organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Methyl 2-bromo­methyl-3-(2-chloro­phen­yl)acrylate

aDepartment of Physics, Ranipettai Engineering College, Thenkadapathangal, Walaja 632 513, India, bDepartment of Physics, Sri Balaji Chokkalingam Engineering College, Arni, Thiruvannamalai 632 317, India, cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, and dDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 10 September 2011; accepted 27 September 2011; online 30 September 2011)

In the title compound, C11H10BrClO2, the dihedral angle between the benzene ring and the plane of the acrylate unit is 62.1 (1)°. The crystal packing is stabilzed by inter­molecular C—H⋯O hydrogen bonds and C—Cl⋯π inter­actions [Cl⋯centroid = 3.829 (1) Å and C—Cl⋯centroid = 165.3 (1)°].

Related literature

For background to the applications of acrylates, see: de Fraine & Martin (1991[Fraine, P. J. de & Martin, A. (1991). US Patent No. 5 055 471.]); Zhang & Ji (1992[Zhang, L. P. & Ji, Z. Z. (1992). Acta Pharm. Sin. 27, 817-823.]). For related structures, see: Wang et al. (2011[Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.]); Ren et al. (2008[Ren, X.-L., Zhang, H.-R., Wang, W.-D., Tao, R.-J. & He, H.-W. (2008). Acta Cryst. E64, o6.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10BrClO2

  • Mr = 289.55

  • Monoclinic, P 21 /c

  • a = 10.0657 (7) Å

  • b = 10.2174 (7) Å

  • c = 11.3598 (7) Å

  • β = 97.649 (2)°

  • V = 1157.91 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.76 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.390, Tmax = 0.548

  • 14580 measured reflections

  • 3336 independent reflections

  • 2139 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 0.99

  • 3336 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.48 3.373 (3) 162
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acrylate and its derivatives are important compounds because of their agrochemical and medical applications (de Fraine et al., 1991; Zhang & Ji, 1992). We report herein the crystal structure of the title compound (Fig. 1). The acrylate plane (C7/C8/C10/C11/O1/O2) forms a dihedral angle of 62.1 (1)° with the benzene ring (C1—C6). The geometric parameters of the title molecule agree well with those reported for similar structures (Wang et al., 2011, Ren et al., 2008).

The molecule is stabilized by weak intramolecular C7—H7···O2 hydrogen bond which generates an S(5) ring motif (Bernstein et al., 1995). The crystal packing is stabilzed by intermolecular C—H···O hydrogen bonds. Atom C2 in the molecule at (x, y, z) donates one proton to atom O1 at (-1+x, y, z), forming a C(8) chain along the a axis (Fig. 2). The crystal packing is further stabilized by C—Cl···π interactions involving chlorine Cl1 and benzene ring (C1—C6), with a Cl···centroid(Cgii) distance of 3.829 (1) Å and a C1—Cl1···Cgii angle of 165.3 (1)° (symmetry code as in Fig. 2).

Related literature top

For background to the applications of acrylates, see: de Fraine & Martin (1991); Zhang & Ji (1992). For related structures, see: Wang et al. (2011); Ren et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a stirred solution of methyl 2-((2-chlorophenyl)(hydroxy)methyl)acrylate (4.42 mmol, 1g) in dichloro methane (DCM) was added a 48% hydrobromic acid (8.84 mmol, 0.71 g) solution and then a concentrated sulphuric acid solution (catalytic amount) at 273 K. After stirring overnight at room temperature, the mixture was diluted with DCM and water. The aqueous phase was extracted twice with DCM. The combined organic phase was washed twice with water an then dried with sodium sulphate. Removal of the solvent led to the crude product which was purified through a pad of silica gel (100—200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colorless solid (1.14 g, 90%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethylacetate solution at room temperature.

Refinement top

All the H atoms were positioned geometrically, with C—H = 0.93 - 0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

Acrylate and its derivatives are important compounds because of their agrochemical and medical applications (de Fraine et al., 1991; Zhang & Ji, 1992). We report herein the crystal structure of the title compound (Fig. 1). The acrylate plane (C7/C8/C10/C11/O1/O2) forms a dihedral angle of 62.1 (1)° with the benzene ring (C1—C6). The geometric parameters of the title molecule agree well with those reported for similar structures (Wang et al., 2011, Ren et al., 2008).

The molecule is stabilized by weak intramolecular C7—H7···O2 hydrogen bond which generates an S(5) ring motif (Bernstein et al., 1995). The crystal packing is stabilzed by intermolecular C—H···O hydrogen bonds. Atom C2 in the molecule at (x, y, z) donates one proton to atom O1 at (-1+x, y, z), forming a C(8) chain along the a axis (Fig. 2). The crystal packing is further stabilized by C—Cl···π interactions involving chlorine Cl1 and benzene ring (C1—C6), with a Cl···centroid(Cgii) distance of 3.829 (1) Å and a C1—Cl1···Cgii angle of 165.3 (1)° (symmetry code as in Fig. 2).

For background to the applications of acrylates, see: de Fraine & Martin (1991); Zhang & Ji (1992). For related structures, see: Wang et al. (2011); Ren et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the intermolecular C—H···O and C—Cl···π interactions (dotted lines) in the crystal structure of the title compound. H atoms not involved in intermolecular interactions were omitted. Cg denotes centroid of the C1—C6 benzene ring [Symmetry code: (i) -1+x, y, z; (ii) x, 1/2-y, 1/2+z.]
(Z)-Methyl 2-bromomethyl-3-(2-chlorophenyl)acrylate top
Crystal data top
C11H10BrClO2F(000) = 576
Mr = 289.55Dx = 1.661 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3345 reflections
a = 10.0657 (7) Åθ = 2.0–29.9°
b = 10.2174 (7) ŵ = 3.76 mm1
c = 11.3598 (7) ÅT = 293 K
β = 97.649 (2)°Block, yellow
V = 1157.91 (13) Å30.24 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3336 independent reflections
Radiation source: fine-focus sealed tube2139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 29.9°, θmin = 2.0°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.390, Tmax = 0.548l = 1515
14580 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.4461P]
where P = (Fo2 + 2Fc2)/3
3336 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C11H10BrClO2V = 1157.91 (13) Å3
Mr = 289.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0657 (7) ŵ = 3.76 mm1
b = 10.2174 (7) ÅT = 293 K
c = 11.3598 (7) Å0.24 × 0.22 × 0.16 mm
β = 97.649 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3336 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2139 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.548Rint = 0.034
14580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.99Δρmax = 0.57 e Å3
3336 reflectionsΔρmin = 0.54 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.83211 (3)0.03430 (3)0.63091 (2)0.06228 (12)
Cl10.43126 (7)0.24881 (8)1.00168 (6)0.06382 (19)
O20.91325 (15)0.14097 (17)1.01998 (13)0.0471 (4)
C10.4117 (2)0.1427 (2)0.8812 (2)0.0437 (5)
C60.5234 (2)0.0869 (2)0.84130 (19)0.0391 (5)
C70.6602 (2)0.1162 (2)0.89910 (19)0.0381 (5)
H70.67670.10910.98140.046*
C80.7621 (2)0.1522 (2)0.84211 (18)0.0358 (4)
C100.8961 (2)0.1833 (2)0.90868 (18)0.0387 (5)
O10.98111 (17)0.2408 (2)0.86463 (16)0.0634 (5)
C90.7514 (2)0.1773 (2)0.71290 (19)0.0439 (5)
H9A0.79640.25890.69940.053*
H9B0.65780.18630.68040.053*
C50.4999 (3)0.0026 (2)0.7449 (2)0.0504 (6)
H50.57240.03790.71710.061*
C20.2834 (2)0.1184 (3)0.8258 (2)0.0552 (6)
H20.21020.15800.85330.066*
C30.2648 (3)0.0354 (3)0.7298 (3)0.0602 (7)
H30.17860.01870.69220.072*
C111.0420 (2)0.1709 (3)1.0877 (2)0.0585 (7)
H11A1.11130.12451.05470.088*
H11B1.04160.14471.16880.088*
H11C1.05830.26331.08450.088*
C40.3727 (3)0.0228 (3)0.6893 (3)0.0576 (7)
H40.35990.07920.62460.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06623 (19)0.0758 (2)0.04610 (15)0.00412 (14)0.01240 (12)0.01212 (13)
Cl10.0517 (4)0.0854 (5)0.0558 (4)0.0079 (3)0.0125 (3)0.0115 (3)
O20.0394 (8)0.0644 (11)0.0359 (8)0.0020 (8)0.0008 (6)0.0001 (7)
C10.0385 (11)0.0485 (14)0.0449 (12)0.0006 (10)0.0091 (9)0.0080 (10)
C60.0320 (10)0.0409 (12)0.0442 (11)0.0023 (9)0.0042 (8)0.0075 (10)
C70.0343 (10)0.0416 (13)0.0381 (10)0.0038 (9)0.0032 (8)0.0036 (9)
C80.0309 (10)0.0375 (12)0.0383 (10)0.0040 (9)0.0023 (8)0.0034 (9)
C100.0333 (10)0.0448 (13)0.0380 (10)0.0053 (9)0.0053 (8)0.0013 (9)
O10.0381 (9)0.0980 (15)0.0530 (10)0.0153 (9)0.0023 (7)0.0131 (10)
C90.0365 (11)0.0537 (14)0.0406 (11)0.0007 (10)0.0015 (9)0.0071 (10)
C50.0447 (13)0.0450 (14)0.0617 (15)0.0032 (11)0.0073 (11)0.0004 (11)
C20.0329 (11)0.0706 (18)0.0627 (15)0.0017 (12)0.0087 (10)0.0129 (14)
C30.0400 (13)0.0667 (18)0.0700 (17)0.0132 (13)0.0064 (12)0.0111 (14)
C110.0447 (13)0.082 (2)0.0447 (13)0.0099 (13)0.0091 (10)0.0104 (13)
C40.0533 (15)0.0524 (16)0.0642 (16)0.0124 (13)0.0026 (12)0.0010 (13)
Geometric parameters (Å, º) top
Br1—C91.966 (2)C9—H9A0.9700
Cl1—C11.737 (3)C9—H9B0.9700
O2—C101.326 (3)C5—C41.375 (4)
O2—C111.449 (3)C5—H50.9300
C1—C21.381 (3)C2—C31.375 (4)
C1—C61.389 (3)C2—H20.9300
C6—C51.389 (4)C3—C41.371 (4)
C6—C71.475 (3)C3—H30.9300
C7—C81.336 (3)C11—H11A0.9600
C7—H70.9300C11—H11B0.9600
C8—C91.480 (3)C11—H11C0.9600
C8—C101.490 (3)C4—H40.9300
C10—O11.201 (3)
C10—O2—C11115.55 (19)Br1—C9—H9B109.4
C2—C1—C6121.7 (2)H9A—C9—H9B108.0
C2—C1—Cl1118.14 (19)C4—C5—C6121.9 (3)
C6—C1—Cl1120.10 (18)C4—C5—H5119.0
C1—C6—C5116.9 (2)C6—C5—H5119.0
C1—C6—C7121.3 (2)C3—C2—C1119.5 (2)
C5—C6—C7121.8 (2)C3—C2—H2120.3
C8—C7—C6124.9 (2)C1—C2—H2120.3
C8—C7—H7117.6C4—C3—C2120.2 (2)
C6—C7—H7117.6C4—C3—H3119.9
C7—C8—C9124.71 (19)C2—C3—H3119.9
C7—C8—C10120.97 (19)O2—C11—H11A109.5
C9—C8—C10114.06 (18)O2—C11—H11B109.5
O1—C10—O2123.2 (2)H11A—C11—H11B109.5
O1—C10—C8122.7 (2)O2—C11—H11C109.5
O2—C10—C8114.11 (18)H11A—C11—H11C109.5
C8—C9—Br1111.16 (15)H11B—C11—H11C109.5
C8—C9—H9A109.4C3—C4—C5119.7 (3)
Br1—C9—H9A109.4C3—C4—H4120.2
C8—C9—H9B109.4C5—C4—H4120.2
C2—C1—C6—C51.7 (3)C7—C8—C10—O216.2 (3)
Cl1—C1—C6—C5179.72 (18)C9—C8—C10—O2169.36 (19)
C2—C1—C6—C7178.3 (2)C7—C8—C9—Br1106.0 (2)
Cl1—C1—C6—C70.2 (3)C10—C8—C9—Br179.8 (2)
C1—C6—C7—C8130.5 (2)C1—C6—C5—C41.4 (4)
C5—C6—C7—C849.6 (3)C7—C6—C5—C4178.6 (2)
C6—C7—C8—C94.5 (4)C6—C1—C2—C31.1 (4)
C6—C7—C8—C10178.3 (2)Cl1—C1—C2—C3179.6 (2)
C11—O2—C10—O11.2 (3)C1—C2—C3—C40.0 (4)
C11—O2—C10—C8179.3 (2)C2—C3—C4—C50.3 (4)
C7—C8—C10—O1164.3 (2)C6—C5—C4—C30.5 (4)
C9—C8—C10—O110.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O20.932.392.740 (3)102
C2—H2···O1i0.932.483.373 (3)162
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H10BrClO2
Mr289.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.0657 (7), 10.2174 (7), 11.3598 (7)
β (°) 97.649 (2)
V3)1157.91 (13)
Z4
Radiation typeMo Kα
µ (mm1)3.76
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.390, 0.548
No. of measured, independent and
observed [I > 2σ(I)] reflections
14580, 3336, 2139
Rint0.034
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 0.99
No. of reflections3336
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.54

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O20.932.392.740 (3)102
C2—H2···O1i0.932.483.373 (3)162
Symmetry code: (i) x1, y, z.
 

Acknowledgements

SM thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFraine, P. J. de & Martin, A. (1991). US Patent No. 5 055 471.  Google Scholar
First citationRen, X.-L., Zhang, H.-R., Wang, W.-D., Tao, R.-J. & He, H.-W. (2008). Acta Cryst. E64, o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L. P. & Ji, Z. Z. (1992). Acta Pharm. Sin. 27, 817–823.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds