (3)0.068 (4)0.000 (2)0.011 (3)0.000 (2)
C140.059 (3)0.039 (3)0.065 (3)0.003 (2)0.013 (3)0.014 (2)
C150.065 (3)0.055 (3)0.045 (3)0.001 (3)0.014 (2)0.014 (2)
C160.057 (3)0.037 (3)0.051 (3)0.000 (2)0.001 (2)0.005 (2)
F20.143 (4)0.107 (3)0.066 (3)0.031 (3)0.020 (3)0.018 (2)
F30.243 (9)0.166 (6)0.128 (5)0.095 (6)0.100 (5)0.006 (4)
F40.170 (7)0.269 (10)0.251 (9)0.169 (7)0.136 (7)0.128 (8)
F50.064 (3)0.209 (7)0.234 (8)0.047 (4)0.016 (4)0.103 (6)
F60.066 (2)0.094 (3)0.111 (4)0.005 (2)0.013 (2)0.017 (3)
F120.093 (2)0.0402 (14)0.0566 (16)0.0037 (18)0.024 (2)0.0002 (12)
F130.131 (3)0.0357 (17)0.089 (3)0.0218 (19)0.031 (3)0.0054 (17)
F140.092 (3)0.0508 (19)0.092 (3)0.0078 (18)0.029 (2)0.0174 (18)
F150.135 (4)0.067 (2)0.061 (2)0.004 (2)0.044 (2)0.0093 (18)
F160.110 (3)0.0468 (17)0.0532 (18)0.0039 (18)0.0130 (19)0.0072 (14)
O20.064 (3)0.113 (4)0.124 (5)0.027 (3)0.006 (3)0.065 (4)
C220.39 (3)0.168 (18)0.24 (2)0.10 (2)0.00 (2)0.021 (16)
Geometric parameters (Å, º) top
Zn1—C111.987 (5)C15—F151.339 (6)
Zn1—O1i1.988 (3)C15—C161.379 (7)
Zn1—O12.047 (3)C16—F161.347 (6)
Zn1—O1ii2.062 (3)O2—C23'1.244 (14)
Zn1—Zn1iii2.8965 (8)O2—C211.36 (4)
Zn1—Zn1ii2.9087 (8)O2—C21'1.576 (14)
Zn1—Zn1i2.9087 (8)O2—C231.74 (2)
Zn2—O11.854 (3)C21—C221.61 (4)
Zn2—C11.951 (6)C21—H21A0.9900
Zn2—O22.022 (5)C21—H21B0.9900
O1—Zn1ii1.988 (3)C21'—C221.37 (2)
O1—Zn1i2.062 (3)C21'—H21C0.9900
C1—C21.373 (10)C21'—H21D0.9900
C1—C61.373 (11)C22—H22A0.9800
C2—F21.359 (9)C22—H22B0.9800
C2—C31.373 (11)C22—H22C0.9800
C3—F31.340 (11)C22—H22D0.9800
C3—C41.365 (17)C22—H22E0.9800
C4—F41.319 (9)C22—H22F0.9800
C4—C51.339 (17)C23—C241.49 (3)
C5—F51.371 (12)C23—H23A0.9900
C5—C61.415 (11)C23—H23B0.9900
C6—F61.370 (10)C24—H24A0.9800
C11—C121.375 (7)C24—H24B0.9800
C11—C161.381 (7)C24—H24C0.9800
C12—F121.373 (6)C23'—C24'1.57 (2)
C12—C131.374 (7)C23'—H23C0.9900
C13—F131.352 (7)C23'—H23D0.9900
C13—C141.363 (8)C24'—H24D0.9800
C14—F141.335 (6)C24'—H24E0.9800
C14—C151.385 (8)C24'—H24F0.9800
C11—Zn1—O1i137.71 (16)F16—C16—C11119.6 (4)
C11—Zn1—O1121.31 (16)C15—C16—C11123.3 (5)
O1i—Zn1—O189.80 (12)C23'—O2—C2170.4 (17)
C11—Zn1—O1ii117.83 (16)C23'—O2—C21'119.7 (9)
O1i—Zn1—O1ii88.69 (11)C21—O2—C2396.1 (18)
O1—Zn1—O1ii87.78 (12)C21'—O2—C23111.2 (9)
C11—Zn1—Zn1iii146.43 (14)C23'—O2—Zn2124.5 (8)
O1i—Zn1—Zn1iii45.37 (9)C21—O2—Zn2145.4 (18)
O1—Zn1—Zn1iii89.06 (8)C21'—O2—Zn2114.4 (6)
O1ii—Zn1—Zn1iii43.33 (9)C23—O2—Zn2112.8 (7)
C11—Zn1—Zn1ii132.34 (14)O2—C21—C22110 (3)
O1i—Zn1—Zn1ii89.85 (8)O2—C21—H21A109.6
O1—Zn1—Zn1ii43.08 (9)C22—C21—H21A109.6
O1ii—Zn1—Zn1ii44.72 (8)O2—C21—H21B109.6
Zn1iii—Zn1—Zn1ii60.137 (9)C22—C21—H21B109.6
C11—Zn1—Zn1i151.96 (14)H21A—C21—H21B108.1
O1i—Zn1—Zn1i44.68 (8)C22—C21'—O2111.2 (13)
O1—Zn1—Zn1i45.14 (9)C22—C21'—H21C109.4
O1ii—Zn1—Zn1i88.44 (8)O2—C21'—H21C109.4
Zn1iii—Zn1—Zn1i60.137 (9)C22—C21'—H21D109.4
Zn1ii—Zn1—Zn1i59.724 (18)O2—C21'—H21D109.4
O1—Zn2—C1136.6 (2)H21C—C21'—H21D108.0
O1—Zn2—O2108.4 (2)C21'—C22—C2167.1 (16)
C1—Zn2—O2114.7 (2)C21'—C22—H22A46.1
Zn2—O1—Zn1ii137.41 (17)C21—C22—H22A109.5
Zn2—O1—Zn1117.33 (14)C21'—C22—H22B107.6
Zn1ii—O1—Zn192.24 (12)C21—C22—H22B109.5
Zn2—O1—Zn1i116.75 (17)H22A—C22—H22B109.5
Zn1ii—O1—Zn1i91.30 (11)C21'—C22—H22C141.3
Zn1—O1—Zn1i90.14 (12)C21—C22—H22C109.5
C2—C1—C6114.3 (6)H22A—C22—H22C109.5
C2—C1—Zn2125.9 (6)H22B—C22—H22C109.5
C6—C1—Zn2119.4 (5)C21'—C22—H22D109.5
F2—C2—C3117.4 (8)C21—C22—H22D153.1
F2—C2—C1118.4 (6)C21'—C22—H22E109.5
C3—C2—C1124.1 (9)H22C—C22—H22E109.2
F3—C3—C4119.0 (9)H22D—C22—H22E109.5
F3—C3—C2121.0 (11)C21'—C22—H22F109.5
C4—C3—C2120.0 (9)H22D—C22—H22F109.5
F4—C4—C5118.4 (14)H22E—C22—H22F109.5
F4—C4—C3122.8 (13)C24—C23—O2113.2 (12)
C5—C4—C3118.8 (8)C24—C23—H23A108.9
C4—C5—F5121.7 (9)O2—C23—H23A108.9
C4—C5—C6120.4 (10)C24—C23—H23B108.9
F5—C5—C6117.9 (11)O2—C23—H23B108.9
F6—C6—C1119.3 (6)H23A—C23—H23B107.7
F6—C6—C5118.4 (8)C23—C24—H24A109.5
C1—C6—C5122.3 (9)C23—C24—H24B109.5
C12—C11—C16114.4 (4)H24A—C24—H24B109.5
C12—C11—Zn1122.8 (4)C23—C24—H24C109.5
C16—C11—Zn1121.8 (4)H24A—C24—H24C109.5
C11—C12—F12118.8 (4)H24B—C24—H24C109.5
C11—C12—C13124.2 (5)O2—C23'—C24'105.6 (12)
F12—C12—C13117.0 (4)O2—C23'—H23C110.6
F13—C13—C14119.5 (5)C24'—C23'—H23C110.6
F13—C13—C12120.7 (5)O2—C23'—H23D110.6
C14—C13—C12119.7 (5)C24'—C23'—H23D110.6
F14—C14—C13121.0 (5)H23C—C23'—H23D108.8
F14—C14—C15120.3 (5)C23'—C24'—H24D109.5
C13—C14—C15118.7 (5)C23'—C24'—H24E109.5
F15—C15—C16121.5 (5)H24D—C24'—H24E109.5
F15—C15—C14118.9 (5)C23'—C24'—H24F109.5
C16—C15—C14119.6 (5)H24D—C24'—H24F109.5
F16—C16—C15117.0 (5)H24E—C24'—H24F109.5
C1—Zn2—O1—Zn1ii146.6 (3)O1—Zn1—C11—C16154.2 (4)
O2—Zn2—O1—Zn1ii26.8 (4)O1ii—Zn1—C11—C1648.6 (5)
C1—Zn2—O1—Zn184.5 (3)Zn1iii—Zn1—C11—C162.3 (6)
O2—Zn2—O1—Zn1102.0 (3)Zn1ii—Zn1—C11—C16101.3 (4)
C1—Zn2—O1—Zn1i20.8 (4)Zn1i—Zn1—C11—C16153.7 (3)
O2—Zn2—O1—Zn1i152.7 (3)C16—C11—C12—F12179.8 (5)
C11—Zn1—O1—Zn227.9 (3)Zn1—C11—C12—F1211.1 (7)
O1i—Zn1—O1—Zn2121.8 (2)C16—C11—C12—C130.5 (8)
O1ii—Zn1—O1—Zn2149.5 (2)Zn1—C11—C12—C13168.2 (4)
Zn1iii—Zn1—O1—Zn2167.19 (17)C11—C12—C13—F13178.7 (5)
Zn1ii—Zn1—O1—Zn2148.2 (3)F12—C12—C13—F130.6 (8)
Zn1i—Zn1—O1—Zn2120.5 (2)C11—C12—C13—C140.0 (9)
C11—Zn1—O1—Zn1ii120.25 (17)F12—C12—C13—C14179.4 (5)
O1ii—Zn1—O1—Zn1ii1.30 (11)F13—C13—C14—F140.2 (10)
Zn1iii—Zn1—O1—Zn1ii44.64 (9)C12—C13—C14—F14178.6 (6)
Zn1i—Zn1—O1—Zn1ii91.31 (11)F13—C13—C14—C15179.4 (6)
C11—Zn1—O1—Zn1i148.44 (17)C12—C13—C14—C150.6 (9)
O1i—Zn1—O1—Zn1i1.31 (11)F14—C14—C15—F150.5 (9)
Zn1iii—Zn1—O1—Zn1i46.67 (9)C13—C14—C15—F15179.7 (6)
Zn1ii—Zn1—O1—Zn1i91.31 (11)F14—C14—C15—C16178.5 (6)
O1—Zn2—C1—C2136.8 (5)C13—C14—C15—C160.7 (9)
O2—Zn2—C1—C236.4 (7)F15—C15—C16—F162.1 (9)
O1—Zn2—C1—C636.3 (6)C14—C15—C16—F16176.9 (5)
O2—Zn2—C1—C6150.5 (5)F15—C15—C16—C11179.3 (6)
C6—C1—C2—F2179.8 (6)C14—C15—C16—C110.3 (9)
Zn2—C1—C2—F26.4 (10)C12—C11—C16—F16177.5 (5)
C6—C1—C2—C31.9 (11)Zn1—C11—C16—F168.7 (7)
Zn2—C1—C2—C3175.4 (6)C12—C11—C16—C150.3 (8)
F2—C2—C3—F31.0 (13)Zn1—C11—C16—C15168.5 (5)
C1—C2—C3—F3179.2 (8)O1—Zn2—O2—C23'43.3 (10)
F2—C2—C3—C4179.2 (9)C1—Zn2—O2—C23'131.7 (10)
C1—C2—C3—C40.9 (15)O1—Zn2—O2—C2163 (3)
F3—C3—C4—F41.9 (17)C1—Zn2—O2—C21122 (3)
C2—C3—C4—F4178.0 (9)O1—Zn2—O2—C21'150.0 (6)
F3—C3—C4—C5179.8 (10)C1—Zn2—O2—C21'35.0 (7)
C2—C3—C4—C50.1 (17)O1—Zn2—O2—C2381.5 (7)
F4—C4—C5—F50.7 (16)C1—Zn2—O2—C2393.6 (7)
C3—C4—C5—F5178.7 (9)C23'—O2—C21—C22147 (3)
F4—C4—C5—C6177.8 (8)C21'—O2—C21—C2212.3 (19)
C3—C4—C5—C60.2 (16)C23—O2—C21—C22123 (2)
C2—C1—C6—F6179.5 (6)Zn2—O2—C21—C2290 (4)
Zn2—C1—C6—F65.7 (8)C23'—O2—C21'—C2264.6 (18)
C2—C1—C6—C52.2 (10)C21—O2—C21'—C2214 (2)
Zn2—C1—C6—C5176.0 (6)C23—O2—C21'—C22102.7 (16)
C4—C5—C6—F6179.7 (8)Zn2—O2—C21'—C22128.0 (14)
F5—C5—C6—F61.7 (10)O2—C21'—C22—C2112 (2)
C4—C5—C6—C11.4 (13)O2—C21—C22—C21'14 (2)
F5—C5—C6—C1179.9 (7)C23'—O2—C23—C24123 (2)
O1i—Zn1—C11—C12117.9 (4)C21—O2—C23—C24166 (2)
O1—Zn1—C11—C1213.6 (5)C21'—O2—C23—C24124.9 (13)
O1ii—Zn1—C11—C12119.3 (4)Zn2—O2—C23—C245.3 (15)
Zn1iii—Zn1—C11—C12165.5 (3)C21—O2—C23'—C24'157 (2)
Zn1ii—Zn1—C11—C1266.6 (5)C21'—O2—C23'—C24'107.9 (13)
Zn1i—Zn1—C11—C1238.5 (6)C23—O2—C23'—C24'22.7 (14)
O1i—Zn1—C11—C1674.3 (5)Zn2—O2—C23'—C24'58.2 (15)
Symmetry codes: (i) y+1/2, x1/2, z+1/2; (ii) y+1/2, x+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn8(C6F5)8O4(C4H10O)4]
Mr2219.92
Crystal system, space groupCubic, P43n
Temperature (K)173
a (Å)23.4948 (6)
V3)12969.3 (6)
Z6
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.35 × 0.33 × 0.32
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.498, 0.525
No. of measured, independent and
observed [I > 2σ(I)] reflections
75864, 4000, 3655
Rint0.096
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.08
No. of reflections4000
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.40
Absolute structureFlack (1983), 1839 Friedel pairs
Absolute structure parameter0.002 (19)

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176–2179.  Web of Science CrossRef CAS Google Scholar
First citationHayashi, M., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). Z. Anorg. Allg. Chem. 637, 646–649.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoltes, J. G. & van den Hurk, J. W. G. (1964). J. Organomet. Chem. 1, 377–383.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSun, Y., Piers, W. E. & Parvez, M. (1998). Can. J. Chem. 76, 513–517.  Web of Science CrossRef CAS Google Scholar
First citationWeidenbruch, M., Herrndorf, M., Schäfer, A., Pohl, S. & Saak, W. (1989). J. Organomet. Chem. 361, 139–145.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds