organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-1H-benzimidazol-3-ium hydrogen phthalate

aFaculty of Science ZheJiang A & F University, Lin'An 311300, People's Republic of China, and bTianmu college of ZheJiang A & F University, Lin'An 311300, People's Republic of China
*Correspondence e-mail: JINSW@yahoo.cn

(Received 25 August 2011; accepted 5 September 2011; online 14 September 2011)

The asymmetric unit of the title compound, C8H9N2+·C8H5O4, contains two independent ion pairs. In each 2-methyl-1H-benzimidazolium ion, an intra­molecular O—H⋯O bond forms an S(7) graph-set motif. In the crystal, the components are linked by N—H⋯O hydrogen bonds, forming chains along [210]. Further stabilization is provided by weak C—H⋯O hydrogen bonds.

Related literature

For general background to hydrogen-bonding inter­actions, see: Lam & Mak (2000[Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657-6665.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); Liu et al. (2008[Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Zhong, F., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 173-182.]); Biswas et al. (2009[Biswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). Eur. J. Inorg. Chem. pp. 2238-2246.]); Jin & Wang (2010[Jin, S. W. & Wang, D. Q. (2010). J. Chem. Crystallogr. 40, 914-918.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N2+·C8H5O4

  • Mr = 298.29

  • Triclinic, [P \overline 1]

  • a = 3.8545 (16) Å

  • b = 17.689 (7) Å

  • c = 20.752 (9) Å

  • α = 86.754 (8)°

  • β = 86.585 (7)°

  • γ = 84.169 (7)°

  • V = 1403.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.45 × 0.39 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.970

  • 7520 measured reflections

  • 4923 independent reflections

  • 1846 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.232

  • S = 0.89

  • 4923 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 1.81 2.649 (6) 166
N2—H2⋯O5ii 0.86 1.91 2.750 (6) 165
N2—H2⋯O6ii 0.86 2.58 3.226 (6) 133
N3—H3⋯O8iii 0.86 1.79 2.631 (6) 166
N4—H4⋯O1iv 0.86 1.83 2.680 (6) 168
N4—H4⋯O2iv 0.86 2.58 3.232 (6) 133
O3—H3A⋯O2 0.82 1.55 2.372 (5) 175
O7—H7⋯O6 0.82 1.56 2.379 (5) 179
C7—H7A⋯O6ii 0.93 2.53 3.244 (7) 134
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007)[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2007)[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Intermolecular interactions are responsible for crystal packing and gaining an understanding of these interactions allows the comprehension of the collective properties and permits the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). Hydrogen bonding is one of the most important noncovalent interactions that determines and controls the assembly of molecules and ions (Desiraju, 2002, Liu et al., 2008, Biswas et al., 2009). As an extension of our study concentrating on hydrogen bonded assembly of organic acids and organic bases (Jin et al., 2010), herein we report the crystal structure of the 1:1 salt of 2-methyl-1H-benzimidazolium hydrogen phthalate.

The asymmetric unit of the compound consists of two independent 2-methyl-1H-benzimidazolium and two independent hydrogen phthalate ions (Fig. 1). Intramolecular hydrogen bonds between the carbonyl groups and the hydroxy groups form S(7) graph motifs (Bernstein et al., 1995). The cations and the anions are connected via the N—H···O hydrogen bonds to form one-dimensional chains along [210] (Fig. 2). Further stabilization of the chain is provided by weak intrachain C—H···O hydrogen bonds.

Related literature top

For general background to hydrogen-bonding interactions, see: Lam & Mak (2000); Desiraju (2002); Liu et al. (2008); Biswas et al. (2009); Jin & Wang (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 2-methyl-1H-benzimidazole (13.2 mg, 0.1 mmol) in 3 ml of MeOH was added to a MeOH solution (3 ml) containing phthalic acid acid (16.6 mg, 0.1 mmol) under continuous stirring. The solution was stirred for about 1 h at room temperature, then the solution was filtered into a test tube. The solution was left standing at room temperature for several days, colorless block-shaped crystals were isolated after slow evaporation of the solution in air at ambient temperature.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93–0.96 Å, N—H = 0.86Å and O—H = 0.82Å and were included in the refinement with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.2Ueq(Cmethyl,O).

Structure description top

Intermolecular interactions are responsible for crystal packing and gaining an understanding of these interactions allows the comprehension of the collective properties and permits the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). Hydrogen bonding is one of the most important noncovalent interactions that determines and controls the assembly of molecules and ions (Desiraju, 2002, Liu et al., 2008, Biswas et al., 2009). As an extension of our study concentrating on hydrogen bonded assembly of organic acids and organic bases (Jin et al., 2010), herein we report the crystal structure of the 1:1 salt of 2-methyl-1H-benzimidazolium hydrogen phthalate.

The asymmetric unit of the compound consists of two independent 2-methyl-1H-benzimidazolium and two independent hydrogen phthalate ions (Fig. 1). Intramolecular hydrogen bonds between the carbonyl groups and the hydroxy groups form S(7) graph motifs (Bernstein et al., 1995). The cations and the anions are connected via the N—H···O hydrogen bonds to form one-dimensional chains along [210] (Fig. 2). Further stabilization of the chain is provided by weak intrachain C—H···O hydrogen bonds.

For general background to hydrogen-bonding interactions, see: Lam & Mak (2000); Desiraju (2002); Liu et al. (2008); Biswas et al. (2009); Jin & Wang (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. One dimensional chain running along [210] with hydrogen bonds shown as dashed lines.
2-Methyl-1H-benzimidazol-3-ium 2-carboxybenzoate top
Crystal data top
C8H9N2+·C8H5O4Z = 4
Mr = 298.29F(000) = 624
Triclinic, P1Dx = 1.412 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8545 (16) ÅCell parameters from 700 reflections
b = 17.689 (7) Åθ = 2.2–19.6°
c = 20.752 (9) ŵ = 0.10 mm1
α = 86.754 (8)°T = 298 K
β = 86.585 (7)°Block, colorless
γ = 84.169 (7)°0.45 × 0.39 × 0.30 mm
V = 1403.3 (10) Å3
Data collection top
Bruker SMART CCD
diffractometer
4923 independent reflections
Radiation source: fine-focus sealed tube1846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 44
Tmin = 0.955, Tmax = 0.970k = 2019
7520 measured reflectionsl = 2124
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0958P)2]
where P = (Fo2 + 2Fc2)/3
4923 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C8H9N2+·C8H5O4γ = 84.169 (7)°
Mr = 298.29V = 1403.3 (10) Å3
Triclinic, P1Z = 4
a = 3.8545 (16) ÅMo Kα radiation
b = 17.689 (7) ŵ = 0.10 mm1
c = 20.752 (9) ÅT = 298 K
α = 86.754 (8)°0.45 × 0.39 × 0.30 mm
β = 86.585 (7)°
Data collection top
Bruker SMART CCD
diffractometer
4923 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1846 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.970Rint = 0.058
7520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 0.89Δρmax = 0.26 e Å3
4923 reflectionsΔρmin = 0.31 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6243 (11)0.5633 (2)0.1657 (2)0.0614 (13)
H10.70740.60250.14650.074*
N20.3976 (11)0.4903 (2)0.2389 (2)0.0572 (12)
H20.31000.47410.27560.069*
N30.4721 (12)0.0649 (2)0.6631 (2)0.0661 (14)
H30.49290.10590.64230.079*
N40.4893 (12)0.0117 (3)0.7390 (2)0.0615 (13)
H40.52210.02850.77600.074*
O10.3597 (12)0.9545 (2)0.14225 (18)0.0842 (14)
O20.2701 (12)0.8461 (2)0.18961 (19)0.0886 (14)
O30.0573 (12)0.7292 (2)0.16867 (19)0.0829 (13)
H3A0.14150.76870.17530.124*
O40.1224 (12)0.6721 (2)0.0893 (2)0.0863 (14)
O51.0493 (11)0.4630 (2)0.35612 (17)0.0766 (13)
O60.9446 (12)0.3625 (2)0.30921 (19)0.0867 (14)
O70.7319 (12)0.2419 (2)0.33335 (19)0.0838 (13)
H70.80770.28330.32530.126*
O80.5216 (13)0.1768 (2)0.4153 (2)0.0917 (15)
C10.5080 (14)0.5583 (3)0.2263 (3)0.0572 (15)
C20.4456 (15)0.4496 (3)0.1839 (3)0.0561 (14)
C30.5921 (14)0.4953 (3)0.1373 (3)0.0529 (14)
C40.6727 (14)0.4745 (3)0.0752 (3)0.0643 (16)
H4A0.76390.50750.04360.077*
C50.6105 (17)0.4017 (4)0.0624 (3)0.0785 (19)
H50.66640.38390.02140.094*
C60.4652 (16)0.3546 (3)0.1102 (3)0.0701 (17)
H60.42020.30630.09970.084*
C70.3858 (14)0.3762 (3)0.1717 (3)0.0623 (16)
H7A0.29630.34340.20360.075*
C80.5046 (17)0.6182 (3)0.2734 (3)0.0760 (18)
H8A0.26870.63960.28230.114*
H8B0.64210.65750.25560.114*
H8C0.60080.59660.31270.114*
C90.5569 (14)0.0599 (3)0.7229 (3)0.0559 (14)
C100.3580 (15)0.0550 (3)0.6869 (3)0.0590 (15)
C110.3466 (14)0.0050 (3)0.6392 (3)0.0575 (15)
C120.2216 (16)0.0290 (4)0.5784 (3)0.0707 (17)
H120.21440.00430.54550.085*
C130.1106 (17)0.1053 (4)0.5709 (3)0.087 (2)
H130.02300.12430.53180.104*
C140.1258 (16)0.1536 (4)0.6194 (4)0.0769 (19)
H140.04930.20480.61200.092*
C150.2482 (17)0.1302 (3)0.6784 (3)0.0769 (19)
H150.25620.16390.71100.092*
C160.6985 (15)0.1238 (3)0.7661 (3)0.0714 (17)
H16A0.52510.15880.77530.107*
H16B0.75970.10450.80580.107*
H16C0.90250.14960.74530.107*
C170.2781 (16)0.8892 (4)0.1390 (3)0.0648 (16)
C180.0014 (16)0.7282 (3)0.1088 (3)0.0624 (16)
C190.1934 (14)0.8627 (3)0.0755 (3)0.0533 (14)
C200.0778 (14)0.7921 (3)0.0617 (3)0.0546 (14)
C210.0164 (15)0.7799 (3)0.0009 (3)0.0617 (16)
H210.06740.73430.00970.074*
C220.0716 (16)0.8313 (3)0.0510 (3)0.0660 (16)
H220.03190.82010.09310.079*
C230.1877 (16)0.9002 (3)0.0384 (3)0.0663 (16)
H230.22510.93650.07170.080*
C240.2460 (15)0.9138 (3)0.0239 (3)0.0607 (15)
H240.32560.96010.03210.073*
C250.9394 (15)0.4004 (3)0.3595 (3)0.0584 (15)
C260.6405 (16)0.2354 (3)0.3930 (3)0.0621 (16)
C270.7972 (13)0.3692 (3)0.4231 (2)0.0479 (13)
C280.6743 (13)0.2974 (3)0.4380 (2)0.0476 (13)
C290.5680 (13)0.2802 (3)0.5007 (3)0.0493 (13)
H290.49000.23270.51100.059*
C300.5710 (15)0.3294 (3)0.5490 (3)0.0633 (16)
H300.49470.31530.59090.076*
C310.6872 (15)0.4000 (3)0.5354 (3)0.0612 (16)
H310.69000.43470.56730.073*
C320.7995 (14)0.4170 (3)0.4723 (3)0.0562 (15)
H320.88200.46420.46270.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.065 (3)0.060 (3)0.059 (3)0.019 (2)0.006 (3)0.008 (3)
N20.070 (3)0.051 (3)0.052 (3)0.015 (2)0.005 (2)0.005 (2)
N30.093 (4)0.053 (3)0.058 (3)0.028 (3)0.011 (3)0.007 (3)
N40.078 (4)0.063 (3)0.048 (3)0.020 (3)0.010 (3)0.008 (3)
O10.120 (4)0.070 (3)0.070 (3)0.035 (3)0.013 (3)0.017 (2)
O20.137 (4)0.085 (3)0.049 (3)0.033 (3)0.016 (3)0.003 (2)
O30.117 (4)0.077 (3)0.058 (3)0.031 (3)0.006 (3)0.014 (2)
O40.121 (4)0.066 (3)0.079 (3)0.045 (3)0.003 (3)0.005 (2)
O50.106 (3)0.069 (3)0.060 (3)0.043 (3)0.003 (2)0.003 (2)
O60.130 (4)0.078 (3)0.054 (3)0.028 (3)0.015 (3)0.004 (2)
O70.127 (4)0.068 (3)0.062 (3)0.034 (3)0.004 (3)0.012 (2)
O80.143 (4)0.061 (3)0.078 (3)0.048 (3)0.014 (3)0.015 (2)
C10.054 (4)0.060 (4)0.059 (4)0.013 (3)0.001 (3)0.002 (3)
C20.068 (4)0.056 (3)0.045 (3)0.013 (3)0.007 (3)0.002 (3)
C30.059 (4)0.053 (3)0.047 (4)0.010 (3)0.002 (3)0.001 (3)
C40.067 (4)0.074 (4)0.049 (4)0.002 (3)0.008 (3)0.005 (3)
C50.098 (5)0.080 (5)0.056 (4)0.001 (4)0.004 (4)0.011 (4)
C60.079 (5)0.062 (4)0.072 (5)0.007 (3)0.017 (4)0.011 (4)
C70.070 (4)0.058 (4)0.061 (4)0.017 (3)0.003 (3)0.005 (3)
C80.093 (5)0.072 (4)0.065 (4)0.019 (4)0.005 (4)0.007 (3)
C90.065 (4)0.050 (3)0.054 (4)0.012 (3)0.004 (3)0.008 (3)
C100.070 (4)0.060 (4)0.053 (4)0.034 (3)0.009 (3)0.001 (3)
C110.067 (4)0.062 (4)0.048 (4)0.033 (3)0.007 (3)0.008 (3)
C120.070 (4)0.082 (5)0.063 (4)0.026 (4)0.008 (3)0.001 (4)
C130.081 (5)0.106 (6)0.077 (5)0.030 (5)0.016 (4)0.020 (5)
C140.065 (4)0.067 (4)0.093 (5)0.001 (3)0.000 (4)0.020 (4)
C150.088 (5)0.052 (4)0.093 (5)0.026 (3)0.004 (4)0.002 (4)
C160.069 (4)0.074 (4)0.071 (4)0.009 (3)0.008 (3)0.003 (3)
C170.079 (5)0.069 (4)0.050 (4)0.023 (3)0.003 (3)0.006 (3)
C180.075 (4)0.063 (4)0.051 (4)0.016 (3)0.006 (3)0.002 (3)
C190.063 (4)0.049 (3)0.050 (4)0.016 (3)0.005 (3)0.003 (3)
C200.067 (4)0.045 (3)0.054 (4)0.017 (3)0.003 (3)0.004 (3)
C210.090 (5)0.048 (3)0.052 (4)0.022 (3)0.015 (3)0.002 (3)
C220.090 (5)0.064 (4)0.045 (4)0.011 (3)0.008 (3)0.000 (3)
C230.088 (5)0.053 (4)0.058 (4)0.018 (3)0.003 (3)0.012 (3)
C240.085 (4)0.044 (3)0.056 (4)0.022 (3)0.007 (3)0.002 (3)
C250.071 (4)0.053 (4)0.054 (4)0.013 (3)0.006 (3)0.010 (3)
C260.077 (4)0.068 (4)0.043 (4)0.017 (3)0.006 (3)0.001 (3)
C270.046 (3)0.049 (3)0.049 (3)0.007 (3)0.007 (3)0.001 (3)
C280.047 (3)0.046 (3)0.051 (3)0.010 (2)0.001 (3)0.001 (3)
C290.052 (3)0.041 (3)0.055 (4)0.005 (2)0.001 (3)0.001 (3)
C300.089 (5)0.062 (4)0.042 (3)0.023 (3)0.001 (3)0.001 (3)
C310.082 (4)0.051 (3)0.054 (4)0.016 (3)0.002 (3)0.012 (3)
C320.066 (4)0.049 (3)0.057 (4)0.017 (3)0.009 (3)0.001 (3)
Geometric parameters (Å, º) top
N1—C11.312 (6)C10—C151.360 (7)
N1—C31.389 (6)C10—C111.370 (7)
N1—H10.8600C11—C121.404 (7)
N2—C11.323 (6)C12—C131.376 (8)
N2—C21.376 (6)C12—H120.9300
N2—H20.8600C13—C141.365 (8)
N3—C91.312 (6)C13—H130.9300
N3—C111.358 (6)C14—C151.365 (8)
N3—H30.8600C14—H140.9300
N4—C91.323 (6)C15—H150.9300
N4—C101.380 (6)C16—H16A0.9600
N4—H40.8600C16—H16B0.9600
O1—C171.234 (6)C16—H16C0.9600
O2—C171.263 (6)C17—C191.487 (7)
O3—C181.278 (6)C18—C201.494 (7)
O3—H3A0.8200C19—C241.380 (7)
O4—C181.237 (6)C19—C201.418 (6)
O5—C251.222 (6)C20—C211.366 (7)
O6—C251.271 (6)C21—C221.364 (7)
O7—C261.269 (6)C21—H210.9300
O7—H70.8200C22—C231.385 (7)
O8—C261.230 (6)C22—H220.9300
C1—C81.480 (7)C23—C241.365 (7)
C2—C31.359 (7)C23—H230.9300
C2—C71.382 (7)C24—H240.9300
C3—C41.369 (7)C25—C271.496 (7)
C4—C51.377 (7)C26—C281.500 (7)
C4—H4A0.9300C27—C321.362 (6)
C5—C61.386 (8)C27—C281.411 (6)
C5—H50.9300C28—C291.369 (7)
C6—C71.361 (7)C29—C301.364 (6)
C6—H60.9300C29—H290.9300
C7—H7A0.9300C30—C311.377 (6)
C8—H8A0.9600C30—H300.9300
C8—H8B0.9600C31—C321.381 (7)
C8—H8C0.9600C31—H310.9300
C9—C161.483 (7)C32—H320.9300
C1—N1—C3109.2 (5)C15—C14—H14118.5
C1—N1—H1125.4C10—C15—C14116.4 (6)
C3—N1—H1125.4C10—C15—H15121.8
C1—N2—C2109.1 (4)C14—C15—H15121.8
C1—N2—H2125.4C9—C16—H16A109.5
C2—N2—H2125.4C9—C16—H16B109.5
C9—N3—C11109.3 (4)H16A—C16—H16B109.5
C9—N3—H3125.3C9—C16—H16C109.5
C11—N3—H3125.3H16A—C16—H16C109.5
C9—N4—C10109.2 (4)H16B—C16—H16C109.5
C9—N4—H4125.4O1—C17—O2119.2 (5)
C10—N4—H4125.4O1—C17—C19119.4 (5)
C18—O3—H3A109.5O2—C17—C19121.5 (5)
C26—O7—H7109.5O4—C18—O3118.7 (5)
N1—C1—N2108.8 (5)O4—C18—C20119.3 (5)
N1—C1—C8125.8 (5)O3—C18—C20122.0 (5)
N2—C1—C8125.4 (5)C24—C19—C20117.2 (5)
C3—C2—N2106.8 (5)C24—C19—C17114.3 (5)
C3—C2—C7120.8 (5)C20—C19—C17128.4 (5)
N2—C2—C7132.4 (5)C21—C20—C19118.3 (5)
C2—C3—C4123.6 (5)C21—C20—C18114.3 (5)
C2—C3—N1106.2 (5)C19—C20—C18127.4 (5)
C4—C3—N1130.2 (5)C22—C21—C20123.4 (5)
C3—C4—C5115.8 (5)C22—C21—H21118.3
C3—C4—H4A122.1C20—C21—H21118.3
C5—C4—H4A122.1C21—C22—C23119.0 (5)
C4—C5—C6120.6 (6)C21—C22—H22120.5
C4—C5—H5119.7C23—C22—H22120.5
C6—C5—H5119.7C24—C23—C22118.5 (5)
C7—C6—C5122.8 (6)C24—C23—H23120.7
C7—C6—H6118.6C22—C23—H23120.7
C5—C6—H6118.6C23—C24—C19123.6 (5)
C6—C7—C2116.2 (5)C23—C24—H24118.2
C6—C7—H7A121.9C19—C24—H24118.2
C2—C7—H7A121.9O5—C25—O6119.9 (6)
C1—C8—H8A109.5O5—C25—C27119.6 (5)
C1—C8—H8B109.5O6—C25—C27120.5 (5)
H8A—C8—H8B109.5O8—C26—O7119.9 (5)
C1—C8—H8C109.5O8—C26—C28118.4 (5)
H8A—C8—H8C109.5O7—C26—C28121.8 (5)
H8B—C8—H8C109.5C32—C27—C28117.7 (5)
N3—C9—N4108.7 (5)C32—C27—C25113.9 (5)
N3—C9—C16125.9 (5)C28—C27—C25128.4 (5)
N4—C9—C16125.4 (5)C29—C28—C27118.0 (5)
C15—C10—C11122.2 (6)C29—C28—C26113.9 (5)
C15—C10—N4132.4 (5)C27—C28—C26128.2 (5)
C11—C10—N4105.4 (5)C30—C29—C28123.2 (5)
N3—C11—C10107.4 (5)C30—C29—H29118.4
N3—C11—C12131.1 (5)C28—C29—H29118.4
C10—C11—C12121.5 (6)C29—C30—C31119.7 (5)
C13—C12—C11115.4 (6)C29—C30—H30120.1
C13—C12—H12122.3C31—C30—H30120.1
C11—C12—H12122.3C30—C31—C32117.2 (5)
C14—C13—C12121.6 (6)C30—C31—H31121.4
C14—C13—H13119.2C32—C31—H31121.4
C12—C13—H13119.2C27—C32—C31124.2 (5)
C13—C14—C15122.9 (6)C27—C32—H32117.9
C13—C14—H14118.5C31—C32—H32117.9
C3—N1—C1—N20.6 (6)O1—C17—C19—C245.5 (8)
C3—N1—C1—C8178.7 (5)O2—C17—C19—C24174.2 (6)
C2—N2—C1—N10.1 (6)O1—C17—C19—C20176.5 (6)
C2—N2—C1—C8179.1 (5)O2—C17—C19—C203.8 (10)
C1—N2—C2—C30.4 (6)C24—C19—C20—C211.9 (8)
C1—N2—C2—C7177.6 (6)C17—C19—C20—C21179.8 (6)
N2—C2—C3—C4178.8 (5)C24—C19—C20—C18179.2 (5)
C7—C2—C3—C43.6 (8)C17—C19—C20—C182.9 (9)
N2—C2—C3—N10.7 (6)O4—C18—C20—C212.2 (8)
C7—C2—C3—N1178.3 (5)O3—C18—C20—C21176.7 (6)
C1—N1—C3—C20.8 (6)O4—C18—C20—C19175.3 (6)
C1—N1—C3—C4178.8 (6)O3—C18—C20—C195.9 (9)
C2—C3—C4—C52.7 (8)C19—C20—C21—C222.3 (9)
N1—C3—C4—C5179.6 (5)C18—C20—C21—C22179.9 (6)
C3—C4—C5—C61.8 (8)C20—C21—C22—C231.6 (9)
C4—C5—C6—C71.8 (9)C21—C22—C23—C240.7 (9)
C5—C6—C7—C22.4 (8)C22—C23—C24—C190.5 (9)
C3—C2—C7—C63.2 (8)C20—C19—C24—C231.1 (9)
N2—C2—C7—C6179.9 (6)C17—C19—C24—C23179.3 (5)
C11—N3—C9—N40.1 (6)O5—C25—C27—C321.3 (7)
C11—N3—C9—C16179.0 (5)O6—C25—C27—C32178.2 (5)
C10—N4—C9—N30.6 (6)O5—C25—C27—C28176.7 (5)
C10—N4—C9—C16179.5 (5)O6—C25—C27—C283.7 (8)
C9—N4—C10—C15179.7 (6)C32—C27—C28—C290.5 (7)
C9—N4—C10—C110.8 (6)C25—C27—C28—C29177.5 (5)
C9—N3—C11—C100.4 (6)C32—C27—C28—C26179.1 (5)
C9—N3—C11—C12179.6 (6)C25—C27—C28—C262.9 (9)
C15—C10—C11—N3179.7 (5)O8—C26—C28—C290.7 (7)
N4—C10—C11—N30.7 (6)O7—C26—C28—C29179.1 (5)
C15—C10—C11—C120.3 (9)O8—C26—C28—C27178.9 (5)
N4—C10—C11—C12179.3 (5)O7—C26—C28—C271.3 (9)
N3—C11—C12—C13179.5 (6)C27—C28—C29—C301.0 (8)
C10—C11—C12—C130.5 (9)C26—C28—C29—C30178.7 (5)
C11—C12—C13—C140.6 (9)C28—C29—C30—C310.4 (8)
C12—C13—C14—C150.5 (10)C29—C30—C31—C320.5 (8)
C11—C10—C15—C140.1 (9)C28—C27—C32—C310.5 (8)
N4—C10—C15—C14178.8 (6)C25—C27—C32—C31178.8 (5)
C13—C14—C15—C100.2 (9)C30—C31—C32—C271.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.861.812.649 (6)166
N2—H2···O5ii0.861.912.750 (6)165
N2—H2···O6ii0.862.583.226 (6)133
N3—H3···O8iii0.861.792.631 (6)166
N4—H4···O1iv0.861.832.680 (6)168
N4—H4···O2iv0.862.583.232 (6)133
O3—H3A···O20.821.552.372 (5)175
O7—H7···O60.821.562.379 (5)179
C7—H7A···O6ii0.932.533.244 (7)134
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H9N2+·C8H5O4
Mr298.29
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)3.8545 (16), 17.689 (7), 20.752 (9)
α, β, γ (°)86.754 (8), 86.585 (7), 84.169 (7)
V3)1403.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.39 × 0.30
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.955, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
7520, 4923, 1846
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.232, 0.89
No. of reflections4923
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.861.812.649 (6)166.3
N2—H2···O5ii0.861.912.750 (6)165.4
N2—H2···O6ii0.862.583.226 (6)132.8
N3—H3···O8iii0.861.792.631 (6)165.9
N4—H4···O1iv0.861.832.680 (6)168.4
N4—H4···O2iv0.862.583.232 (6)132.9
O3—H3A···O20.821.552.372 (5)175.3
O7—H7···O60.821.562.379 (5)178.8
C7—H7A···O6ii0.932.533.244 (7)134
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the Innovation Project of Zhejiang A & F University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). Eur. J. Inorg. Chem. pp. 2238–2246.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJin, S. W. & Wang, D. Q. (2010). J. Chem. Crystallogr. 40, 914–918.  Web of Science CSD CrossRef CAS Google Scholar
First citationLam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Zhong, F., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 173–182.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds