metal-organic compounds
Dichlorido[1-(2,6-dimethylphenylimino)-1,2-diphenylpropan-2-ol-κ2N,O]palladium(II) methanol monosolvate
aSchool of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People's Republic of China
*Correspondence e-mail: yaohg518@126.com
The title compound, [PdCl2(C23H23NO)]·CH3OH, was obtained by the reaction of 1-(2,6-dimethylphenylimino)-1,2-diphenylpropan-2-ol and palladium chloride in methanol. The Pd atom is four-coordinated by the O atom of a tertiary alcohol, the imine N atom of the hydroxylimine part of the bidentate ligand and by two chloride ions, forming a nearly square-planar geometry. The complex molecule and the uncoordinated methanol molecule are connected via an O—H⋯O hydrogen bond.
Related literature
For transition metal complexes of (N,O)-bidentate ligands, see: Skrolkhod et al. (2002); Macchioni et al. (2002); Binotti et al. (2004); Zuccaccia et al. (2006). Complexes with group IV metals with (N,O)-bidentate ligands, which form six-membered rings, have been widely used in the production of polyethylene with high molecular weight and relative narrow molecular weight distribution, see: Jia & Jin (2009); Mu et al. (2009). For the use of palladium complexes in Suzuki–Miyaura cross-coupling reactions, see: Lai et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2001); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536811037986/kp2349sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811037986/kp2349Isup2.hkl
A 100 ml round-bottle was charged with palladium chloride (0.177 g, 1 mmol), 1-(2,6-dimethylphenylimino)-1,2-diphenylpropan-2-ol (0.329 g, 1 mmol), and methanol (20 mL). After the mixture was stirred for 24 h at room temperature, the methanol was removed under reduced pressure. The red crystals suitable for X-ray diffraction wwere prepared by slow evaporation of a solution of the title compound in methanol at room temperature.
All H atoms were positioned geometrically with C—H = 0.93Å and allowed to ride during subsequent
with Uiso(H)=1.2Ueq(C)Recently, the bidentate (N, O) ligand such as salicylaldimine and hydroxylimine have drawn much attention owing to their valuable applications in the fields of catalysis. These bidentate ligands can be modified by tuning the substituents. Therefore, different steric and electronic properties are achieved easily. Various transition metal complexes (Skrolkhod et al. 2002; Macchioni et al. 2002; Binotti et al. 2004; Zuccaccia et al. 2006) have been developed. Especially, complexes with metals of the group IV containing (N, O) ligands have been widely used to produce polyethylene with high molecular weight and relative narrow molecular weight distribution (Mu et al. 2009; Jia et al. 2009). Moreover, the palladium complexes also have been applied for Suzuki-Miyaura cross-coupling reaction (Lai et al. 2005). We report herein on the synthesis and structure of the title compound. The palladium atom is four-coordinated by the oxgen atom o a tertiary alcohol and imine nitrogen atom of the bidentate hydroxylimine ligand, and by the two chloride ions, forming a nearly square-planar geometry (Fig. 1, Table 1). The solid-state structure showes a noncentrosymmetric palladium complex with one uncoordinated methanol solvated molecule. The complex molecule and the uncoordinated methanol molecule are connected via O—H···O hydrogen bond (Table 2).
For transition metal complexes of (N,O)-bidentate ligands, see: Skrolkhod et al. (2002); Macchioni et al. (2002); Binotti et al. (2004); Zuccaccia et al. (2006). Complexes with group IV metals with (N,O)-bidentate ligands have been widely used in the production of polyethylene with high molecular weight and relative narrow molecular weight distribution, see: Jia & Jin (2009); Mu et al. (2009). For the use of paaldium complexes in Suzuki–Miyaura cross-coupling reactions, see: Lai et al. (2005).
Data collection: APEX2 (Bruker, 2001); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[PdCl2(C23H23NO)]·CH4O | F(000) = 1096 |
Mr = 538.79 | Dx = 1.501 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4166 reflections |
a = 10.943 (3) Å | θ = 2.3–25.5° |
b = 19.770 (6) Å | µ = 1.02 mm−1 |
c = 14.230 (3) Å | T = 296 K |
β = 129.232 (13)° | Block, yellow |
V = 2384.6 (11) Å3 | 0.25 × 0.20 × 0.10 mm |
Z = 4 |
Bruker SMART APEXII CCD diffractometer | 4166 independent reflections |
Radiation source: fine-focus sealed tube | 3418 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
φ and ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −13→11 |
Tmin = 0.779, Tmax = 0.901 | k = −23→18 |
35358 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.P)2 + 10.0286P] where P = (Fo2 + 2Fc2)/3 |
4166 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
[PdCl2(C23H23NO)]·CH4O | V = 2384.6 (11) Å3 |
Mr = 538.79 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.943 (3) Å | µ = 1.02 mm−1 |
b = 19.770 (6) Å | T = 296 K |
c = 14.230 (3) Å | 0.25 × 0.20 × 0.10 mm |
β = 129.232 (13)° |
Bruker SMART APEXII CCD diffractometer | 4166 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | 3418 reflections with I > 2σ(I) |
Tmin = 0.779, Tmax = 0.901 | Rint = 0.036 |
35358 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.P)2 + 10.0286P] where P = (Fo2 + 2Fc2)/3 |
4166 reflections | Δρmax = 0.50 e Å−3 |
280 parameters | Δρmin = −0.42 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.81208 (4) | 0.748377 (17) | 0.18909 (3) | 0.03477 (10) | |
C1 | 0.9955 (7) | 0.5030 (3) | 0.2701 (5) | 0.0589 (14) | |
H1 | 1.0476 | 0.4900 | 0.3501 | 0.071* | |
C2 | 0.9958 (8) | 0.4603 (3) | 0.1929 (7) | 0.0767 (19) | |
H2 | 1.0495 | 0.4193 | 0.2218 | 0.092* | |
C3 | 0.9173 (8) | 0.4781 (3) | 0.0743 (7) | 0.0777 (19) | |
H3 | 0.9160 | 0.4489 | 0.0224 | 0.093* | |
C4 | 0.8410 (7) | 0.5390 (3) | 0.0322 (6) | 0.0703 (16) | |
H4 | 0.7896 | 0.5515 | −0.0478 | 0.084* | |
C5 | 0.8402 (6) | 0.5813 (3) | 0.1079 (5) | 0.0567 (13) | |
H5 | 0.7862 | 0.6222 | 0.0778 | 0.068* | |
C6 | 0.9187 (5) | 0.5646 (2) | 0.2297 (4) | 0.0424 (11) | |
C7 | 0.9203 (5) | 0.6152 (2) | 0.3113 (4) | 0.0402 (10) | |
C8 | 1.0248 (5) | 0.5949 (3) | 0.4447 (4) | 0.0539 (13) | |
H8A | 1.1329 | 0.5932 | 0.4771 | 0.081* | |
H8B | 0.9934 | 0.5512 | 0.4520 | 0.081* | |
H8C | 1.0140 | 0.6275 | 0.4890 | 0.081* | |
C9 | 0.6657 (6) | 0.5821 (2) | 0.3767 (4) | 0.0463 (11) | |
H9 | 0.6972 | 0.6224 | 0.4199 | 0.056* | |
C10 | 0.6062 (6) | 0.5303 (3) | 0.4025 (5) | 0.0566 (13) | |
H10 | 0.5981 | 0.5360 | 0.4632 | 0.068* | |
C11 | 0.5590 (6) | 0.4705 (3) | 0.3393 (5) | 0.0589 (14) | |
H11 | 0.5186 | 0.4359 | 0.3567 | 0.071* | |
C12 | 0.5720 (6) | 0.4623 (3) | 0.2502 (5) | 0.0584 (14) | |
H12 | 0.5397 | 0.4219 | 0.2069 | 0.070* | |
C13 | 0.6327 (6) | 0.5134 (2) | 0.2244 (5) | 0.0496 (12) | |
H13 | 0.6428 | 0.5071 | 0.1648 | 0.060* | |
C14 | 0.6786 (5) | 0.5741 (2) | 0.2870 (4) | 0.0350 (10) | |
C15 | 0.7533 (5) | 0.6285 (2) | 0.2647 (4) | 0.0347 (9) | |
C16 | 0.3992 (5) | 0.6785 (2) | 0.0569 (4) | 0.0368 (10) | |
C17 | 0.2518 (5) | 0.6979 (2) | 0.0172 (4) | 0.0478 (12) | |
H17 | 0.1621 | 0.6829 | −0.0577 | 0.057* | |
C18 | 0.2358 (6) | 0.7390 (3) | 0.0864 (5) | 0.0562 (13) | |
H18 | 0.1356 | 0.7506 | 0.0589 | 0.067* | |
C19 | 0.3665 (6) | 0.7630 (2) | 0.1960 (5) | 0.0530 (13) | |
H19 | 0.3540 | 0.7911 | 0.2419 | 0.064* | |
C20 | 0.5179 (5) | 0.7460 (2) | 0.2396 (4) | 0.0417 (10) | |
C21 | 0.5297 (5) | 0.7016 (2) | 0.1693 (4) | 0.0320 (9) | |
C22 | 0.4129 (6) | 0.6358 (3) | −0.0233 (4) | 0.0538 (13) | |
H22A | 0.4888 | 0.6555 | −0.0282 | 0.081* | |
H22B | 0.3122 | 0.6334 | −0.1030 | 0.081* | |
H22C | 0.4463 | 0.5910 | 0.0100 | 0.081* | |
C23 | 0.6612 (6) | 0.7760 (3) | 0.3556 (4) | 0.0566 (14) | |
H23A | 0.7335 | 0.7405 | 0.4070 | 0.085* | |
H23B | 0.6300 | 0.7997 | 0.3963 | 0.085* | |
H23C | 0.7115 | 0.8069 | 0.3375 | 0.085* | |
C24 | 0.2604 (8) | 0.6212 (4) | 0.2878 (7) | 0.100 (2) | |
H24A | 0.3466 | 0.6387 | 0.2935 | 0.150* | |
H24B | 0.1649 | 0.6240 | 0.2053 | 0.150* | |
H24C | 0.2809 | 0.5748 | 0.3136 | 0.150* | |
Cl1 | 0.61727 (15) | 0.82479 (7) | 0.07282 (12) | 0.0586 (3) | |
Cl2 | 0.97468 (14) | 0.80417 (7) | 0.16612 (11) | 0.0527 (3) | |
N1 | 0.6871 (4) | 0.68523 (17) | 0.2129 (3) | 0.0337 (8) | |
O1 | 0.9775 (4) | 0.67959 (17) | 0.3055 (3) | 0.0463 (8) | |
O2 | 0.2444 (5) | 0.6582 (3) | 0.3605 (5) | 0.1014 (17) | |
H2A | 0.3289 | 0.6759 | 0.4148 | 0.152* | |
H7 | 1.049 (8) | 0.676 (3) | 0.310 (6) | 0.09 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.03196 (17) | 0.03511 (18) | 0.03475 (17) | 0.00029 (15) | 0.01993 (14) | 0.00178 (15) |
C1 | 0.071 (4) | 0.041 (3) | 0.079 (4) | 0.006 (3) | 0.054 (3) | 0.009 (3) |
C2 | 0.103 (5) | 0.036 (3) | 0.124 (6) | 0.008 (3) | 0.088 (5) | 0.002 (3) |
C3 | 0.098 (5) | 0.062 (4) | 0.108 (6) | −0.020 (4) | 0.082 (5) | −0.030 (4) |
C4 | 0.072 (4) | 0.085 (5) | 0.064 (4) | 0.000 (3) | 0.048 (3) | −0.014 (3) |
C5 | 0.050 (3) | 0.061 (3) | 0.062 (3) | 0.010 (3) | 0.036 (3) | 0.001 (3) |
C6 | 0.033 (2) | 0.038 (2) | 0.055 (3) | 0.0008 (19) | 0.026 (2) | 0.003 (2) |
C7 | 0.034 (2) | 0.035 (2) | 0.046 (3) | 0.0024 (19) | 0.023 (2) | 0.003 (2) |
C8 | 0.040 (3) | 0.060 (3) | 0.042 (3) | 0.011 (2) | 0.016 (2) | 0.010 (2) |
C9 | 0.054 (3) | 0.039 (3) | 0.051 (3) | 0.002 (2) | 0.035 (3) | 0.001 (2) |
C10 | 0.067 (3) | 0.058 (3) | 0.065 (3) | 0.006 (3) | 0.051 (3) | 0.011 (3) |
C11 | 0.058 (3) | 0.045 (3) | 0.077 (4) | 0.000 (3) | 0.044 (3) | 0.013 (3) |
C12 | 0.058 (3) | 0.040 (3) | 0.074 (4) | −0.011 (2) | 0.041 (3) | −0.009 (3) |
C13 | 0.051 (3) | 0.043 (3) | 0.054 (3) | −0.004 (2) | 0.034 (3) | −0.005 (2) |
C14 | 0.031 (2) | 0.032 (2) | 0.040 (2) | 0.0052 (18) | 0.022 (2) | 0.0047 (18) |
C15 | 0.036 (2) | 0.036 (2) | 0.030 (2) | 0.0024 (19) | 0.0199 (19) | −0.0007 (18) |
C16 | 0.035 (2) | 0.040 (2) | 0.033 (2) | 0.0008 (19) | 0.020 (2) | 0.0044 (19) |
C17 | 0.035 (2) | 0.053 (3) | 0.046 (3) | 0.001 (2) | 0.021 (2) | 0.000 (2) |
C18 | 0.039 (3) | 0.059 (3) | 0.069 (3) | 0.013 (2) | 0.034 (3) | 0.009 (3) |
C19 | 0.060 (3) | 0.050 (3) | 0.067 (3) | 0.012 (2) | 0.049 (3) | 0.001 (3) |
C20 | 0.048 (3) | 0.039 (2) | 0.039 (2) | 0.002 (2) | 0.028 (2) | 0.003 (2) |
C21 | 0.034 (2) | 0.031 (2) | 0.034 (2) | 0.0033 (17) | 0.023 (2) | 0.0036 (18) |
C22 | 0.050 (3) | 0.067 (3) | 0.042 (3) | −0.004 (3) | 0.028 (3) | −0.009 (2) |
C23 | 0.073 (4) | 0.050 (3) | 0.050 (3) | 0.003 (3) | 0.040 (3) | −0.009 (2) |
C24 | 0.071 (5) | 0.107 (6) | 0.135 (7) | −0.018 (4) | 0.071 (5) | −0.005 (5) |
Cl1 | 0.0481 (7) | 0.0585 (8) | 0.0675 (8) | 0.0156 (6) | 0.0358 (7) | 0.0293 (7) |
Cl2 | 0.0471 (7) | 0.0593 (8) | 0.0554 (7) | −0.0096 (6) | 0.0341 (6) | 0.0001 (6) |
N1 | 0.0306 (18) | 0.037 (2) | 0.0303 (18) | 0.0008 (15) | 0.0176 (16) | −0.0013 (15) |
O1 | 0.0330 (18) | 0.0400 (19) | 0.057 (2) | 0.0015 (14) | 0.0243 (17) | 0.0060 (15) |
O2 | 0.041 (2) | 0.118 (4) | 0.123 (4) | −0.004 (2) | 0.041 (3) | −0.033 (3) |
Pd1—O1 | 2.019 (3) | C12—H12 | 0.9300 |
Pd1—N1 | 2.032 (3) | C13—C14 | 1.386 (6) |
Pd1—Cl1 | 2.2588 (13) | C13—H13 | 0.9300 |
Pd1—Cl2 | 2.2859 (13) | C14—C15 | 1.500 (6) |
C1—C6 | 1.382 (6) | C15—N1 | 1.285 (5) |
C1—C2 | 1.388 (8) | C16—C17 | 1.385 (6) |
C1—H1 | 0.9300 | C16—C21 | 1.386 (6) |
C2—C3 | 1.370 (9) | C16—C22 | 1.501 (6) |
C2—H2 | 0.9300 | C17—C18 | 1.370 (7) |
C3—C4 | 1.368 (8) | C17—H17 | 0.9300 |
C3—H3 | 0.9300 | C18—C19 | 1.373 (7) |
C4—C5 | 1.369 (7) | C18—H18 | 0.9300 |
C4—H4 | 0.9300 | C19—C20 | 1.395 (6) |
C5—C6 | 1.402 (7) | C19—H19 | 0.9300 |
C5—H5 | 0.9300 | C20—C21 | 1.395 (6) |
C6—C7 | 1.524 (6) | C20—C23 | 1.504 (6) |
C7—O1 | 1.444 (5) | C21—N1 | 1.451 (5) |
C7—C15 | 1.521 (6) | C22—H22A | 0.9600 |
C7—C8 | 1.525 (6) | C22—H22B | 0.9600 |
C8—H8A | 0.9600 | C22—H22C | 0.9600 |
C8—H8B | 0.9600 | C23—H23A | 0.9600 |
C8—H8C | 0.9600 | C23—H23B | 0.9600 |
C9—C14 | 1.380 (6) | C23—H23C | 0.9600 |
C9—C10 | 1.382 (6) | C24—O2 | 1.366 (8) |
C9—H9 | 0.9300 | C24—H24A | 0.9600 |
C10—C11 | 1.372 (7) | C24—H24B | 0.9600 |
C10—H10 | 0.9300 | C24—H24C | 0.9600 |
C11—C12 | 1.371 (7) | O1—H7 | 0.76 (6) |
C11—H11 | 0.9300 | O2—H2A | 0.8200 |
C12—C13 | 1.381 (7) | ||
O1—Pd1—N1 | 78.37 (14) | C14—C13—H13 | 119.9 |
O1—Pd1—Cl1 | 172.93 (11) | C9—C14—C13 | 119.0 (4) |
N1—Pd1—Cl1 | 96.32 (10) | C9—C14—C15 | 120.1 (4) |
O1—Pd1—Cl2 | 93.85 (11) | C13—C14—C15 | 120.7 (4) |
N1—Pd1—Cl2 | 170.77 (10) | N1—C15—C14 | 124.2 (4) |
Cl1—Pd1—Cl2 | 91.83 (5) | N1—C15—C7 | 119.1 (4) |
C6—C1—C2 | 120.8 (5) | C14—C15—C7 | 116.7 (4) |
C6—C1—H1 | 119.6 | C17—C16—C21 | 117.6 (4) |
C2—C1—H1 | 119.6 | C17—C16—C22 | 119.8 (4) |
C3—C2—C1 | 120.4 (6) | C21—C16—C22 | 122.6 (4) |
C3—C2—H2 | 119.8 | C18—C17—C16 | 121.2 (4) |
C1—C2—H2 | 119.8 | C18—C17—H17 | 119.4 |
C4—C3—C2 | 119.9 (6) | C16—C17—H17 | 119.4 |
C4—C3—H3 | 120.0 | C17—C18—C19 | 120.5 (4) |
C2—C3—H3 | 120.0 | C17—C18—H18 | 119.8 |
C3—C4—C5 | 120.0 (6) | C19—C18—H18 | 119.8 |
C3—C4—H4 | 120.0 | C18—C19—C20 | 120.8 (4) |
C5—C4—H4 | 120.0 | C18—C19—H19 | 119.6 |
C4—C5—C6 | 121.7 (5) | C20—C19—H19 | 119.6 |
C4—C5—H5 | 119.2 | C19—C20—C21 | 117.1 (4) |
C6—C5—H5 | 119.2 | C19—C20—C23 | 120.8 (4) |
C1—C6—C5 | 117.2 (5) | C21—C20—C23 | 122.0 (4) |
C1—C6—C7 | 123.4 (4) | C16—C21—C20 | 122.7 (4) |
C5—C6—C7 | 119.4 (4) | C16—C21—N1 | 119.8 (4) |
O1—C7—C15 | 105.6 (3) | C20—C21—N1 | 117.2 (4) |
O1—C7—C6 | 109.3 (4) | C16—C22—H22A | 109.5 |
C15—C7—C6 | 110.4 (4) | C16—C22—H22B | 109.5 |
O1—C7—C8 | 107.0 (4) | H22A—C22—H22B | 109.5 |
C15—C7—C8 | 109.7 (4) | C16—C22—H22C | 109.5 |
C6—C7—C8 | 114.4 (4) | H22A—C22—H22C | 109.5 |
C7—C8—H8A | 109.5 | H22B—C22—H22C | 109.5 |
C7—C8—H8B | 109.5 | C20—C23—H23A | 109.5 |
H8A—C8—H8B | 109.5 | C20—C23—H23B | 109.5 |
C7—C8—H8C | 109.5 | H23A—C23—H23B | 109.5 |
H8A—C8—H8C | 109.5 | C20—C23—H23C | 109.5 |
H8B—C8—H8C | 109.5 | H23A—C23—H23C | 109.5 |
C14—C9—C10 | 120.2 (5) | H23B—C23—H23C | 109.5 |
C14—C9—H9 | 119.9 | O2—C24—H24A | 109.5 |
C10—C9—H9 | 119.9 | O2—C24—H24B | 109.5 |
C11—C10—C9 | 120.6 (5) | H24A—C24—H24B | 109.5 |
C11—C10—H10 | 119.7 | O2—C24—H24C | 109.5 |
C9—C10—H10 | 119.7 | H24A—C24—H24C | 109.5 |
C12—C11—C10 | 119.5 (5) | H24B—C24—H24C | 109.5 |
C12—C11—H11 | 120.3 | C15—N1—C21 | 121.8 (4) |
C10—C11—H11 | 120.3 | C15—N1—Pd1 | 115.9 (3) |
C11—C12—C13 | 120.5 (5) | C21—N1—Pd1 | 122.3 (3) |
C11—C12—H12 | 119.8 | C7—O1—Pd1 | 116.4 (3) |
C13—C12—H12 | 119.8 | C7—O1—H7 | 112 (5) |
C12—C13—C14 | 120.2 (5) | Pd1—O1—H7 | 119 (5) |
C12—C13—H13 | 119.9 | C24—O2—H2A | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H7···O2i | 0.76 (6) | 1.80 (6) | 2.535 (5) | 164 (7) |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [PdCl2(C23H23NO)]·CH4O |
Mr | 538.79 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 10.943 (3), 19.770 (6), 14.230 (3) |
β (°) | 129.232 (13) |
V (Å3) | 2384.6 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.02 |
Crystal size (mm) | 0.25 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2001) |
Tmin, Tmax | 0.779, 0.901 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35358, 4166, 3418 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.082, 1.01 |
No. of reflections | 4166 |
No. of parameters | 280 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
w = 1/[σ2(Fo2) + (0.P)2 + 10.0286P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.50, −0.42 |
Computer programs: APEX2 (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H7···O2i | 0.76 (6) | 1.80 (6) | 2.535 (5) | 164 (7) |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
We acknowledge the National Natural Science Foundation of China (No. 21004014) and the Foundation for Distinguished Young Talents in Higher Education of Guangdong (No. LYM10091) for financial support.
References
Binotti, B., Carfagna, C., Foresti, E., Macchioni, A., Sabatino, P., Zuccaccia, C. & Zuccaccia, D. (2004). J. Organomet. Chem. 689, 647–661. CSD CrossRef CAS Google Scholar
Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Jia, A.-Q. & Jin, G.-X. (2009). Dalton Trans. pp. 8838–8845. Web of Science CSD CrossRef Google Scholar
Lai, Y.-C., Chen, H.-Y., Hung, W.-C., Lin, C.-C. & Hong, F.-E. (2005). Tetrahedron, 61, 9484–9489. Web of Science CSD CrossRef CAS Google Scholar
Macchioni, A., Zuccaccia, C., Binotti, B., Carfagna, C., Foresti, E. & Sabatino, P. (2002). Inorg. Chem. Commun. 5, 319–322. Web of Science CSD CrossRef CAS Google Scholar
Mu, J.-S., Liu, J.-Y., Liu, S.-R. & Li, Y.-S. (2009). Polymer, 50, 5059–5064. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skrolkhod, L. S., Seifullina, I. I. & Dzhambek, S. A. (2002). Russ. J. Coord. Chem. 28, 684–688. Google Scholar
Zuccaccia, C., Bellachioma, G., Cardaci, G., Macchioni, A., Binotti, B. & Carfagna, C. (2006). Helv. Chim. Acta, 89, 1524–1546. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, the bidentate (N, O) ligand such as salicylaldimine and hydroxylimine have drawn much attention owing to their valuable applications in the fields of catalysis. These bidentate ligands can be modified by tuning the substituents. Therefore, different steric and electronic properties are achieved easily. Various transition metal complexes (Skrolkhod et al. 2002; Macchioni et al. 2002; Binotti et al. 2004; Zuccaccia et al. 2006) have been developed. Especially, complexes with metals of the group IV containing (N, O) ligands have been widely used to produce polyethylene with high molecular weight and relative narrow molecular weight distribution (Mu et al. 2009; Jia et al. 2009). Moreover, the palladium complexes also have been applied for Suzuki-Miyaura cross-coupling reaction (Lai et al. 2005). We report herein on the synthesis and structure of the title compound. The palladium atom is four-coordinated by the oxgen atom o a tertiary alcohol and imine nitrogen atom of the bidentate hydroxylimine ligand, and by the two chloride ions, forming a nearly square-planar geometry (Fig. 1, Table 1). The solid-state structure showes a noncentrosymmetric palladium complex with one uncoordinated methanol solvated molecule. The complex molecule and the uncoordinated methanol molecule are connected via O—H···O hydrogen bond (Table 2).