metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N-Bis[2-(di­phenyl­phosphan­yl)eth­yl]­aniline}(η2-di­benzyl­ideneacetone)­palladium(0)

aDepartment of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712, USA
*Correspondence e-mail: bholliday@cm.utexas.edu

(Received 11 August 2011; accepted 18 August 2011; online 14 September 2011)

In the title complex, [Pd(C34H33NP2)(C17H14O)], the Pd0 atom is coordinated in a trigonal planar geometry formed by two P atoms of a bis­[(diphenyl­phosphino)eth­yl]aniline ligand and a C=C (η2) bond involving the C atoms that are in the α,β positions relative to the central ketone of the dibenzyl­ideneacetone ligand.

Related literature

For general background and the potential applications of palladium complexes incorporating multidentate ligands, see: Blower et al. (1997[Blower, P. J., Jeffrey, J. C., Miller, J. R., Salek, S. N., Schmaljohann, D., Smith, R. J. & Went, M. J. (1997). Inorg. Chem. 36, 1578-1582.]); Michos et al. (1992[Michos, D., Luo, X. & Crabtree, R. H. (1992). J. Chem. Soc. Dalton Trans. pp. 1735-1738.]); Kostas (2001[Kostas, I. (2001). J. Organomet. Chem. 626, 221-226.]); Lee et al. (2006[Lee, S. L., Jung, J. H., Seo, J., Yoon, I., Park, K., Lindoy, L. F. & Lee, S. S. (2006). Org. Lett. 8, 1641-1643.]); Hii et al. (1999[Hii, K. K., Thornton-Pett, M., Jutant, A. & Tooze, R. P. (1999). Organometallics, 18, 1887-1896.]). For similar structures, see: Retbøll et al. (2002[Retbøll, M. K., Wenger, E. & Willis, A. C. (2002). Acta Cryst. E58, m275-m277.]); Goddard et al. (1995[Goddard, R., Hopp, G., Jolly, P. W., Krüger, C., Mynott, R. & Wirtz, C. (1995). J. Organomet. Chem. 486, 163-170.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C34H33NP2)(C17H14O)]

  • Mr = 858.24

  • Triclinic, [P \overline 1]

  • a = 10.087 (2) Å

  • b = 11.974 (2) Å

  • c = 17.473 (4) Å

  • α = 86.34 (3)°

  • β = 81.27 (2)°

  • γ = 83.15 (3)°

  • V = 2068.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 153 K

  • 0.27 × 0.14 × 0.12 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.837, Tmax = 1.000

  • 15976 measured reflections

  • 9324 independent reflections

  • 7745 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.089

  • S = 1.58

  • 9324 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 1.56 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Palladium complexes which incorporate multidentate ligands have been used in a variety of applications, such as catalysis, biotechnology and materials science (Blower et al., 1997; Michos et al., 1992; Kostas, 2001; Lee et al., 2006). These multidentate ligands may contain donor atoms of the same type or be comprised of mixed donor atoms such as oxygen, carbon, phosphorous, sulfur and nitrogen (i.e., NNN, PNP, SPS). Advantages of mixed donor systems include flexible coordination modes and complex stability, both of which have the potential to increase performance in catalytic applications (Hii et al., 1999), including coupling, hydrogenation and dehydrogenation reactions. Many examples of PNP-type (phosphorous/nitrogen/phosphorous) ligands have been studied because the hemilabile property of the nitrogen atom gives different coordination geometries, including tridentate monomeric (PNP), bidentate monomeric (PP) and bidentate dimeric (PP) modes, which can be controlled by substitution of the nitrogen atom, thereby affecting the nitrogen donor strength.

The molecular structure of the title compound is shown in Fig. 1. The geometry around the palladium atom is trigonal planar with the angle between the Pd—P1—P2 and Pd—C41—C42 planes being 1.40 °. The N,N-bis[(diphenylphosphino)-ethyl]aniline ligand is in a monomeric (PP) binding mode in which the nitrogen atom of the ligand is not bound to the metal center (distance between N1 and Pd1 is 3.405 Å). The average Pd1—P bond length is 2.326 Å, which is consistent with similar structures reported in the literature (Retbøll et al., 2002; Goddard et al., 1995). Dibenzylideneacetone (dba) is bound to Pd1 via one of the carbon-carbon double bonds in an η2 fashion, with the C41=C42 bond (1.411 (3)Å) slightly elongated due to complexation when compared to C44=C45 (1.327 (3) Å) and the C41=C42 centroid-Pd1 distance is 2.044 Å. Similar Pd(0) coordination environments have been previously reported with chelating diphosphine and dba ligands which also display the elongated carbon-carbon double bond (1.417 (3) Å) (Retbøll et al., 2002). This coordination mode is not surprising since Pd2dba3 is the metal precursor used in the synthesis of the title complex and includes two palladium atoms with each metal bound η2 to the three dba ligands.

Related literature top

For general background and the potential applications of palladium complexes incorporating multidentate ligands, see: Blower et al. (1997); Michos et al. (1992); Kostas (2001); Lee et al. (2006); Hii et al. (1999). For similar structures, see: Retbøll et al. (2002); Goddard et al. (1995).

Experimental top

To 0.202 g of N,N-bis[(diphenylphosphino)ethyl]aniline under nitrogen in 5 ml anhydrous THF was added 0.179 g Pd2dba3. The reaction mixture was stirred at room temperature for 15 h, followed by filtration and removal of the solvent. Pure product was obtained by recrystallization from methylene chloride and hexanes yielding orange crystals suitable for diffraction. Purity and composition were confirmed by comparing 1H and 31P{1H} NMR spectroscopy and mass spectrometry data to literature values (Hii et al., 1999). Yield = 54%.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95-0.99 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Palladium complexes which incorporate multidentate ligands have been used in a variety of applications, such as catalysis, biotechnology and materials science (Blower et al., 1997; Michos et al., 1992; Kostas, 2001; Lee et al., 2006). These multidentate ligands may contain donor atoms of the same type or be comprised of mixed donor atoms such as oxygen, carbon, phosphorous, sulfur and nitrogen (i.e., NNN, PNP, SPS). Advantages of mixed donor systems include flexible coordination modes and complex stability, both of which have the potential to increase performance in catalytic applications (Hii et al., 1999), including coupling, hydrogenation and dehydrogenation reactions. Many examples of PNP-type (phosphorous/nitrogen/phosphorous) ligands have been studied because the hemilabile property of the nitrogen atom gives different coordination geometries, including tridentate monomeric (PNP), bidentate monomeric (PP) and bidentate dimeric (PP) modes, which can be controlled by substitution of the nitrogen atom, thereby affecting the nitrogen donor strength.

The molecular structure of the title compound is shown in Fig. 1. The geometry around the palladium atom is trigonal planar with the angle between the Pd—P1—P2 and Pd—C41—C42 planes being 1.40 °. The N,N-bis[(diphenylphosphino)-ethyl]aniline ligand is in a monomeric (PP) binding mode in which the nitrogen atom of the ligand is not bound to the metal center (distance between N1 and Pd1 is 3.405 Å). The average Pd1—P bond length is 2.326 Å, which is consistent with similar structures reported in the literature (Retbøll et al., 2002; Goddard et al., 1995). Dibenzylideneacetone (dba) is bound to Pd1 via one of the carbon-carbon double bonds in an η2 fashion, with the C41=C42 bond (1.411 (3)Å) slightly elongated due to complexation when compared to C44=C45 (1.327 (3) Å) and the C41=C42 centroid-Pd1 distance is 2.044 Å. Similar Pd(0) coordination environments have been previously reported with chelating diphosphine and dba ligands which also display the elongated carbon-carbon double bond (1.417 (3) Å) (Retbøll et al., 2002). This coordination mode is not surprising since Pd2dba3 is the metal precursor used in the synthesis of the title complex and includes two palladium atoms with each metal bound η2 to the three dba ligands.

For general background and the potential applications of palladium complexes incorporating multidentate ligands, see: Blower et al. (1997); Michos et al. (1992); Kostas (2001); Lee et al. (2006); Hii et al. (1999). For similar structures, see: Retbøll et al. (2002); Goddard et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999) within WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of dibenzylideneacetone {N,N-bis[(diphenylphosphino)ethyl]aniline}palladium(0) showing ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.
{N,N-Bis[2-(diphenylphosphanyl)ethyl]aniline}(η2- dibenzylideneacetone)palladium(0) top
Crystal data top
[Pd(C34H33NP2)(C17H14O)]Z = 2
Mr = 858.24F(000) = 888
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: -P 1Melting point: 420 K
a = 10.087 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.974 (2) ÅCell parameters from 27945 reflections
c = 17.473 (4) Åθ = 1.0–27.5°
α = 86.34 (3)°µ = 0.57 mm1
β = 81.27 (2)°T = 153 K
γ = 83.15 (3)°Prism, orange
V = 2068.8 (7) Å30.27 × 0.14 × 0.12 mm
Data collection top
Nonius Kappa CCD
diffractometer
9324 independent reflections
Radiation source: fine-focus sealed tube7745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω–scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
h = 1213
Tmin = 0.837, Tmax = 1.000k = 1415
15976 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.58 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
9324 reflections(Δ/σ)max = 0.002
505 parametersΔρmax = 1.56 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Pd(C34H33NP2)(C17H14O)]γ = 83.15 (3)°
Mr = 858.24V = 2068.8 (7) Å3
Triclinic, P1Z = 2
a = 10.087 (2) ÅMo Kα radiation
b = 11.974 (2) ŵ = 0.57 mm1
c = 17.473 (4) ÅT = 153 K
α = 86.34 (3)°0.27 × 0.14 × 0.12 mm
β = 81.27 (2)°
Data collection top
Nonius Kappa CCD
diffractometer
9324 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
7745 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 1.000Rint = 0.031
15976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.58Δρmax = 1.56 e Å3
9324 reflectionsΔρmin = 0.67 e Å3
505 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.699379 (17)0.165949 (14)0.714724 (10)0.02103 (7)
P10.76258 (6)0.26802 (5)0.60129 (3)0.02080 (14)
P20.88250 (6)0.14942 (5)0.78434 (3)0.02179 (14)
O10.60286 (17)0.08845 (14)0.71914 (10)0.0329 (4)
N10.80565 (19)0.41621 (16)0.74653 (11)0.0243 (5)
C291.0050 (2)0.0255 (2)0.76262 (13)0.0231 (5)
C170.6584 (2)0.26165 (19)0.52443 (12)0.0213 (5)
C450.6737 (2)0.1747 (2)0.86247 (14)0.0283 (6)
H450.69590.21660.81700.034*
C100.7601 (2)0.42025 (19)0.61030 (14)0.0247 (5)
H10A0.78840.45550.55850.030*
H10B0.66650.45260.62850.030*
C210.5339 (2)0.3398 (2)0.42294 (14)0.0288 (6)
H210.50120.40360.39330.035*
C440.6082 (2)0.0729 (2)0.85348 (14)0.0267 (6)
H440.58010.02820.89730.032*
C360.3912 (2)0.3359 (2)0.73626 (15)0.0312 (6)
H360.43750.32980.78010.037*
C220.6075 (2)0.3537 (2)0.48183 (13)0.0246 (5)
H220.62310.42720.49300.030*
C110.9295 (2)0.22565 (19)0.54657 (13)0.0223 (5)
C240.7150 (3)0.1589 (2)0.92741 (14)0.0278 (6)
H240.64340.16660.89720.033*
C121.0002 (2)0.1268 (2)0.57025 (14)0.0278 (6)
H120.96540.08680.61620.033*
C190.5585 (2)0.1407 (2)0.44922 (14)0.0270 (6)
H190.54230.06730.43800.032*
C350.4079 (2)0.2461 (2)0.68703 (13)0.0254 (6)
C60.6271 (2)0.5772 (2)0.75423 (14)0.0273 (6)
H60.66590.60850.70590.033*
C460.7162 (2)0.2308 (2)0.93276 (14)0.0295 (6)
C230.8463 (2)0.14303 (19)0.89111 (13)0.0251 (5)
C400.3364 (2)0.2593 (2)0.62354 (14)0.0315 (6)
H400.34550.19980.58900.038*
C200.5078 (2)0.2336 (2)0.40700 (14)0.0291 (6)
H200.45560.22450.36740.035*
C470.6983 (3)0.1807 (2)1.00444 (15)0.0356 (6)
H470.65710.10541.00880.043*
C141.1723 (3)0.1405 (2)0.46096 (16)0.0351 (6)
H141.25440.11090.43140.042*
C301.1453 (2)0.0263 (2)0.75161 (14)0.0297 (6)
H301.18260.09380.75770.036*
C321.1778 (3)0.1687 (2)0.72396 (16)0.0374 (7)
H321.23610.23510.71070.045*
C311.2304 (3)0.0709 (2)0.73177 (14)0.0337 (6)
H311.32540.06910.72360.040*
C380.2385 (3)0.4442 (2)0.65952 (16)0.0386 (7)
H380.18110.51110.65050.046*
C180.6324 (2)0.1547 (2)0.50759 (13)0.0238 (5)
H180.66600.09070.53670.029*
C510.7793 (3)0.3413 (2)0.92972 (17)0.0410 (7)
H510.79310.37750.88190.049*
C90.8522 (2)0.4495 (2)0.66621 (13)0.0266 (6)
H9A0.94420.41150.65070.032*
H9B0.85750.53170.66210.032*
C50.5092 (3)0.6314 (2)0.79378 (16)0.0368 (7)
H50.46830.69920.77200.044*
C480.7397 (3)0.2391 (3)1.06887 (16)0.0418 (7)
H480.72520.20401.11710.050*
C20.6271 (3)0.4334 (2)0.85650 (14)0.0297 (6)
H20.66690.36530.87850.036*
C420.5221 (2)0.0900 (2)0.76997 (14)0.0253 (5)
H420.50200.13200.81540.030*
C160.9820 (3)0.2829 (2)0.47930 (16)0.0403 (7)
H160.93530.35130.46220.048*
C430.5779 (2)0.0273 (2)0.77551 (14)0.0257 (5)
C390.2532 (2)0.3565 (2)0.61000 (15)0.0372 (7)
H390.20590.36310.56660.045*
C131.1214 (3)0.0854 (2)0.52758 (15)0.0342 (6)
H131.16960.01790.54500.041*
C331.0403 (3)0.1711 (2)0.7353 (2)0.0509 (8)
H331.00380.23960.73120.061*
C10.6888 (2)0.4776 (2)0.78474 (13)0.0251 (5)
C410.4974 (2)0.1423 (2)0.69805 (13)0.0249 (5)
H410.54280.10710.65270.030*
C250.6851 (3)0.1638 (2)1.00788 (15)0.0369 (7)
H250.59390.17501.03210.044*
C370.3084 (3)0.4333 (2)0.72226 (16)0.0376 (7)
H370.29950.49350.75620.045*
C340.9547 (3)0.0739 (2)0.75257 (17)0.0391 (7)
H340.85990.07570.75760.047*
C30.5102 (3)0.4874 (2)0.89517 (16)0.0384 (7)
H30.46970.45610.94310.046*
C80.9909 (2)0.26442 (19)0.76920 (14)0.0257 (5)
H8A1.06550.24650.80040.031*
H8B1.03130.26910.71400.031*
C280.9503 (3)0.1305 (2)0.93644 (15)0.0374 (7)
H281.04140.11810.91230.045*
C151.1036 (3)0.2395 (2)0.43694 (17)0.0458 (7)
H151.13940.27890.39090.055*
C260.7889 (3)0.1523 (2)1.05210 (15)0.0429 (7)
H260.76910.15551.10690.052*
C40.4513 (3)0.5879 (3)0.86398 (17)0.0418 (7)
H40.37160.62610.89100.050*
C490.8019 (3)0.3480 (3)1.06404 (17)0.0470 (8)
H490.83060.38751.10860.056*
C270.9215 (3)0.1361 (3)1.01663 (16)0.0466 (8)
H270.99280.12881.04700.056*
C70.9154 (2)0.3793 (2)0.79127 (14)0.0278 (6)
H7A0.87790.37540.84700.033*
H7B0.98040.43620.78350.033*
C500.8220 (3)0.3990 (3)0.99378 (18)0.0480 (8)
H500.86520.47380.98980.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02037 (11)0.02645 (12)0.01626 (11)0.00308 (7)0.00279 (7)0.00024 (8)
P10.0207 (3)0.0243 (3)0.0169 (3)0.0005 (3)0.0029 (3)0.0006 (3)
P20.0220 (3)0.0262 (3)0.0169 (3)0.0021 (3)0.0027 (3)0.0001 (3)
O10.0411 (11)0.0346 (10)0.0253 (9)0.0077 (8)0.0074 (8)0.0081 (8)
N10.0286 (11)0.0254 (11)0.0192 (10)0.0001 (9)0.0063 (9)0.0012 (9)
C290.0251 (13)0.0285 (13)0.0142 (11)0.0001 (10)0.0012 (10)0.0011 (10)
C170.0196 (12)0.0300 (13)0.0130 (11)0.0008 (10)0.0011 (9)0.0024 (10)
C450.0286 (14)0.0335 (14)0.0238 (13)0.0092 (11)0.0025 (11)0.0020 (12)
C100.0297 (13)0.0235 (12)0.0207 (12)0.0010 (10)0.0043 (11)0.0012 (11)
C210.0321 (14)0.0298 (14)0.0247 (13)0.0024 (11)0.0105 (11)0.0009 (11)
C440.0264 (13)0.0326 (14)0.0218 (13)0.0089 (11)0.0008 (11)0.0017 (11)
C360.0304 (14)0.0399 (15)0.0263 (14)0.0104 (12)0.0100 (11)0.0015 (12)
C220.0255 (13)0.0255 (13)0.0224 (13)0.0009 (10)0.0038 (10)0.0010 (11)
C110.0207 (12)0.0262 (13)0.0199 (12)0.0024 (10)0.0024 (10)0.0020 (11)
C240.0321 (14)0.0278 (14)0.0238 (13)0.0062 (11)0.0028 (11)0.0026 (11)
C120.0330 (14)0.0323 (14)0.0167 (12)0.0013 (11)0.0039 (11)0.0004 (11)
C190.0296 (14)0.0285 (14)0.0233 (13)0.0056 (11)0.0001 (11)0.0077 (11)
C350.0184 (12)0.0373 (15)0.0212 (13)0.0088 (11)0.0010 (10)0.0003 (11)
C60.0307 (14)0.0266 (13)0.0268 (13)0.0025 (11)0.0099 (11)0.0061 (11)
C460.0264 (14)0.0333 (15)0.0304 (14)0.0056 (11)0.0074 (11)0.0009 (12)
C230.0320 (14)0.0230 (13)0.0200 (12)0.0022 (10)0.0032 (11)0.0011 (10)
C400.0218 (13)0.0491 (17)0.0231 (13)0.0031 (12)0.0015 (11)0.0046 (12)
C200.0271 (14)0.0418 (16)0.0191 (13)0.0054 (12)0.0041 (11)0.0029 (12)
C470.0289 (15)0.0452 (16)0.0321 (15)0.0001 (12)0.0044 (12)0.0042 (13)
C140.0276 (14)0.0355 (15)0.0393 (16)0.0011 (12)0.0033 (12)0.0079 (14)
C300.0267 (14)0.0354 (14)0.0282 (14)0.0022 (11)0.0069 (11)0.0056 (12)
C320.0350 (16)0.0336 (15)0.0400 (16)0.0063 (12)0.0005 (13)0.0055 (13)
C310.0224 (13)0.0487 (17)0.0292 (14)0.0012 (12)0.0045 (11)0.0033 (13)
C380.0275 (15)0.0439 (17)0.0426 (17)0.0050 (12)0.0043 (13)0.0129 (14)
C180.0252 (13)0.0255 (13)0.0185 (12)0.0020 (10)0.0004 (10)0.0014 (11)
C510.0532 (18)0.0347 (16)0.0390 (17)0.0075 (13)0.0161 (14)0.0035 (14)
C90.0298 (14)0.0262 (13)0.0242 (13)0.0014 (11)0.0063 (11)0.0009 (11)
C50.0410 (17)0.0329 (15)0.0388 (17)0.0034 (12)0.0155 (14)0.0110 (13)
C480.0334 (16)0.064 (2)0.0289 (15)0.0039 (14)0.0077 (13)0.0063 (15)
C20.0357 (15)0.0301 (14)0.0251 (14)0.0070 (12)0.0060 (12)0.0045 (12)
C420.0239 (13)0.0326 (14)0.0216 (13)0.0094 (11)0.0050 (10)0.0032 (11)
C160.0399 (16)0.0346 (15)0.0378 (16)0.0046 (13)0.0091 (13)0.0122 (13)
C430.0196 (12)0.0339 (14)0.0249 (13)0.0117 (11)0.0011 (10)0.0004 (12)
C390.0235 (14)0.0583 (19)0.0297 (15)0.0045 (13)0.0076 (12)0.0069 (14)
C130.0311 (15)0.0373 (15)0.0305 (15)0.0088 (12)0.0027 (12)0.0010 (13)
C330.0401 (18)0.0304 (16)0.080 (2)0.0066 (13)0.0052 (16)0.0119 (16)
C10.0273 (13)0.0290 (13)0.0206 (13)0.0033 (11)0.0064 (11)0.0066 (11)
C410.0189 (12)0.0381 (15)0.0179 (12)0.0067 (11)0.0003 (10)0.0032 (11)
C250.0453 (17)0.0372 (16)0.0255 (14)0.0087 (13)0.0082 (13)0.0058 (13)
C370.0371 (16)0.0351 (15)0.0427 (17)0.0079 (13)0.0086 (13)0.0027 (13)
C340.0234 (14)0.0345 (15)0.0563 (19)0.0042 (12)0.0062 (13)0.0050 (14)
C30.0414 (17)0.0514 (18)0.0252 (14)0.0131 (14)0.0038 (13)0.0112 (14)
C80.0250 (13)0.0283 (13)0.0246 (13)0.0048 (10)0.0067 (11)0.0018 (11)
C280.0375 (16)0.0485 (17)0.0255 (14)0.0040 (13)0.0094 (12)0.0016 (13)
C150.0420 (18)0.0453 (18)0.0413 (17)0.0059 (14)0.0175 (14)0.0097 (15)
C260.063 (2)0.0445 (17)0.0183 (14)0.0002 (15)0.0008 (14)0.0026 (13)
C40.0363 (16)0.0512 (19)0.0389 (17)0.0008 (14)0.0047 (14)0.0221 (16)
C490.0449 (18)0.062 (2)0.0375 (17)0.0124 (16)0.0170 (14)0.0135 (16)
C270.058 (2)0.0569 (19)0.0270 (15)0.0048 (16)0.0193 (15)0.0033 (14)
C70.0324 (14)0.0273 (13)0.0262 (13)0.0066 (11)0.0091 (11)0.0023 (11)
C500.057 (2)0.0389 (17)0.052 (2)0.0024 (14)0.0248 (16)0.0026 (15)
Geometric parameters (Å, º) top
Pd1—C412.155 (2)C14—C131.362 (4)
Pd1—C422.170 (2)C14—C151.375 (4)
Pd1—P12.3068 (10)C14—H140.9500
Pd1—P22.3441 (9)C30—C311.390 (3)
P1—C101.836 (2)C30—H300.9500
P1—C171.837 (2)C32—C311.366 (4)
P1—C111.837 (2)C32—C331.374 (4)
P2—C291.835 (2)C32—H320.9500
P2—C81.840 (2)C31—H310.9500
P2—C231.844 (2)C38—C371.382 (4)
O1—C431.242 (3)C38—C391.384 (4)
N1—C11.411 (3)C38—H380.9500
N1—C91.457 (3)C18—H180.9500
N1—C71.460 (3)C51—C501.376 (4)
C29—C341.379 (3)C51—H510.9500
C29—C301.399 (3)C9—H9A0.9900
C17—C221.381 (3)C9—H9B0.9900
C17—C181.395 (3)C5—C41.375 (4)
C45—C441.327 (3)C5—H50.9500
C45—C461.459 (3)C48—C491.379 (4)
C45—H450.9500C48—H480.9500
C10—C91.529 (3)C2—C31.377 (4)
C10—H10A0.9900C2—C11.413 (4)
C10—H10B0.9900C2—H20.9500
C21—C201.382 (3)C42—C411.411 (3)
C21—C221.386 (3)C42—C431.453 (3)
C21—H210.9500C42—H420.9500
C44—C431.496 (3)C16—C151.394 (4)
C44—H440.9500C16—H160.9500
C36—C371.382 (4)C39—H390.9500
C36—C351.398 (3)C13—H130.9500
C36—H360.9500C33—C341.384 (4)
C22—H220.9500C33—H330.9500
C11—C121.380 (3)C41—H410.9500
C11—C161.388 (4)C25—C261.382 (4)
C24—C231.376 (3)C25—H250.9500
C24—C251.396 (3)C37—H370.9500
C24—H240.9500C34—H340.9500
C12—C131.387 (3)C3—C41.394 (4)
C12—H120.9500C3—H30.9500
C19—C181.381 (3)C8—C71.533 (3)
C19—C201.384 (3)C8—H8A0.9900
C19—H190.9500C8—H8B0.9900
C35—C401.403 (3)C28—C271.391 (4)
C35—C411.467 (3)C28—H280.9500
C6—C11.392 (3)C15—H150.9500
C6—C51.392 (3)C26—C271.383 (4)
C6—H60.9500C26—H260.9500
C46—C511.399 (4)C4—H40.9500
C46—C471.401 (3)C49—C501.383 (4)
C23—C281.396 (3)C49—H490.9500
C40—C391.380 (4)C27—H270.9500
C40—H400.9500C7—H7A0.9900
C20—H200.9500C7—H7B0.9900
C47—C481.379 (4)C50—H500.9500
C47—H470.9500
C41—Pd1—C4238.09 (9)C19—C18—C17120.9 (2)
C41—Pd1—P199.11 (7)C19—C18—H18119.5
C42—Pd1—P1137.21 (7)C17—C18—H18119.5
C41—Pd1—P2154.31 (7)C50—C51—C46122.1 (3)
C42—Pd1—P2116.24 (7)C50—C51—H51119.0
P1—Pd1—P2106.54 (3)C46—C51—H51119.0
C10—P1—C17102.49 (11)N1—C9—C10112.9 (2)
C10—P1—C11104.10 (11)N1—C9—H9A109.0
C17—P1—C1199.22 (10)C10—C9—H9A109.0
C10—P1—Pd1115.73 (8)N1—C9—H9B109.0
C17—P1—Pd1115.60 (8)C10—C9—H9B109.0
C11—P1—Pd1117.32 (8)H9A—C9—H9B107.8
C29—P2—C8102.03 (11)C4—C5—C6120.8 (3)
C29—P2—C23103.60 (11)C4—C5—H5119.6
C8—P2—C2399.81 (11)C6—C5—H5119.6
C29—P2—Pd1114.30 (8)C49—C48—C47120.8 (3)
C8—P2—Pd1116.74 (8)C49—C48—H48119.6
C23—P2—Pd1117.99 (8)C47—C48—H48119.6
C1—N1—C9117.92 (19)C3—C2—C1121.2 (3)
C1—N1—C7117.68 (18)C3—C2—H2119.4
C9—N1—C7113.44 (19)C1—C2—H2119.4
C34—C29—C30117.9 (2)C41—C42—C43120.9 (2)
C34—C29—P2117.35 (18)C41—C42—Pd170.40 (14)
C30—C29—P2124.61 (18)C43—C42—Pd1100.38 (15)
C22—C17—C18118.5 (2)C41—C42—H42119.5
C22—C17—P1124.97 (17)C43—C42—H42119.5
C18—C17—P1116.49 (17)Pd1—C42—H4299.1
C44—C45—C46128.7 (2)C11—C16—C15119.8 (3)
C44—C45—H45115.7C11—C16—H16120.1
C46—C45—H45115.7C15—C16—H16120.1
C9—C10—P1113.19 (17)O1—C43—C42123.2 (2)
C9—C10—H10A108.9O1—C43—C44120.1 (2)
P1—C10—H10A108.9C42—C43—C44116.7 (2)
C9—C10—H10B108.9C40—C39—C38120.2 (2)
P1—C10—H10B108.9C40—C39—H39119.9
H10A—C10—H10B107.8C38—C39—H39119.9
C20—C21—C22120.4 (2)C14—C13—C12120.7 (2)
C20—C21—H21119.8C14—C13—H13119.6
C22—C21—H21119.8C12—C13—H13119.6
C45—C44—C43121.1 (2)C32—C33—C34120.3 (3)
C45—C44—H44119.5C32—C33—H33119.9
C43—C44—H44119.5C34—C33—H33119.9
C37—C36—C35121.1 (2)C6—C1—N1123.7 (2)
C37—C36—H36119.5C6—C1—C2117.7 (2)
C35—C36—H36119.5N1—C1—C2118.5 (2)
C17—C22—C21120.6 (2)C42—C41—C35125.9 (2)
C17—C22—H22119.7C42—C41—Pd171.51 (13)
C21—C22—H22119.7C35—C41—Pd1115.32 (16)
C12—C11—C16118.8 (2)C42—C41—H41117.0
C12—C11—P1117.87 (19)C35—C41—H41117.0
C16—C11—P1123.10 (19)Pd1—C41—H4183.0
C23—C24—C25121.2 (2)C26—C25—C24119.6 (3)
C23—C24—H24119.4C26—C25—H25120.2
C25—C24—H24119.4C24—C25—H25120.2
C11—C12—C13120.6 (2)C36—C37—C38120.9 (3)
C11—C12—H12119.7C36—C37—H37119.6
C13—C12—H12119.7C38—C37—H37119.6
C18—C19—C20120.0 (2)C29—C34—C33121.0 (2)
C18—C19—H19120.0C29—C34—H34119.5
C20—C19—H19120.0C33—C34—H34119.5
C36—C35—C40117.1 (2)C2—C3—C4120.1 (3)
C36—C35—C41123.2 (2)C2—C3—H3120.0
C40—C35—C41119.7 (2)C4—C3—H3120.0
C1—C6—C5120.8 (2)C7—C8—P2113.37 (17)
C1—C6—H6119.6C7—C8—H8A108.9
C5—C6—H6119.6P2—C8—H8A108.9
C51—C46—C47116.9 (2)C7—C8—H8B108.9
C51—C46—C45119.1 (2)P2—C8—H8B108.9
C47—C46—C45124.1 (2)H8A—C8—H8B107.7
C24—C23—C28118.7 (2)C27—C28—C23120.5 (3)
C24—C23—P2119.91 (18)C27—C28—H28119.7
C28—C23—P2121.23 (19)C23—C28—H28119.7
C39—C40—C35121.7 (2)C14—C15—C16120.8 (3)
C39—C40—H40119.2C14—C15—H15119.6
C35—C40—H40119.2C16—C15—H15119.6
C21—C20—C19119.4 (2)C25—C26—C27120.0 (2)
C21—C20—H20120.3C25—C26—H26120.0
C19—C20—H20120.3C27—C26—H26120.0
C48—C47—C46121.1 (2)C5—C4—C3119.5 (3)
C48—C47—H47119.5C5—C4—H4120.2
C46—C47—H47119.5C3—C4—H4120.2
C13—C14—C15119.3 (2)C48—C49—C50119.4 (3)
C13—C14—H14120.3C48—C49—H49120.3
C15—C14—H14120.3C50—C49—H49120.3
C31—C30—C29120.6 (2)C26—C27—C28120.0 (3)
C31—C30—H30119.7C26—C27—H27120.0
C29—C30—H30119.7C28—C27—H27120.0
C31—C32—C33119.9 (2)N1—C7—C8113.58 (18)
C31—C32—H32120.0N1—C7—H7A108.9
C33—C32—H32120.0C8—C7—H7A108.9
C32—C31—C30120.2 (2)N1—C7—H7B108.9
C32—C31—H31119.9C8—C7—H7B108.9
C30—C31—H31119.9H7A—C7—H7B107.7
C37—C38—C39119.1 (3)C51—C50—C49119.8 (3)
C37—C38—H38120.4C51—C50—H50120.1
C39—C38—H38120.4C49—C50—H50120.1
C41—Pd1—P1—C10102.55 (11)C47—C46—C51—C500.1 (4)
C42—Pd1—P1—C10102.35 (13)C45—C46—C51—C50179.9 (3)
P2—Pd1—P1—C1076.02 (9)C1—N1—C9—C1071.2 (3)
C41—Pd1—P1—C1717.26 (10)C7—N1—C9—C10145.40 (19)
C42—Pd1—P1—C1717.46 (12)P1—C10—C9—N167.7 (2)
P2—Pd1—P1—C17164.17 (8)C1—C6—C5—C40.2 (4)
C41—Pd1—P1—C11133.85 (10)C46—C47—C48—C491.1 (4)
C42—Pd1—P1—C11134.05 (12)P1—Pd1—C42—C410.32 (18)
P2—Pd1—P1—C1147.59 (8)P2—Pd1—C42—C41178.58 (11)
C41—Pd1—P2—C2993.86 (17)C41—Pd1—C42—C43119.3 (2)
C42—Pd1—P2—C2991.83 (11)P1—Pd1—C42—C43119.61 (14)
P1—Pd1—P2—C2989.40 (9)P2—Pd1—C42—C4362.14 (15)
C41—Pd1—P2—C8147.22 (16)C12—C11—C16—C150.4 (4)
C42—Pd1—P2—C8149.25 (11)P1—C11—C16—C15173.9 (2)
P1—Pd1—P2—C829.51 (9)C41—C42—C43—O12.2 (4)
C41—Pd1—P2—C2328.29 (17)Pd1—C42—C43—O175.5 (2)
C42—Pd1—P2—C2330.32 (11)C41—C42—C43—C44176.4 (2)
P1—Pd1—P2—C23148.44 (9)Pd1—C42—C43—C44103.1 (2)
C8—P2—C29—C34166.8 (2)C45—C44—C43—O16.6 (4)
C23—P2—C29—C3489.9 (2)C45—C44—C43—C42172.0 (2)
Pd1—P2—C29—C3439.8 (2)C35—C40—C39—C380.0 (4)
C8—P2—C29—C309.7 (2)C37—C38—C39—C400.2 (4)
C23—P2—C29—C3093.6 (2)C15—C14—C13—C121.4 (4)
Pd1—P2—C29—C30136.65 (19)C11—C12—C13—C140.9 (4)
C10—P1—C17—C226.0 (2)C31—C32—C33—C341.7 (5)
C11—P1—C17—C22100.8 (2)C5—C6—C1—N1177.7 (2)
Pd1—P1—C17—C22132.78 (18)C5—C6—C1—C20.5 (3)
C10—P1—C17—C18175.49 (17)C9—N1—C1—C69.6 (3)
C11—P1—C17—C1877.73 (19)C7—N1—C1—C6132.3 (2)
Pd1—P1—C17—C1848.67 (19)C9—N1—C1—C2167.6 (2)
C17—P1—C10—C9174.41 (17)C7—N1—C1—C250.6 (3)
C11—P1—C10—C971.42 (19)C3—C2—C1—C60.3 (3)
Pd1—P1—C10—C958.86 (19)C3—C2—C1—N1177.7 (2)
C46—C45—C44—C43177.5 (2)C43—C42—C41—C35161.1 (2)
C18—C17—C22—C210.9 (3)Pd1—C42—C41—C35108.3 (2)
P1—C17—C22—C21177.59 (18)C43—C42—C41—Pd190.6 (2)
C20—C21—C22—C171.4 (4)C36—C35—C41—C4234.9 (4)
C10—P1—C11—C12137.82 (18)C40—C35—C41—C42146.5 (2)
C17—P1—C11—C12116.71 (19)C36—C35—C41—Pd149.9 (3)
Pd1—P1—C11—C128.5 (2)C40—C35—C41—Pd1128.7 (2)
C10—P1—C11—C1647.8 (2)P1—Pd1—C41—C42179.78 (12)
C17—P1—C11—C1657.6 (2)P2—Pd1—C41—C422.9 (2)
Pd1—P1—C11—C16177.17 (18)C42—Pd1—C41—C35121.7 (2)
C16—C11—C12—C130.0 (3)P1—Pd1—C41—C3558.05 (17)
P1—C11—C12—C13174.56 (18)P2—Pd1—C41—C35118.79 (18)
C37—C36—C35—C400.4 (4)C23—C24—C25—C260.2 (4)
C37—C36—C35—C41178.2 (2)C35—C36—C37—C380.7 (4)
C44—C45—C46—C51177.1 (3)C39—C38—C37—C360.6 (4)
C44—C45—C46—C473.1 (4)C30—C29—C34—C332.6 (4)
C25—C24—C23—C280.7 (4)P2—C29—C34—C33179.3 (2)
C25—C24—C23—P2174.62 (19)C32—C33—C34—C293.2 (5)
C29—P2—C23—C24133.7 (2)C1—C2—C3—C40.5 (4)
C8—P2—C23—C24121.2 (2)C29—P2—C8—C7174.39 (16)
Pd1—P2—C23—C246.3 (2)C23—P2—C8—C768.07 (18)
C29—P2—C23—C2851.0 (2)Pd1—P2—C8—C760.27 (18)
C8—P2—C23—C2854.0 (2)C24—C23—C28—C271.2 (4)
Pd1—P2—C23—C28178.47 (18)P2—C23—C28—C27174.1 (2)
C36—C35—C40—C390.0 (4)C13—C14—C15—C161.0 (4)
C41—C35—C40—C39178.7 (2)C11—C16—C15—C140.1 (4)
C22—C21—C20—C191.5 (4)C24—C25—C26—C270.1 (4)
C18—C19—C20—C211.1 (4)C6—C5—C4—C31.1 (4)
C51—C46—C47—C480.9 (4)C2—C3—C4—C51.3 (4)
C45—C46—C47—C48179.3 (2)C47—C48—C49—C500.4 (4)
C34—C29—C30—C310.5 (4)C25—C26—C27—C280.5 (4)
P2—C29—C30—C31176.98 (19)C23—C28—C27—C261.1 (4)
C33—C32—C31—C300.4 (4)C1—N1—C7—C8144.8 (2)
C29—C30—C31—C321.0 (4)C9—N1—C7—C871.7 (3)
C20—C19—C18—C170.7 (3)P2—C8—C7—N160.7 (2)
C22—C17—C18—C190.6 (3)C46—C51—C50—C490.5 (5)
P1—C17—C18—C19178.07 (18)C48—C49—C50—C510.4 (5)

Experimental details

Crystal data
Chemical formula[Pd(C34H33NP2)(C17H14O)]
Mr858.24
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)10.087 (2), 11.974 (2), 17.473 (4)
α, β, γ (°)86.34 (3), 81.27 (2), 83.15 (3)
V3)2068.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.27 × 0.14 × 0.12
Data collection
DiffractometerNonius Kappa CCD
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.837, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15976, 9324, 7745
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.089, 1.58
No. of reflections9324
No. of parameters505
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.56, 0.67

Computer programs: COLLECT (Nonius, 1998), COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999) within WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors gratefully acknowledge the Robert A. Welch Foundation (grant No. F-1631), the National Science Foundation (grant Nos. CHE-0741973 and CHE-0847763), the Advanced Research Program of the Texas Higher Education Coordinating Board (grant No. 01916-090-2010), the American Heart Association (grant No. 0765078Y) and UT–Austin for financial support of this research. The single-crystal X-ray data were collected using instrumentation purchased with funds provided by the National Science Foundation (grant No. 0741973). Additionally, JMS would like to acknowledge financial support of this research by the ICDD and a Grant-In-Aid of Research from Sigma-Xi, the Scientific Research Society.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlower, P. J., Jeffrey, J. C., Miller, J. R., Salek, S. N., Schmaljohann, D., Smith, R. J. & Went, M. J. (1997). Inorg. Chem. 36, 1578–1582.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoddard, R., Hopp, G., Jolly, P. W., Krüger, C., Mynott, R. & Wirtz, C. (1995). J. Organomet. Chem. 486, 163–170.  CSD CrossRef CAS Web of Science Google Scholar
First citationHii, K. K., Thornton-Pett, M., Jutant, A. & Tooze, R. P. (1999). Organometallics, 18, 1887–1896.  Web of Science CSD CrossRef CAS Google Scholar
First citationKostas, I. (2001). J. Organomet. Chem. 626, 221–226.  Web of Science CrossRef CAS Google Scholar
First citationLee, S. L., Jung, J. H., Seo, J., Yoon, I., Park, K., Lindoy, L. F. & Lee, S. S. (2006). Org. Lett. 8, 1641–1643.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMichos, D., Luo, X. & Crabtree, R. H. (1992). J. Chem. Soc. Dalton Trans. pp. 1735–1738.  CrossRef Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRetbøll, M. K., Wenger, E. & Willis, A. C. (2002). Acta Cryst. E58, m275–m277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds