organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(3-Cinnamoyl­thio­ureido)acetic acid di­methyl sulfoxide disolvate

aFuel Cell Institute, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, bDepartment of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and cSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: ibnhum@gmail.com

(Received 22 August 2011; accepted 10 September 2011; online 17 September 2011)

In the title compound, C12H12N2O3S·2C2H6OS, the acetic acid and cinnamoyl groups adopt Z and E configurations, respectively, with respect to the thio group about the C—N bonds. The components of the asymmetric unit are connected by N—H⋯O and O—H⋯O hydrogen bonds and in the crystal weak inter­molecular C—H⋯O and C—H⋯S hydrogen bonds further connect the components into chains along the b axis. In the main mol­ecule, an intra­molecular N—H⋯O hydrogen bond is also present.

Related literature

For related structures, see: Hassan et al. (2009[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.], 2010a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010a). Acta Cryst. E66, o2242.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010b). Acta Cryst. E66, o2784.],c[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010c). Acta Cryst. E66, o2796.], 2011[Hassan, I. N., Yi, C. Y. & Kassim, M. B. (2011). Acta Cryst. E67, o780.]); Nasir et al. (2011[Nasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1987.]). For the synthesis, see: Hassan et al. (2008[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O3S·2C2H6OS

  • Mr = 420.55

  • Triclinic, [P \overline 1]

  • a = 7.327 (3) Å

  • b = 12.064 (5) Å

  • c = 13.691 (6) Å

  • α = 65.794 (8)°

  • β = 75.603 (9)°

  • γ = 85.484 (9)°

  • V = 1068.6 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.42 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.859, Tmax = 0.936

  • 10964 measured reflections

  • 3774 independent reflections

  • 2650 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.251

  • S = 1.06

  • 3774 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5 0.86 2.02 2.867 (5) 167
N2—H2A⋯O1 0.86 1.94 2.625 (4) 136
O3—H3A⋯O4 0.82 1.76 2.562 (5) 166
C14—H14C⋯O2 0.96 2.54 3.423 (8) 153
C14—H14A⋯O5i 0.96 2.43 3.319 (7) 154
C15—H15B⋯O4ii 0.96 2.58 3.468 (7) 153
C16—H16B⋯S1iii 0.96 2.85 3.702 (7) 148
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I) is the thiourea carboxylic acid version of our previously reported ester molecules (E)-methyl-2-(3-cinnamoylthioureido)acetate (II) (Hassan et al., 2010a)and (E)-ethyl-2-(3- cinnmoylthioureido)acetate (III) (Hassan et al., 2010b) and analogous to methyl-2-(3-benzoylthioureido)acetate (IV) (Hassan et al., 2009). The molecule maintains the same E-Z configuration with respect to the positions of the acetic acid and cinnamoyl groups, relative to the S atom across the C—N bonds, respectively (Fig. 1). In general, the bond lengths (Allen et al., 1987) and angles in (I) are in normal ranges and comparable to those in (II), (III) and (IV). The the CS bond length [1.665 (4) Å] is the same within experimental error to that in (II) [1.666 (3) Å] and that of (III) [1.656 (5) Å]. The C7C8 bond length [1.331 (6) Å] is slightly longer than that reported by Hassan et al. (2010c) [1.320 (3) Å]. The carbonyl CO bond length [1.215 (5) Å] is the same within experimental error to that reported by Nasir et al. (2011) [1.213 (3) Å]. The S1/O1/O2/N1/N2/C1—C12 fragment is essentially planar with a maximum deviation of 0.043 (5) Å, for atom C7. In the crystal, the components of the asymmtric unit are connected by N—H···O and O—H···O hydrogen bonds and weak intermolecular C—H···O and C—H···S hydrogen bonds connect the components into one-dimensional chains along the b axis (Fig. 2). In the main molecule an intramolecular N—H···O hydrogen bond is also present.

Related literature top

For related structures, see: Hassan et al. (2009, 2010a,b,c, 2011); Nasir et al. (2011). For the synthesis, see: Hassan et al. (2008). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to a previously reported method (Hassan et al., 2008). A yellowish crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from CH2Cl2 solution at room temperature (yield 79%).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93-0.97Å, N—H = 0.86Å and O—H = 0.82Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl,O).

Structure description top

The title compound (I) is the thiourea carboxylic acid version of our previously reported ester molecules (E)-methyl-2-(3-cinnamoylthioureido)acetate (II) (Hassan et al., 2010a)and (E)-ethyl-2-(3- cinnmoylthioureido)acetate (III) (Hassan et al., 2010b) and analogous to methyl-2-(3-benzoylthioureido)acetate (IV) (Hassan et al., 2009). The molecule maintains the same E-Z configuration with respect to the positions of the acetic acid and cinnamoyl groups, relative to the S atom across the C—N bonds, respectively (Fig. 1). In general, the bond lengths (Allen et al., 1987) and angles in (I) are in normal ranges and comparable to those in (II), (III) and (IV). The the CS bond length [1.665 (4) Å] is the same within experimental error to that in (II) [1.666 (3) Å] and that of (III) [1.656 (5) Å]. The C7C8 bond length [1.331 (6) Å] is slightly longer than that reported by Hassan et al. (2010c) [1.320 (3) Å]. The carbonyl CO bond length [1.215 (5) Å] is the same within experimental error to that reported by Nasir et al. (2011) [1.213 (3) Å]. The S1/O1/O2/N1/N2/C1—C12 fragment is essentially planar with a maximum deviation of 0.043 (5) Å, for atom C7. In the crystal, the components of the asymmtric unit are connected by N—H···O and O—H···O hydrogen bonds and weak intermolecular C—H···O and C—H···S hydrogen bonds connect the components into one-dimensional chains along the b axis (Fig. 2). In the main molecule an intramolecular N—H···O hydrogen bond is also present.

For related structures, see: Hassan et al. (2009, 2010a,b,c, 2011); Nasir et al. (2011). For the synthesis, see: Hassan et al. (2008). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of (I) viewed along the c axis. Hydrogen bonds are shown by dashed lines.
(E)-2-(3-Cinnamoylthioureido)acetic acid dimethyl sulfoxide disolvate top
Crystal data top
C12H12N2O3S·2C2H6OSZ = 2
Mr = 420.55F(000) = 444
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Melting point: 407 K
a = 7.327 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.064 (5) Åθ = 1.7–25.0°
c = 13.691 (6) ŵ = 0.37 mm1
α = 65.794 (8)°T = 298 K
β = 75.603 (9)°Block, colourless
γ = 85.484 (9)°0.42 × 0.21 × 0.18 mm
V = 1068.6 (8) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3774 independent reflections
Radiation source: fine-focus sealed tube2650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.859, Tmax = 0.936k = 1414
10964 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.251H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1544P)2 + 0.4047P]
where P = (Fo2 + 2Fc2)/3
3774 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H12N2O3S·2C2H6OSγ = 85.484 (9)°
Mr = 420.55V = 1068.6 (8) Å3
Triclinic, P1Z = 2
a = 7.327 (3) ÅMo Kα radiation
b = 12.064 (5) ŵ = 0.37 mm1
c = 13.691 (6) ÅT = 298 K
α = 65.794 (8)°0.42 × 0.21 × 0.18 mm
β = 75.603 (9)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3774 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2650 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.936Rint = 0.046
10964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.251H-atom parameters constrained
S = 1.06Δρmax = 0.72 e Å3
3774 reflectionsΔρmin = 0.25 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.4518 (2)0.84669 (10)0.40846 (9)0.0689 (5)
S20.3003 (3)1.64039 (11)0.16460 (11)0.0800 (6)
S30.66629 (18)0.58770 (10)0.36710 (9)0.0580 (4)
O10.6554 (5)1.1084 (3)0.0515 (2)0.0642 (10)
O20.4605 (6)1.3125 (3)0.1829 (3)0.0754 (11)
O30.2971 (6)1.3022 (3)0.3467 (3)0.0697 (11)
H3A0.30081.37650.31470.105*
O40.2660 (7)1.5335 (3)0.2747 (3)0.0836 (13)
O50.7343 (5)0.6780 (3)0.2502 (2)0.0626 (9)
N10.6120 (5)0.9232 (3)0.1959 (3)0.0457 (9)
H1A0.63090.84700.21280.055*
N20.4931 (5)1.0710 (3)0.2566 (3)0.0495 (9)
H2A0.53271.12100.18910.059*
C10.9539 (8)0.8304 (6)0.1493 (5)0.0762 (16)
H10.91220.77330.07740.091*
C21.0432 (9)0.7939 (8)0.2298 (6)0.097 (2)
H21.06350.71150.21180.116*
C31.1037 (10)0.8736 (11)0.3359 (8)0.116 (3)
H31.16230.84660.39030.139*
C41.0773 (10)0.9927 (10)0.3607 (5)0.105 (3)
H41.11971.04860.43310.126*
C50.9890 (8)1.0335 (7)0.2812 (4)0.0843 (18)
H50.97241.11630.29980.101*
C60.9249 (7)0.9513 (5)0.1739 (4)0.0648 (13)
C70.8281 (7)0.9974 (5)0.0920 (4)0.0618 (13)
H7A0.80611.08030.11860.074*
C80.7671 (7)0.9352 (4)0.0163 (4)0.0608 (13)
H8A0.78110.85140.04750.073*
C90.6774 (6)0.9993 (4)0.0869 (3)0.0492 (11)
C100.5195 (6)0.9548 (4)0.2819 (3)0.0444 (10)
C110.4015 (7)1.1193 (4)0.3357 (3)0.0491 (11)
H11A0.47141.09910.39210.059*
H11B0.27541.08380.37110.059*
C120.3910 (6)1.2548 (4)0.2786 (3)0.0492 (11)
C130.1632 (10)1.6099 (7)0.0894 (5)0.106 (2)
H13A0.18321.52810.09480.159*
H13B0.19921.66570.01340.159*
H13C0.03241.61910.11880.159*
C140.5210 (8)1.6206 (5)0.0879 (4)0.0731 (15)
H14A0.61801.63010.12010.110*
H14B0.54041.68030.01340.110*
H14C0.52541.54070.08840.110*
C150.8192 (9)0.6064 (6)0.4402 (4)0.0790 (16)
H15A0.94730.60110.40330.118*
H15B0.79280.54380.51360.118*
H15C0.80110.68460.44360.118*
C160.7496 (11)0.4446 (5)0.3663 (5)0.093 (2)
H16A0.68820.42290.32200.139*
H16B0.72190.38340.44030.139*
H16C0.88330.45070.33600.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1061 (11)0.0398 (7)0.0338 (6)0.0062 (6)0.0081 (6)0.0032 (5)
S20.1332 (14)0.0414 (7)0.0428 (7)0.0122 (7)0.0026 (7)0.0070 (6)
S30.0743 (8)0.0416 (6)0.0401 (6)0.0072 (5)0.0023 (5)0.0063 (5)
O10.101 (3)0.0401 (17)0.0329 (16)0.0086 (16)0.0024 (16)0.0054 (13)
O20.125 (3)0.0399 (17)0.0402 (19)0.0064 (18)0.0049 (19)0.0102 (15)
O30.115 (3)0.0444 (18)0.0399 (17)0.0144 (19)0.0037 (18)0.0176 (15)
O40.148 (4)0.0432 (19)0.0376 (18)0.017 (2)0.000 (2)0.0100 (15)
O50.100 (3)0.0400 (16)0.0360 (17)0.0079 (16)0.0103 (16)0.0081 (14)
N10.069 (2)0.0281 (16)0.0323 (17)0.0028 (15)0.0075 (16)0.0075 (14)
N20.071 (2)0.0331 (18)0.0317 (18)0.0024 (16)0.0019 (16)0.0070 (14)
C10.076 (4)0.087 (4)0.063 (3)0.011 (3)0.005 (3)0.036 (3)
C20.079 (4)0.133 (6)0.102 (6)0.017 (4)0.012 (4)0.079 (5)
C30.078 (5)0.205 (10)0.105 (6)0.006 (6)0.001 (4)0.114 (7)
C40.087 (5)0.180 (9)0.043 (3)0.043 (5)0.013 (3)0.049 (5)
C50.083 (4)0.105 (5)0.041 (3)0.022 (3)0.010 (3)0.016 (3)
C60.061 (3)0.083 (4)0.048 (3)0.002 (3)0.005 (2)0.028 (3)
C70.080 (3)0.057 (3)0.040 (2)0.002 (2)0.005 (2)0.016 (2)
C80.080 (3)0.044 (3)0.046 (3)0.002 (2)0.002 (2)0.014 (2)
C90.066 (3)0.038 (2)0.034 (2)0.0030 (19)0.004 (2)0.0099 (18)
C100.058 (3)0.036 (2)0.035 (2)0.0030 (18)0.0094 (19)0.0114 (17)
C110.065 (3)0.044 (2)0.030 (2)0.004 (2)0.0035 (19)0.0121 (18)
C120.068 (3)0.044 (2)0.035 (2)0.006 (2)0.011 (2)0.0163 (19)
C130.091 (5)0.121 (6)0.063 (4)0.011 (4)0.010 (3)0.004 (4)
C140.095 (4)0.069 (3)0.042 (3)0.011 (3)0.011 (3)0.010 (2)
C150.097 (4)0.079 (4)0.049 (3)0.020 (3)0.015 (3)0.019 (3)
C160.130 (5)0.037 (3)0.076 (4)0.007 (3)0.008 (4)0.007 (3)
Geometric parameters (Å, º) top
S1—C101.664 (4)C4—C51.372 (9)
S2—O41.506 (3)C4—H40.9300
S2—C141.754 (6)C5—C61.378 (7)
S2—C131.757 (7)C5—H50.9300
S3—O51.501 (3)C6—C71.457 (7)
S3—C151.758 (6)C7—C81.331 (6)
S3—C161.789 (6)C7—H7A0.9300
O1—C91.215 (5)C8—C91.477 (6)
O2—C121.199 (5)C8—H8A0.9300
O3—C121.313 (5)C11—C121.500 (6)
O3—H3A0.8200C11—H11A0.9700
N1—C91.375 (5)C11—H11B0.9700
N1—C101.386 (5)C13—H13A0.9600
N1—H1A0.8600C13—H13B0.9600
N2—C101.310 (5)C13—H13C0.9600
N2—C111.434 (5)C14—H14A0.9600
N2—H2A0.8600C14—H14B0.9600
C1—C21.353 (8)C14—H14C0.9600
C1—C61.368 (8)C15—H15A0.9600
C1—H10.9300C15—H15B0.9600
C2—C31.353 (12)C15—H15C0.9600
C2—H20.9300C16—H16A0.9600
C3—C41.344 (13)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
O4—S2—C14106.8 (3)O1—C9—C8123.3 (4)
O4—S2—C13105.6 (3)N1—C9—C8113.7 (4)
C14—S2—C1397.0 (3)N2—C10—N1116.2 (3)
O5—S3—C15105.7 (3)N2—C10—S1124.2 (3)
O5—S3—C16104.9 (2)N1—C10—S1119.6 (3)
C15—S3—C1697.7 (3)N2—C11—C12109.5 (3)
C12—O3—H3A109.5N2—C11—H11A109.8
C9—N1—C10127.7 (3)C12—C11—H11A109.8
C9—N1—H1A116.1N2—C11—H11B109.8
C10—N1—H1A116.1C12—C11—H11B109.8
C10—N2—C11123.4 (3)H11A—C11—H11B108.2
C10—N2—H2A118.3O2—C12—O3124.4 (4)
C11—N2—H2A118.3O2—C12—C11124.1 (4)
C2—C1—C6119.9 (6)O3—C12—C11111.5 (4)
C2—C1—H1120.0S2—C13—H13A109.5
C6—C1—H1120.0S2—C13—H13B109.5
C1—C2—C3122.0 (8)H13A—C13—H13B109.5
C1—C2—H2119.0S2—C13—H13C109.5
C3—C2—H2119.0H13A—C13—H13C109.5
C4—C3—C2118.5 (6)H13B—C13—H13C109.5
C4—C3—H3120.8S2—C14—H14A109.5
C2—C3—H3120.8S2—C14—H14B109.5
C3—C4—C5121.3 (7)H14A—C14—H14B109.5
C3—C4—H4119.4S2—C14—H14C109.5
C5—C4—H4119.4H14A—C14—H14C109.5
C4—C5—C6119.7 (7)H14B—C14—H14C109.5
C4—C5—H5120.1S3—C15—H15A109.5
C6—C5—H5120.1S3—C15—H15B109.5
C1—C6—C5118.5 (5)H15A—C15—H15B109.5
C1—C6—C7123.1 (5)S3—C15—H15C109.5
C5—C6—C7118.4 (5)H15A—C15—H15C109.5
C8—C7—C6127.9 (5)H15B—C15—H15C109.5
C8—C7—H7A116.0S3—C16—H16A109.5
C6—C7—H7A116.0S3—C16—H16B109.5
C7—C8—C9119.9 (4)H16A—C16—H16B109.5
C7—C8—H8A120.0S3—C16—H16C109.5
C9—C8—H8A120.0H16A—C16—H16C109.5
O1—C9—N1122.9 (4)H16B—C16—H16C109.5
C6—C1—C2—C30.9 (10)C10—N1—C9—O12.1 (8)
C1—C2—C3—C41.5 (12)C10—N1—C9—C8179.0 (4)
C2—C3—C4—C50.8 (12)C7—C8—C9—O10.2 (8)
C3—C4—C5—C60.3 (11)C7—C8—C9—N1176.6 (4)
C2—C1—C6—C50.2 (9)C11—N2—C10—N1179.4 (4)
C2—C1—C6—C7179.3 (6)C11—N2—C10—S10.1 (7)
C4—C5—C6—C10.8 (9)C9—N1—C10—N20.9 (7)
C4—C5—C6—C7178.7 (6)C9—N1—C10—S1179.8 (4)
C1—C6—C7—C85.5 (9)C10—N2—C11—C12178.7 (4)
C5—C6—C7—C8175.0 (6)N2—C11—C12—O24.4 (7)
C6—C7—C8—C9177.8 (5)N2—C11—C12—O3175.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.862.022.867 (5)167
N2—H2A···O10.861.942.625 (4)136
O3—H3A···O40.821.762.562 (5)166
C14—H14C···O20.962.543.423 (8)153
C14—H14A···O5i0.962.433.319 (7)154
C15—H15B···O4ii0.962.583.468 (7)153
C16—H16B···S1iii0.962.853.702 (7)148
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H12N2O3S·2C2H6OS
Mr420.55
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.327 (3), 12.064 (5), 13.691 (6)
α, β, γ (°)65.794 (8), 75.603 (9), 85.484 (9)
V3)1068.6 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.42 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.859, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
10964, 3774, 2650
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.251, 1.06
No. of reflections3774
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.862.022.867 (5)167.2
N2—H2A···O10.861.942.625 (4)136.1
O3—H3A···O40.821.762.562 (5)166.0
C14—H14C···O20.962.543.423 (8)153
C14—H14A···O5i0.962.433.319 (7)154
C15—H15B···O4ii0.962.583.468 (7)153
C16—H16B···S1iii0.962.853.702 (7)148
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants (postdoctoral for INH, UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010&2011) and the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2010a). Acta Cryst. E66, o2242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2010b). Acta Cryst. E66, o2784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2010c). Acta Cryst. E66, o2796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yi, C. Y. & Kassim, M. B. (2011). Acta Cryst. E67, o780.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds