organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-(6S)-6-Hy­dr­oxy-6-{2-[2-(propan-2-yl­­idene)hydrazinyl­­idene]prop­yl}indolo[2,1-b]quinazolin-12(6H)-one

aDepartment of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812, USA
*Correspondence e-mail: pgrundt@d.umn.edu

(Received 6 September 2011; accepted 14 September 2011; online 30 September 2011)

The chiral title compound, C21H20N4O2, crystallizes as a racemic mixture. In the crystal, mol­ecules form centrosymmetric π-overlapping dimers [inter­planar distance = 3.338 (6) Å], which are further connected along the a axis forming centrosymmetric dimers via O—H⋯N hydrogen bonds. C—H⋯O inter­actions are also observed. The indolo[2,1-b]quinazoline group is somewhat bent, with a small dihedral angle of 6.3 (4)° between the plane of the quinazoline system and the plane of the benzene ring of the indole moiety. The C=N—N=C atoms of the azine group is oriented almost perpendicular [84.1 (2)°] to the mean plane of the quinazoline system.

Related literature

The title compound is a derivative of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione). For reactions occurring at the 6-keto group of tryptanthrin with nucleophiles including CH-acidic compounds, see: Grandolini et al. (1997[Grandolini, G., Ambrogi, V., Perioli, L., Giannangeli, M., Jovicevic, L. & Rossi, V. (1997). Farmaco, 52, 679-683.]); Bergman & Tilstam (1985[Bergman, J. & Tilstam, U. (1985). Tetrahedron, 41, 2883-2884.]); Jao et al. (2008[Jao, C. W., Lin, W. C., Wu, Y. T. & Wu, P. L. (2008). J. Nat. Prod. 71, 1275-1279.]); Zou & Huang (1985[Zou, J. & Huang, L. (1985). Acta Pharmacol. Sin. 20, 45-51.]). For related strutures, see: Brufani et al. (1971[Brufani, M., Fedeli, W., Mazza, F., Gerhard, A. & Keller-Schierlein, W. (1971). Experientia, 27, 1249-1250.]); Bergman et al. (1987[Bergman, J., Tilstam, U. & Tornroos, K. W. (1987). J. Chem. Soc. Perkin Trans. 1, pp 519-527.]); Jao et al. (2008[Jao, C. W., Lin, W. C., Wu, Y. T. & Wu, P. L. (2008). J. Nat. Prod. 71, 1275-1279.]); Grundt et al. (2010[Grundt, P., Douglas, K. A., Krivogorsky, B. & Nemykin, V. N. (2010). Acta Cryst. E66, o1474-o1475.]). For the Chebychev weighting scheme, see: Prince (1982[Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N4O2

  • Mr = 360.42

  • Monoclinic, P 21 /n

  • a = 8.6788 (17) Å

  • b = 15.117 (3) Å

  • c = 13.283 (3) Å

  • β = 99.58 (3)°

  • V = 1718.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID II image-plate diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.98, Tmax = 0.98

  • 11165 measured reflections

  • 2914 independent reflections

  • 1850 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.161

  • S = 1.01

  • 2899 reflections

  • 244 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H10⋯O18i 0.98 2.57 3.381 (6) 140 (1)
O19—H9⋯N5ii 0.83 2.08 2.872 (6) 160 (1)
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku Americas, 2009[Rigaku Americas (2009). CrystalClear and CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: CrystalClear; program(s) used to solve structure: CrystalStructure (Rigaku Americas, 2009[Rigaku Americas (2009). CrystalClear and CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.]) and SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The 6-keto group of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) has been shown to react with numerous nucleophiles including CH-acidic compounds (Grandolini et al., 1997, Bergman & Tilstam, 1985, Jao et al., 2008, Zou & Huang, 1985). The title compound was obtained by reacting tryptanthrin with hydrazine in acetone as a solvent.

In the structure of the title compound, the azine moiety was determined to possess E-configuration in respect to the C21=N23 double bond with a trans-orientation around the N23—N24 bond (dihedral angle 158.6 (4)°). The CN double bonds of the azine moiety were found to be slighly shorter than the corresponding conjugated CN bonds in the quinazoline system. The C=O bond clearly has double bond character and was observed to be 1.226 (4) Å in length.

Related literature top

The title compound is a derivative of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione). For reactions occurring at the 6-keto group of tryptanthrin with nucleiphiles including CH-acidic compounds, see: Grandolini et al. (1997); Bergman & Tilstam (1985); Jao et al. (2008); Zou & Huang (1985). For related strutures, see: Brufani et al. (1971); Bergman et al. (1987); Jao et al. (2008); Grundt et al. (2010). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

1.0 mL (20 mmol) hydrazine hydrate was added dropwise to a suspension of 0.25 g (1.0 mmol) tryptanthrin in 10 mL of acetone and the reaction mixture was heated to reflux for 30 min. Upon cooling the title compound crystallized from the reaction mixture. The precipitate was collected and washed with a small amount of acetone to give 0.26 g (72%) of the title compound I. Crystals suitable for X-ray analysis were grown by slow diffusion of hexane into a solution of the title compound in ethylacetate/chloroform 1:1. The crystal was diffracted in the cold stream of an X-Stream2000 Liquid nitrogen generator with an open-flow nitrogen cryostat with a nominal stability of 0.1°K.

Refinement top

Only hkl indices better than 0.85 Å resolution were integrated. The H atoms - except O-H - were all located in a difference map, but were repositioned geometrically. The positions of Me groups were optimized rotationally using default algorithm implemented in the CRYSTALS software. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.94 Å, O—H in the range 0.82–0.84 Å, O) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

The 6-keto group of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) has been shown to react with numerous nucleophiles including CH-acidic compounds (Grandolini et al., 1997, Bergman & Tilstam, 1985, Jao et al., 2008, Zou & Huang, 1985). The title compound was obtained by reacting tryptanthrin with hydrazine in acetone as a solvent.

In the structure of the title compound, the azine moiety was determined to possess E-configuration in respect to the C21=N23 double bond with a trans-orientation around the N23—N24 bond (dihedral angle 158.6 (4)°). The CN double bonds of the azine moiety were found to be slighly shorter than the corresponding conjugated CN bonds in the quinazoline system. The C=O bond clearly has double bond character and was observed to be 1.226 (4) Å in length.

The title compound is a derivative of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione). For reactions occurring at the 6-keto group of tryptanthrin with nucleiphiles including CH-acidic compounds, see: Grandolini et al. (1997); Bergman & Tilstam (1985); Jao et al. (2008); Zou & Huang (1985). For related strutures, see: Brufani et al. (1971); Bergman et al. (1987); Jao et al. (2008); Grundt et al. (2010). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994).

Computing details top

Data collection: CrystalClear (Rigaku Americas, 2009); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear (Rigaku Americas, 2009); program(s) used to solve structure: CrystalStructure (Rigaku Americas, 2009) and SIR2004 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Packing diagram for the title compound showing intermolecular O—H···N bonds.
rac-(6S)-6-Hydroxy-6-{2-[2-(propan-2- ylidene)hydrazinylidene]propyl}indolo[2,1-b]quinazolin-12(6H)-one top
Crystal data top
C21H20N4O2F(000) = 760
Mr = 360.42Dx = 1.393 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1820 reflections
a = 8.6788 (17) Åθ = 25–2°
b = 15.117 (3) ŵ = 0.09 mm1
c = 13.283 (3) ÅT = 100 K
β = 99.58 (3)°Block, colourless
V = 1718.4 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID II image-plate
diffractometer
2914 independent reflections
Radiation source: Mo Sealed tube tube1850 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 10 pixels mm-1θmax = 24.7°, θmin = 3.1°
ω/2θ scansh = 109
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.98, Tmax = 0.98l = 1415
11165 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161Only H-atom displacement parameters refined
S = 1.01 Method, part 1, Chebychev polynomial,(Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 5.56 6.74 1.72
2899 reflections(Δ/σ)max = 0.0001471
244 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.48 e Å3
13 constraints
Crystal data top
C21H20N4O2V = 1718.4 (6) Å3
Mr = 360.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6788 (17) ŵ = 0.09 mm1
b = 15.117 (3) ÅT = 100 K
c = 13.283 (3) Å0.20 × 0.20 × 0.20 mm
β = 99.58 (3)°
Data collection top
Rigaku R-AXIS RAPID II image-plate
diffractometer
2914 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1850 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.98Rint = 0.096
11165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.161Only H-atom displacement parameters refined
S = 1.01Δρmax = 0.59 e Å3
2899 reflectionsΔρmin = 0.48 e Å3
244 parameters
Special details top

Experimental. 1H NMR (DMSO-d6, 500 MHz): δ 0.82 (s, 3H), 1.63 (s, 6H), 3.38 (d, J 16.6, 1H), 3.44 (d, J 16.5, 1H), 6.88 (s, 1H), 7.35 (t, J 7.3, 1H), 7.46 (t, J 7.7, 1H), 7.59 (t, J 7.2, 1H), 7.62 (d, J 6.7, 1H), 7.78 (d, J 8.0, 1H), 7.87 (t, J 8.3, 1H), 8.28 (d, J 7.8, 1H), 8.39 (d, J 7.7, 1H). 13C NMR (DMSO-d6, 125 MHz): δ 16.5, 17.3, 24.3, 45.5, 75.3, 115.9, 121.2, 123.4, 126.2, 126.3, 127.0, 127.3, 129.2, 134.4, 134.6, 139.2, 147.2, 157.6, 158.9, 159.0, 161.2.

Refinement. Crystals for Windows program eliminates all reflections with [sinθ/λ]2 < 0.01 in order to eliminate reflections that may be poorly measured in the vicinity of the beam stop. Such filter eliminated 15 reflections, which resulted in difference between 2914 measured unique reflections and 2899 reflections used for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O190.8991 (3)0.37375 (18)0.4708 (2)0.0293
C60.8330 (4)0.4137 (3)0.3753 (3)0.0247
C140.7388 (4)0.4957 (2)0.3956 (3)0.0236
N110.5809 (3)0.4758 (2)0.3731 (2)0.0246
C160.5590 (4)0.3890 (2)0.3310 (3)0.0244
C150.7034 (4)0.3519 (3)0.3277 (3)0.0252
C70.7135 (5)0.2688 (3)0.2869 (3)0.0333
C80.5753 (5)0.2223 (3)0.2529 (3)0.0340
C90.4329 (5)0.2595 (3)0.2605 (3)0.0344
C100.4209 (5)0.3440 (3)0.2997 (3)0.0310
C120.4659 (4)0.5369 (3)0.3857 (3)0.0259
O180.3266 (3)0.51841 (19)0.3656 (2)0.0338
C170.5287 (4)0.6229 (3)0.4227 (3)0.0252
C130.6913 (4)0.6366 (3)0.4431 (3)0.0258
N50.7978 (3)0.5697 (2)0.4294 (2)0.0260
C40.7479 (5)0.7207 (3)0.4739 (3)0.0312
C30.6455 (5)0.7880 (3)0.4861 (3)0.0356
C20.4848 (5)0.7732 (3)0.4689 (3)0.0348
C10.4268 (4)0.6917 (3)0.4381 (3)0.0294
C200.9621 (4)0.4328 (3)0.3137 (3)0.0272
C210.9162 (4)0.4779 (2)0.2122 (3)0.0258
N230.7732 (4)0.4958 (2)0.1820 (2)0.0301
N240.7448 (4)0.5367 (2)0.0842 (3)0.0341
C250.6178 (5)0.5803 (3)0.0657 (3)0.0370
C270.5820 (5)0.6268 (3)0.0346 (3)0.0413
C260.5009 (6)0.5914 (4)0.1369 (4)0.0487
C221.0477 (5)0.4992 (3)0.1570 (3)0.0363
H50.81170.24420.28220.0396*
H60.57850.16670.22600.0411*
H70.34030.22710.24070.0409*
H80.32450.36900.30400.0364*
H40.85600.73120.48770.0372*
H30.68550.84370.50510.0417*
H20.41500.81960.47860.0419*
H10.31810.68160.42800.0349*
H101.03970.47070.35420.0334*
H111.00970.37590.30190.0321*
H200.47680.61200.06750.0614*
H180.59150.69090.02450.0623*
H190.65530.60780.07790.0617*
H150.45650.65060.13150.0720*
H160.55160.58240.20690.0725*
H170.41790.54750.11940.0723*
H131.02320.48420.08670.0554*
H141.06730.56040.16190.0561*
H121.14150.46950.18480.0554*
H90.97930.40190.49250.0440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O190.0221 (13)0.0337 (15)0.0307 (15)0.0019 (12)0.0004 (11)0.0048 (12)
C60.0199 (18)0.030 (2)0.0239 (19)0.0019 (16)0.0029 (15)0.0069 (16)
C140.0199 (18)0.029 (2)0.0214 (18)0.0007 (15)0.0025 (14)0.0016 (16)
N110.0198 (15)0.0290 (17)0.0247 (16)0.0018 (13)0.0028 (12)0.0013 (14)
C160.0276 (19)0.025 (2)0.0200 (18)0.0013 (16)0.0023 (15)0.0037 (15)
C150.0254 (19)0.028 (2)0.0224 (19)0.0033 (16)0.0051 (15)0.0065 (16)
C70.033 (2)0.031 (2)0.036 (2)0.0001 (18)0.0052 (17)0.0031 (18)
C80.039 (2)0.029 (2)0.034 (2)0.0014 (18)0.0058 (18)0.0013 (18)
C90.037 (2)0.036 (2)0.027 (2)0.0116 (19)0.0015 (17)0.0008 (18)
C100.026 (2)0.036 (2)0.030 (2)0.0031 (17)0.0006 (16)0.0058 (18)
C120.023 (2)0.033 (2)0.0212 (19)0.0011 (16)0.0028 (15)0.0003 (16)
O180.0193 (14)0.0423 (17)0.0384 (16)0.0002 (12)0.0011 (12)0.0022 (13)
C170.0224 (19)0.034 (2)0.0189 (18)0.0002 (16)0.0035 (14)0.0042 (16)
C130.0230 (19)0.030 (2)0.0244 (19)0.0033 (16)0.0049 (15)0.0058 (16)
N50.0210 (16)0.0290 (18)0.0278 (17)0.0004 (14)0.0033 (13)0.0038 (14)
C40.026 (2)0.029 (2)0.039 (2)0.0041 (17)0.0069 (17)0.0003 (18)
C30.038 (2)0.028 (2)0.040 (2)0.0015 (18)0.0060 (19)0.0028 (18)
C20.034 (2)0.035 (2)0.036 (2)0.0072 (19)0.0065 (18)0.0013 (19)
C10.0231 (19)0.035 (2)0.030 (2)0.0068 (17)0.0040 (16)0.0073 (17)
C200.0226 (19)0.028 (2)0.031 (2)0.0020 (16)0.0040 (16)0.0020 (16)
C210.028 (2)0.025 (2)0.0245 (19)0.0039 (16)0.0060 (16)0.0017 (16)
N230.0278 (18)0.0352 (19)0.0271 (17)0.0024 (15)0.0042 (14)0.0050 (15)
N240.0301 (18)0.039 (2)0.0329 (19)0.0024 (16)0.0034 (15)0.0086 (16)
C250.034 (2)0.040 (2)0.037 (2)0.004 (2)0.0052 (18)0.003 (2)
C270.037 (2)0.048 (3)0.037 (2)0.004 (2)0.0009 (19)0.008 (2)
C260.044 (3)0.058 (3)0.044 (3)0.011 (2)0.007 (2)0.004 (2)
C220.032 (2)0.043 (3)0.035 (2)0.0011 (19)0.0101 (18)0.001 (2)
Geometric parameters (Å, º) top
O19—C61.436 (4)C4—C31.379 (6)
O19—H90.826C4—H40.939
C6—C141.532 (5)C3—C21.393 (6)
C6—C151.518 (5)C3—H30.929
C6—C201.520 (5)C2—C11.367 (6)
C14—N111.386 (5)C2—H20.950
C14—N51.281 (5)C1—H10.942
N11—C161.426 (5)C20—C211.505 (5)
N11—C121.391 (5)C20—H100.975
C16—C151.380 (5)C20—H110.979
C16—C101.381 (5)C21—N231.268 (5)
C15—C71.377 (6)C21—C221.491 (5)
C7—C81.399 (6)N23—N241.423 (4)
C7—H50.941N24—C251.272 (5)
C8—C91.377 (6)C25—C271.493 (6)
C8—H60.916C25—C261.507 (6)
C9—C101.390 (6)C27—H200.971
C9—H70.941C27—H180.979
C10—H80.928C27—H190.969
C12—O181.226 (4)C26—H150.973
C12—C171.463 (5)C26—H160.970
C17—C131.408 (5)C26—H170.979
C17—C11.402 (5)C22—H130.950
C13—N51.401 (5)C22—H140.942
C13—C41.399 (5)C22—H120.948
C6—O19—H9106.3C3—C4—H4119.7
O19—C6—C14109.3 (3)C4—C3—C2120.6 (4)
O19—C6—C15105.5 (3)C4—C3—H3118.8
C14—C6—C15101.0 (3)C2—C3—H3120.6
O19—C6—C20109.4 (3)C3—C2—C1120.2 (4)
C14—C6—C20113.8 (3)C3—C2—H2120.2
C15—C6—C20117.0 (3)C1—C2—H2119.6
C6—C14—N11108.9 (3)C17—C1—C2120.1 (4)
C6—C14—N5125.1 (3)C17—C1—H1120.0
N11—C14—N5126.0 (3)C2—C1—H1119.9
C14—N11—C16110.3 (3)C6—C20—C21117.3 (3)
C14—N11—C12122.3 (3)C6—C20—H10108.6
C16—N11—C12127.4 (3)C21—C20—H10106.4
N11—C16—C15108.9 (3)C6—C20—H11106.8
N11—C16—C10128.6 (4)C21—C20—H11108.1
C15—C16—C10122.5 (4)H10—C20—H11109.6
C6—C15—C16110.5 (3)C20—C21—N23118.6 (3)
C6—C15—C7129.4 (4)C20—C21—C22115.4 (3)
C16—C15—C7120.1 (4)N23—C21—C22126.0 (4)
C15—C7—C8118.5 (4)C21—N23—N24113.2 (3)
C15—C7—H5120.3N23—N24—C25114.4 (3)
C8—C7—H5121.2N24—C25—C27117.4 (4)
C7—C8—C9120.2 (4)N24—C25—C26126.1 (4)
C7—C8—H6120.4C27—C25—C26116.5 (4)
C9—C8—H6119.3C25—C27—H20109.5
C8—C9—C10121.8 (4)C25—C27—H18110.1
C8—C9—H7120.1H20—C27—H18109.9
C10—C9—H7118.0C25—C27—H19109.3
C9—C10—C16116.7 (4)H20—C27—H19109.0
C9—C10—H8121.4H18—C27—H19109.0
C16—C10—H8121.9C25—C26—H15110.9
N11—C12—O18121.6 (4)C25—C26—H16109.9
N11—C12—C17113.4 (3)H15—C26—H16108.1
O18—C12—C17125.0 (4)C25—C26—H17108.7
C12—C17—C13120.0 (3)H15—C26—H17109.8
C12—C17—C1120.0 (3)H16—C26—H17109.4
C13—C17—C1120.0 (4)C21—C22—H13111.6
C17—C13—N5122.1 (4)C21—C22—H14108.7
C17—C13—C4118.8 (3)H13—C22—H14108.1
N5—C13—C4119.1 (3)C21—C22—H12112.6
C13—N5—C14116.3 (3)H13—C22—H12107.9
C13—C4—C3120.2 (4)H14—C22—H12107.8
C13—C4—H4120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H10···O18i0.982.573.381 (6)140 (1)
O19—H9···N5ii0.832.082.872 (6)160 (1)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H20N4O2
Mr360.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.6788 (17), 15.117 (3), 13.283 (3)
β (°) 99.58 (3)
V3)1718.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID II image-plate
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.98, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
11165, 2914, 1850
Rint0.096
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.161, 1.01
No. of reflections2899
No. of parameters244
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.59, 0.48

Computer programs: CrystalClear (Rigaku Americas, 2009), HKL-2000 (Otwinowski & Minor, 1997), CrystalStructure (Rigaku Americas, 2009) and SIR2004 (Burla et al., 2005), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H10···O18i0.97482.5723.381 (6)140.40 (11)
O19—H9···N5ii0.826122.0822.872 (6)159.93 (11)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

This study was supported by the Stanley Medical Research Institute (grant ID 08R-2032) and the NSF (grant CHE-0922366 for X-ray diffractometer).

References

First citationBergman, J. & Tilstam, U. (1985). Tetrahedron, 41, 2883–2884.  CrossRef CAS Web of Science Google Scholar
First citationBergman, J., Tilstam, U. & Tornroos, K. W. (1987). J. Chem. Soc. Perkin Trans. 1, pp 519–527.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrufani, M., Fedeli, W., Mazza, F., Gerhard, A. & Keller-Schierlein, W. (1971). Experientia, 27, 1249–1250.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrandolini, G., Ambrogi, V., Perioli, L., Giannangeli, M., Jovicevic, L. & Rossi, V. (1997). Farmaco, 52, 679–683.  CAS PubMed Google Scholar
First citationGrundt, P., Douglas, K. A., Krivogorsky, B. & Nemykin, V. N. (2010). Acta Cryst. E66, o1474–o1475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJao, C. W., Lin, W. C., Wu, Y. T. & Wu, P. L. (2008). J. Nat. Prod. 71, 1275–1279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationRigaku Americas (2009). CrystalClear and CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationZou, J. & Huang, L. (1985). Acta Pharmacol. Sin. 20, 45–51.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds