organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-4-ethyl­piperazine-1-carboxamide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 23 August 2011; accepted 30 August 2011; online 14 September 2011)

In the title mol­ecule, C13H18ClN3O, the piperazine ring has a chair conformation. In the crystal, mol­ecules are linked into chains along [100] by N—H⋯O hydrogen bonds.

Related literature

For applications of carboxamide compounds, see: Arrieta et al. (2007[Arrieta, A., Otaegui, D., Zubia, A., Cossío, F. P., Díaz-Ortiz, A., Hoz, A., Herrero, A., Prieto, P., Foces-Foces, C., Pizarro, J. L. & Arriortua, M. I. (2007). J. Org. Chem. 72, 4313-4322.]). For a related structure, see: Li (2011[Li, Y.-F. (2011). Acta Cryst. E67, o2492.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18ClN3O

  • Mr = 267.75

  • Orthorhombic, P b c a

  • a = 9.5546 (19) Å

  • b = 10.910 (2) Å

  • c = 26.477 (5) Å

  • V = 2760.1 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.21 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 24955 measured reflections

  • 3167 independent reflections

  • 1720 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.187

  • S = 1.00

  • 3167 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.82 (3) 2.18 (3) 2.986 (3) 167 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carboxamide compounds are an important intermediate reagent in organic synthesis (Arrieta et al., 2007). The molecular structure of the title compound is shown in Fig. 1. The piperazine ring (N1/N2/C3-C6) is in a chair conformation. Bond lengths and angles are comparable to those common to a similar structure (Li, 2011).

Related literature top

For applications of carboxamide compounds, see: Arrieta et al. (2007). For a related structure, see: Li (2011).

Experimental top

A mixture of 1-ethylpiperazine (0.1 mol), and (4-chlorophenyl)carbamic chloride (0.1 mol) was stirred in refluxing ethanol (20 ml) for 4 h to afford the title compound (0.065 mol, yield 65%). Colourless blocks were obtained by recrystallization of a solution of the title compound in ethanol at room temperature.

Refinement top

H atoms boned to C atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The N—H hydrogen was refined independently with an isotropic displacement parameter.

Structure description top

Carboxamide compounds are an important intermediate reagent in organic synthesis (Arrieta et al., 2007). The molecular structure of the title compound is shown in Fig. 1. The piperazine ring (N1/N2/C3-C6) is in a chair conformation. Bond lengths and angles are comparable to those common to a similar structure (Li, 2011).

For applications of carboxamide compounds, see: Arrieta et al. (2007). For a related structure, see: Li (2011).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
N-(4-Chlorophenyl)-4-ethylpiperazine-1-carboxamide top
Crystal data top
C13H18ClN3OF(000) = 1136
Mr = 267.75Dx = 1.289 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1720 reflections
a = 9.5546 (19) Åθ = 3.2–27.2°
b = 10.910 (2) ŵ = 0.27 mm1
c = 26.477 (5) ÅT = 293 K
V = 2760.1 (10) Å3Block, colorless
Z = 80.25 × 0.22 × 0.21 mm
Data collection top
Bruker SMART CCD
diffractometer
1720 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
φ and ω scansh = 1112
24955 measured reflectionsk = 1414
3167 independent reflectionsl = 3433
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.1045P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3167 reflectionsΔρmax = 0.27 e Å3
168 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (3)
Crystal data top
C13H18ClN3OV = 2760.1 (10) Å3
Mr = 267.75Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.5546 (19) ŵ = 0.27 mm1
b = 10.910 (2) ÅT = 293 K
c = 26.477 (5) Å0.25 × 0.22 × 0.21 mm
Data collection top
Bruker SMART CCD
diffractometer
1720 reflections with I > 2σ(I)
24955 measured reflectionsRint = 0.079
3167 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.27 e Å3
3167 reflectionsΔρmin = 0.27 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12528 (9)0.54490 (8)0.41931 (3)0.0847 (4)
O10.14283 (15)0.18919 (18)0.21930 (6)0.0616 (5)
N30.3536 (2)0.2579 (2)0.24861 (7)0.0514 (6)
C80.2986 (2)0.3286 (2)0.28864 (8)0.0458 (6)
N20.34171 (19)0.1241 (2)0.18146 (8)0.0580 (6)
C130.3594 (2)0.3193 (2)0.33612 (9)0.0542 (6)
H13A0.43500.26710.34120.065*
N10.4083 (2)0.1241 (2)0.07662 (7)0.0644 (7)
C110.1940 (3)0.4637 (2)0.36844 (9)0.0567 (7)
C120.3070 (3)0.3881 (3)0.37613 (9)0.0596 (7)
H12A0.34820.38290.40790.072*
C100.1353 (3)0.4758 (3)0.32123 (10)0.0590 (7)
H10A0.06050.52900.31630.071*
C70.2716 (2)0.1909 (2)0.21612 (8)0.0483 (6)
C90.1878 (2)0.4087 (2)0.28136 (9)0.0547 (6)
H9A0.14860.41730.24940.066*
C60.4827 (3)0.2016 (3)0.11215 (10)0.0652 (7)
H6A0.43820.28150.11340.078*
H6B0.57820.21290.10060.078*
C40.2660 (3)0.0469 (3)0.14571 (9)0.0639 (7)
H4A0.17020.03670.15710.077*
H4B0.30940.03340.14430.077*
C50.4841 (2)0.1467 (3)0.16426 (9)0.0612 (7)
H5A0.53600.07030.16380.073*
H5B0.53050.20230.18740.073*
C30.2667 (3)0.1030 (3)0.09430 (10)0.0707 (8)
H3B0.21870.04900.07090.085*
H3C0.21640.18020.09520.085*
C20.4049 (4)0.1795 (4)0.02561 (12)0.0997 (12)
H2A0.36490.26100.02800.120*
H2B0.34400.13080.00420.120*
C10.5445 (4)0.1884 (5)0.00140 (12)0.1227 (16)
H1A0.53490.22480.03140.184*
H1B0.58400.10790.00190.184*
H1C0.60480.23820.02190.184*
H3A0.435 (3)0.236 (2)0.2526 (8)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0886 (6)0.0831 (6)0.0824 (6)0.0078 (4)0.0226 (4)0.0221 (4)
O10.0337 (8)0.0846 (14)0.0665 (11)0.0008 (8)0.0028 (7)0.0060 (9)
N30.0335 (10)0.0646 (14)0.0561 (12)0.0059 (9)0.0007 (8)0.0081 (10)
C80.0382 (11)0.0471 (14)0.0521 (13)0.0021 (10)0.0039 (9)0.0014 (10)
N20.0406 (10)0.0713 (16)0.0622 (13)0.0072 (10)0.0060 (9)0.0169 (11)
C130.0484 (13)0.0530 (16)0.0613 (15)0.0056 (11)0.0028 (11)0.0003 (12)
N10.0520 (12)0.0864 (18)0.0547 (12)0.0125 (12)0.0010 (9)0.0015 (11)
C110.0547 (14)0.0511 (16)0.0643 (15)0.0002 (12)0.0145 (12)0.0034 (12)
C120.0600 (15)0.0637 (18)0.0552 (14)0.0045 (13)0.0019 (11)0.0056 (12)
C100.0504 (14)0.0499 (16)0.0766 (17)0.0083 (11)0.0075 (12)0.0008 (13)
C70.0386 (12)0.0567 (15)0.0496 (12)0.0009 (11)0.0008 (10)0.0032 (11)
C90.0488 (13)0.0554 (16)0.0597 (14)0.0032 (12)0.0002 (11)0.0063 (12)
C60.0466 (13)0.075 (2)0.0737 (16)0.0132 (13)0.0069 (12)0.0094 (15)
C40.0510 (14)0.075 (2)0.0658 (15)0.0186 (13)0.0059 (12)0.0164 (13)
C50.0380 (12)0.084 (2)0.0618 (15)0.0002 (12)0.0005 (11)0.0181 (13)
C30.0469 (14)0.096 (2)0.0691 (17)0.0125 (15)0.0036 (12)0.0090 (16)
C20.083 (2)0.144 (4)0.072 (2)0.015 (2)0.0036 (17)0.023 (2)
C10.097 (3)0.194 (5)0.077 (2)0.033 (3)0.0140 (19)0.021 (2)
Geometric parameters (Å, º) top
Cl1—C111.741 (2)C10—H10A0.9300
O1—C71.233 (3)C9—H9A0.9300
N3—C71.374 (3)C6—C51.504 (4)
N3—C81.413 (3)C6—H6A0.9700
N3—H3A0.82 (3)C6—H6B0.9700
C8—C91.386 (3)C4—C31.492 (4)
C8—C131.389 (3)C4—H4A0.9700
N2—C71.350 (3)C4—H4B0.9700
N2—C51.456 (3)C5—H5A0.9700
N2—C41.458 (3)C5—H5B0.9700
C13—C121.391 (3)C3—H3B0.9700
C13—H13A0.9300C3—H3C0.9700
N1—C31.450 (3)C2—C11.482 (5)
N1—C61.451 (3)C2—H2A0.9700
N1—C21.480 (4)C2—H2B0.9700
C11—C121.374 (4)C1—H1A0.9600
C11—C101.377 (3)C1—H1B0.9600
C12—H12A0.9300C1—H1C0.9600
C10—C91.379 (3)
C7—N3—C8123.20 (19)N1—C6—H6B109.3
C7—N3—H3A117.5 (17)C5—C6—H6B109.3
C8—N3—H3A114.8 (16)H6A—C6—H6B108.0
C9—C8—C13119.4 (2)N2—C4—C3110.7 (2)
C9—C8—N3121.6 (2)N2—C4—H4A109.5
C13—C8—N3118.9 (2)C3—C4—H4A109.5
C7—N2—C5125.8 (2)N2—C4—H4B109.5
C7—N2—C4120.42 (19)C3—C4—H4B109.5
C5—N2—C4111.01 (18)H4A—C4—H4B108.1
C8—C13—C12120.0 (2)N2—C5—C6110.24 (19)
C8—C13—H13A120.0N2—C5—H5A109.6
C12—C13—H13A120.0C6—C5—H5A109.6
C3—N1—C6109.9 (2)N2—C5—H5B109.6
C3—N1—C2109.8 (2)C6—C5—H5B109.6
C6—N1—C2111.4 (2)H5A—C5—H5B108.1
C12—C11—C10120.9 (2)N1—C3—C4111.3 (2)
C12—C11—Cl1119.17 (19)N1—C3—H3B109.4
C10—C11—Cl1120.0 (2)C4—C3—H3B109.4
C11—C12—C13119.6 (2)N1—C3—H3C109.4
C11—C12—H12A120.2C4—C3—H3C109.4
C13—C12—H12A120.2H3B—C3—H3C108.0
C11—C10—C9119.7 (2)N1—C2—C1113.7 (3)
C11—C10—H10A120.1N1—C2—H2A108.8
C9—C10—H10A120.1C1—C2—H2A108.8
O1—C7—N2122.2 (2)N1—C2—H2B108.8
O1—C7—N3122.3 (2)C1—C2—H2B108.8
N2—C7—N3115.43 (19)H2A—C2—H2B107.7
C10—C9—C8120.4 (2)C2—C1—H1A109.5
C10—C9—H9A119.8C2—C1—H1B109.5
C8—C9—H9A119.8H1A—C1—H1B109.5
N1—C6—C5111.5 (2)C2—C1—H1C109.5
N1—C6—H6A109.3H1A—C1—H1C109.5
C5—C6—H6A109.3H1B—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.82 (3)2.18 (3)2.986 (3)167 (2)
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H18ClN3O
Mr267.75
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.5546 (19), 10.910 (2), 26.477 (5)
V3)2760.1 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.25 × 0.22 × 0.21
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24955, 3167, 1720
Rint0.079
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.187, 1.00
No. of reflections3167
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.82 (3)2.18 (3)2.986 (3)167 (2)
Symmetry code: (i) x+1/2, y, z+1/2.
 

References

First citationArrieta, A., Otaegui, D., Zubia, A., Cossío, F. P., Díaz-Ortiz, A., Hoz, A., Herrero, A., Prieto, P., Foces-Foces, C., Pizarro, J. L. & Arriortua, M. I. (2007). J. Org. Chem. 72, 4313-4322.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. (2011). Acta Cryst. E67, o2492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds