organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­propan-2-aminium 2-(meth­­oxy­carbon­yl)benzoate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 11 August 2011; accepted 15 September 2011; online 30 September 2011)

In the title compound, C4H12N+·C9H7O4, two C atoms and the N atom of the cation lie on a mirror plane, while all the atoms of the anion are disordered about a mirror plane. In the crystal, N—H⋯O hydrogen bonds link the components into chains along [010]. In the anion, the mean planes of the methoxycarbonyl and carboxylate groups form dihedral angles of 83.0 (2) and 83.2 (2)°, respectively, with the aromatic ring.

Related literature

For the applications of phthalimides and N-substituted phthalimides, see: Lima et al. (2002[Lima, L. M., Castro, P., Machado, A. L., Frage, C. A. M., Lugniur, C., Moraes, V. L. G. & Barreiro, E. (2002). Bioorg. Med. Chem. 10, 3067-3073.]). For related structures, see: Li (2011[Li, J. (2011). Acta Cryst. E67, o1356.]); Liang (2011[Liang, Z. P. (2011). Acta Cryst. E67, o1357.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N+·C9H7O4

  • Mr = 253.29

  • Monoclinic, P 21 /m

  • a = 9.2939 (8) Å

  • b = 7.0159 (6) Å

  • c = 10.5536 (11) Å

  • β = 103.322 (1)°

  • V = 669.63 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.49 × 0.43 × 0.32 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.971

  • 4353 measured reflections

  • 1797 independent reflections

  • 1137 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.03

  • 1797 reflections

  • 152 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N⋯O4 0.925 (18) 1.749 (19) 2.674 (3) 178.3 (17)
N1—H2N⋯O3i 0.925 (18) 2.042 (18) 2.926 (3) 159.4 (16)
N1—H1N⋯O3ii 0.92 (3) 1.96 (2) 2.825 (3) 156 (1)
N1—H1N⋯O3iii 0.92 (3) 1.96 (2) 2.825 (3) 156 (1)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z]; (ii) -x+2, -y+1, -z+2; (iii) [-x+2, y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phthalimides and N-substituted phthalimides are animportant class of compounds because of their interesting biological activities (Lima et al., 2002). Tert-butylaminium 2-(methoxycarbonyl)benzoate is an intermediate in the preparation of N-substituted phthalimides. The crystal structures of propan-1-aminium 3,4,5,6-tetrabromo-2-(methoxycarbonyl)benzoate N,N-dimethylformamide monosolvate (Li, 2011) and butane-1,4-diaminium bis[3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate] (Liang, 2011) have already been reported. In this paper, the structure of the title compound is reported. The asymmetric unit of the title compound, 2-methylpropan-2-aminium 2-(methoxycarbonyl)benzoate, (I), is shown in Fig. 1. Atoms C11 and C11a of the cation lie symmetrically on a mirror plane (C10C12N1) while all the atoms of the anion are disordered over a mirror plane. In the crystal, N—H···O hydrogen bonds link the components into one-dimensional chains along [010].

Related literature top

For the applications of phthalimides and N-substituted phthalimides, see: Lima et al. (2002). For related structures, see: Li (2011); Liang (2011).

Experimental top

A mixture of phthalic anhydride (1.52 g, 0.01 mol) and methanol (15 ml) was refluxed for 30 min. Then tert-butylamine (0.73 g, 0.01 mol) was added to the above solution and mixed for 30 min at room temperature. The solution was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms bonded to C atoms were placed in calculated positions and refined in a riding-model approximation with C—H = 0.93-0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). H atoms bonded to N were refined independently with isotropic displacement parameters.

Structure description top

Phthalimides and N-substituted phthalimides are animportant class of compounds because of their interesting biological activities (Lima et al., 2002). Tert-butylaminium 2-(methoxycarbonyl)benzoate is an intermediate in the preparation of N-substituted phthalimides. The crystal structures of propan-1-aminium 3,4,5,6-tetrabromo-2-(methoxycarbonyl)benzoate N,N-dimethylformamide monosolvate (Li, 2011) and butane-1,4-diaminium bis[3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate] (Liang, 2011) have already been reported. In this paper, the structure of the title compound is reported. The asymmetric unit of the title compound, 2-methylpropan-2-aminium 2-(methoxycarbonyl)benzoate, (I), is shown in Fig. 1. Atoms C11 and C11a of the cation lie symmetrically on a mirror plane (C10C12N1) while all the atoms of the anion are disordered over a mirror plane. In the crystal, N—H···O hydrogen bonds link the components into one-dimensional chains along [010].

For the applications of phthalimides and N-substituted phthalimides, see: Lima et al. (2002). For related structures, see: Li (2011); Liang (2011).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), drawn with 30% probability ellipsoids. The disorder is not shown (symmetry code (a): x, -y+3/2, z).
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines.
2-Methylpropan-2-aminium 2-(methoxycarbonyl)benzoate top
Crystal data top
C4H12N+·C9H7O4F(000) = 272
Mr = 253.29Dx = 1.256 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1362 reflections
a = 9.2939 (8) Åθ = 2.6–25.8°
b = 7.0159 (6) ŵ = 0.09 mm1
c = 10.5536 (11) ÅT = 298 K
β = 103.322 (1)°Block, colorless
V = 669.63 (11) Å30.49 × 0.43 × 0.32 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1797 independent reflections
Radiation source: fine-focus sealed tube1137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1211
Tmin = 0.956, Tmax = 0.971k = 99
4353 measured reflectionsl = 614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.1129P]
where P = (Fo2 + 2Fc2)/3
1797 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.16 e Å3
14 restraintsΔρmin = 0.17 e Å3
Crystal data top
C4H12N+·C9H7O4V = 669.63 (11) Å3
Mr = 253.29Z = 2
Monoclinic, P21/mMo Kα radiation
a = 9.2939 (8) ŵ = 0.09 mm1
b = 7.0159 (6) ÅT = 298 K
c = 10.5536 (11) Å0.49 × 0.43 × 0.32 mm
β = 103.322 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1797 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1137 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.971Rint = 0.021
4353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04714 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
1797 reflectionsΔρmin = 0.17 e Å3
152 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.8688 (2)0.2267 (9)0.39796 (18)0.0599 (11)0.50
O20.9747 (2)0.2711 (10)0.60624 (19)0.0596 (10)0.50
O30.8655 (3)0.1366 (4)0.8604 (3)0.0541 (7)0.50
O40.8413 (3)0.4448 (4)0.8097 (3)0.0544 (7)0.50
C10.8655 (3)0.2433 (7)0.5222 (2)0.0440 (7)0.50
C20.8117 (3)0.2730 (9)0.7889 (2)0.0366 (9)0.50
C30.7136 (3)0.2236 (5)0.5430 (2)0.0470 (9)0.50
C40.6905 (3)0.2377 (6)0.6689 (2)0.0407 (6)0.50
C50.5479 (3)0.2184 (7)0.6863 (3)0.0574 (13)0.50
H5A0.53150.22730.76980.069*0.50
C60.4291 (3)0.1862 (4)0.5818 (3)0.0547 (9)0.50
H6A0.33420.17270.59550.066*0.50
C70.4520 (4)0.1743 (4)0.4584 (3)0.0566 (9)0.50
H7A0.37250.15510.38790.068*0.50
C80.5922 (3)0.1906 (3)0.4389 (3)0.0483 (8)0.50
H8A0.60700.17970.35510.058*0.50
C91.0136 (3)0.2437 (12)0.3673 (3)0.0716 (11)0.5
H9A1.00250.23700.27470.107*0.50
H9B1.07620.14170.40830.107*0.50
H9C1.05730.36370.39890.107*0.50
N10.87003 (19)0.75000.96516 (19)0.0428 (5)
C100.7457 (2)0.75001.0343 (2)0.0417 (5)
C110.76193 (19)0.5723 (3)1.11787 (18)0.0606 (5)
H11A0.75870.46171.06370.091*
H11B0.68260.56661.16210.091*
H11C0.85470.57611.18080.091*
C120.6025 (2)0.75000.9300 (2)0.0601 (7)
H12A0.59860.86150.87660.090*0.50
H12B0.52000.75040.97060.090*
H12C0.59830.63810.87690.090*0.50
H2N0.8597 (18)0.643 (2)0.9127 (18)0.060 (5)*
H1N0.960 (3)0.75001.024 (3)0.060 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0603 (11)0.080 (3)0.0415 (9)0.011 (2)0.0155 (8)0.014 (2)
O20.0444 (9)0.088 (3)0.0444 (9)0.012 (2)0.0060 (7)0.006 (2)
O30.0524 (14)0.0535 (17)0.0458 (16)0.0050 (13)0.0106 (12)0.0165 (13)
O40.0625 (17)0.0448 (16)0.0515 (17)0.0075 (12)0.0042 (13)0.0091 (12)
C10.0504 (12)0.0467 (15)0.0338 (12)0.006 (5)0.0073 (10)0.014 (4)
C20.0340 (9)0.042 (2)0.0338 (10)0.0011 (13)0.0088 (8)0.0018 (14)
C30.0417 (12)0.059 (3)0.0369 (12)0.0012 (18)0.0015 (9)0.0022 (19)
C40.0364 (10)0.0458 (15)0.0364 (11)0.005 (3)0.0014 (8)0.001 (3)
C50.0396 (12)0.086 (4)0.0453 (13)0.001 (2)0.0064 (10)0.001 (2)
C60.0357 (14)0.056 (2)0.068 (2)0.0041 (11)0.0018 (14)0.0015 (14)
C70.0465 (16)0.059 (2)0.0528 (18)0.0036 (13)0.0126 (14)0.0040 (14)
C80.0556 (17)0.046 (2)0.0366 (14)0.0011 (12)0.0028 (12)0.0038 (11)
C90.0723 (18)0.086 (3)0.0611 (19)0.015 (5)0.0253 (15)0.032 (5)
N10.0340 (9)0.0543 (12)0.0378 (10)0.0000.0037 (7)0.000
C100.0327 (10)0.0499 (12)0.0418 (11)0.0000.0069 (8)0.000
C110.0581 (10)0.0617 (11)0.0619 (10)0.0050 (8)0.0137 (8)0.0120 (9)
C120.0361 (11)0.0756 (17)0.0636 (15)0.0000.0010 (11)0.000
Geometric parameters (Å, º) top
O1—C11.323 (3)C8—H8A0.9300
O1—C91.460 (3)C9—H9A0.9600
O2—C11.200 (3)C9—H9B0.9600
O3—C21.249 (6)C9—H9C0.9600
O4—C21.244 (7)N1—C101.501 (3)
C1—C31.484 (4)N1—H2N0.925 (18)
C2—C41.509 (3)N1—H1N0.92 (3)
C3—C41.397 (4)C10—C11i1.515 (2)
C3—C81.400 (4)C10—C111.515 (2)
C4—C51.386 (4)C10—C121.519 (3)
C5—C61.388 (4)C11—H11A0.9600
C5—H5A0.9300C11—H11B0.9600
C6—C71.370 (5)C11—H11C0.9600
C6—H6A0.9300C12—H12A0.9600
C7—C81.369 (5)C12—H12B0.9600
C7—H7A0.9300C12—H12C0.9600
C1—O1—C9116.4 (2)O1—C9—H9B109.5
O2—C1—O1122.5 (2)H9A—C9—H9B109.5
O2—C1—C3125.3 (2)O1—C9—H9C109.5
O1—C1—C3112.2 (2)H9A—C9—H9C109.5
O4—C2—O3126.5 (4)H9B—C9—H9C109.5
O4—C2—C4113.5 (3)C10—N1—H2N107.8 (11)
O3—C2—C4119.9 (3)C10—N1—H1N110.8 (15)
C4—C3—C8119.0 (3)H2N—N1—H1N110.9 (13)
C4—C3—C1119.6 (2)N1—C10—C11i107.38 (11)
C8—C3—C1121.4 (2)N1—C10—C11107.38 (11)
C5—C4—C3118.7 (2)C11i—C10—C11110.77 (19)
C5—C4—C2117.2 (2)N1—C10—C12106.99 (18)
C3—C4—C2124.1 (2)C11i—C10—C12112.01 (11)
C4—C5—C6121.4 (3)C11—C10—C12112.01 (11)
C4—C5—H5A119.3C10—C11—H11A109.5
C6—C5—H5A119.3C10—C11—H11B109.5
C7—C6—C5119.7 (3)H11A—C11—H11B109.5
C7—C6—H6A120.1C10—C11—H11C109.5
C5—C6—H6A120.1H11A—C11—H11C109.5
C8—C7—C6120.0 (3)H11B—C11—H11C109.5
C8—C7—H7A120.0C10—C12—H12A109.5
C6—C7—H7A120.0C10—C12—H12B109.5
C7—C8—C3121.2 (3)H12A—C12—H12B109.5
C7—C8—H8A119.4C10—C12—H12C109.5
C3—C8—H8A119.4H12A—C12—H12C109.5
O1—C9—H9A109.5H12B—C12—H12C109.5
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N···O40.925 (18)1.749 (19)2.674 (3)178.3 (17)
N1—H2N···O3ii0.925 (18)2.042 (18)2.926 (3)159.4 (16)
N1—H1N···O3iii0.92 (3)1.96 (2)2.825 (3)156 (1)
N1—H1N···O3iv0.92 (3)1.96 (2)2.825 (3)156 (1)
Symmetry codes: (ii) x, y+1/2, z; (iii) x+2, y+1, z+2; (iv) x+2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC4H12N+·C9H7O4
Mr253.29
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)9.2939 (8), 7.0159 (6), 10.5536 (11)
β (°) 103.322 (1)
V3)669.63 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.43 × 0.32
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.956, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
4353, 1797, 1137
Rint0.021
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.03
No. of reflections1797
No. of parameters152
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N···O40.925 (18)1.749 (19)2.674 (3)178.3 (17)
N1—H2N···O3i0.925 (18)2.042 (18)2.926 (3)159.4 (16)
N1—H1N···O3ii0.92 (3)1.96 (2)2.825 (3)156.1 (3)
N1—H1N···O3iii0.92 (3)1.96 (2)2.825 (3)156.1 (3)
Symmetry codes: (i) x, y+1/2, z; (ii) x+2, y+1, z+2; (iii) x+2, y+1/2, z+2.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (grant No. ZR2009BL027) for support.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. (2011). Acta Cryst. E67, o1356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, Z. P. (2011). Acta Cryst. E67, o1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLima, L. M., Castro, P., Machado, A. L., Frage, C. A. M., Lugniur, C., Moraes, V. L. G. & Barreiro, E. (2002). Bioorg. Med. Chem. 10, 3067–3073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds