organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Hy­dr­oxy­phen­yl)-3-(tri­methyl­sil­yl)propanaminium chloride

aChemistry Department, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 26 August 2011; accepted 14 September 2011; online 30 September 2011)

In the title crystal structure, C12H22NOSi+·Cl, anions and cations are linked via O—H⋯Cl, N—H⋯Cl and N—H⋯O hydrogen bonds to form a two-dimensional network parallel to (101). Within the hydrogen-bonded network, R42(22) ring motifs are stacked along [010].

Related literature

For silicon-substituted β-phenyl­ethyl amines and their biological activity, see: Frankel et al. (1968[Frankel, M., Broze, M., Gertner, D., Rotman, A., Shenhar, A. & Zilkha, A. (1968). J. Med. Chem. 11, 857-860.]). For applications of β-phenyl­ethyl amine in alkaloid synthesis via the Pictet–Spengler reaction, see: Lorenz et al. (2010[Lorenz, M., Linn, M. L. V. & Cook, J. M. (2010). Curr. Org. Synth. 7, 189-223.]). For the uses and applications of 3-amino-propyl­silanes in nanotechnology and self-assembled monolayers, see: Li et al. (2009[Li, J.-R., Lusker, K. L., Yu, J.-J. & Garno, J. C. (2009). ACS Nano, 3, 2023-2035.]). For the uses and applications in reverse ionic liquids in oil extraction, see: Blasucci et al. (2010[Blasucci, V., Hart, R., Mestre, V. L., Hahne, D. J., Burlager, M., Huttenhower, H., Thio, B. J. R., Pollet, P., Liotta, C. L. & Eckert, C. A. (2010). Fuel, 89, 1315-1319.]). For a related structure, see: Hijji et al. (2011[Hijji, Y. M., Butcher, R. J., Jasinski, J. P., White, Z. & Rosenberg, R. C. (2011). Acta Cryst. E67, o2553.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H22NOSi+·Cl

  • Mr = 259.85

  • Monoclinic, P 21 /n

  • a = 14.2611 (4) Å

  • b = 6.7587 (2) Å

  • c = 16.0316 (9) Å

  • β = 91.252 (3)°

  • V = 1544.86 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.79 mm−1

  • T = 295 K

  • 0.44 × 0.18 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.713, Tmax = 1.000

  • 5741 measured reflections

  • 3065 independent reflections

  • 2023 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.244

  • S = 1.14

  • 3065 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cli 0.82 2.23 3.012 (4) 160
N1—H1A⋯Clii 0.89 2.39 3.146 (3) 143
N1—H1B⋯O1iii 0.89 2.18 2.941 (5) 143
N1—H1C⋯Cl 0.89 2.21 3.093 (4) 172
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a substituted α-phenyethylaminium chloride. Phenylethyl amines are substrates for dopamine-β-hydroxylase and are of biological importance. Silicon substituted phenylethyl amines have been investigated for biological activity and use as insecticides and have applications as pharmaceuticals (Frankel et al. 1968). These compounds can be viewed as substituted 3-silylpropylamines, where they have application in monolayer construction and nanotechnology (Li et al. 2009) and use in oil recovery via reverse ionic liquids (Blasucci et al., 2010). Phenylethyl amines are important building blocks in isoquinoline alkaloid synthesis via Pictet–Spengler (Lorenz et al. 2010). A related structure has been reported (Hijji et al., 2011).

In view of the importance of these compounds the structure of 4-(2-ammonium-1-trimethylsilanylmethyl-ethyl)-phenol chloride, is reported herein. The title compound is a hydrochloride salt and the Cl- anion forms hydrogen bonds with both the NH3+ and phenol groups forming R24(22) ring motifs (Bernstein et al., 1995) as shown in Fig. 2. In the crystal, anions and cations are linked via O—H···Cl, N—H···Cl and N—H···O hydrogen bonds to form a two-dimensional network parallel to (101) as is shown in Fig. 3. The bond lengths (Allen et al., 1987) and angles are in normal ranges.

Related literature top

For silicon-substituted β-phenylethyl amines and their biological activity, see: Frankel et al. (1968). For applications of β-phenylethyl amine in alkaloid synthesis via the Pictet–Spengler reaction, see: Lorenz et al. (2010). For the uses and applications of 3-amino-propylsilanes in nanotechnology and self-assembled monolayers, see: Li et al. (2009). For the uses and applications in reverse ionic liquids in oil extraction, see: Blasucci et al. (2010). For a related structure, see: Hijji et al. (2011). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 4-hydroxyphenylacetonitrile (3.0 g, 22.55 mole) dissolved in 20 ml dry THF, cooled in an ice bath, was added (14.5 ml, 23.2 mmol) n-BuLi (1.6 M, hexane) drop wise. After the addition was complete the mixture was stirred for 15 minutes then (4.5 g, 26.3 mmol) benzyl bromide was added slowly. 20 ml of THF and 15 ml of HMPA were added to the mixture while the flask was in the ice bath. The mixture was stirred for an additional 1 h in the ice bath and 4 h at RT. Aqueous work up gave a solid, m.p 335–336 K,(3.5 g 70% yield)) of 4-benzyloxyphenylacetonitrile. Alkylation of (2.0 g, 8.97 mmol) (III) by treatment with (6 ml, 9.6 mmol) of n-BuLi (1.6M, hexanes) then chloromethyltrimethylsilane (1.14 g, 9.33 mmol) for 2 h at RT and work up to give (1.35 g, 48.7% yield) of 2-(4-benzyloxy-phenyl)-3-trimethylsilyl-propionitrile m.p. 376–377 K. Reduction of (1.0 g, 3.23 mmol) of IV in 10 ml of dry THF with (0.5 ml, 5.0 mmol) of BH3.DMS (10 M in DMS) followed by acid hydrolysis with HCl and neutralization with NaOH pellets then product isolation and acidification (HCl) gave a white solid (0.81 g, 72% yield). m.p. 468–469 K of 1-(4-Benzyloxy-phenyl)-2-trimethylsilanyl-ethyl-ammonium chloride. Catalytic hydrogenation of (0.5 g, 1.43 mmol) of in 60 ml of ethanol and 0.2 g Pd/C (10%) gave a white solid (0.25 g, 67% yield) of the title compound. A sample was taken and dissolved in water then the solvent was allowed to evaporate slowly to provide clear crystals of the title compound used for X-ray measurements.

1H NMR (DMSO-d6, 400 MHz): δ (p.p.m.) = 9.35 (s, 1H),7.50 (br s, 3H) 7.05 (d, 2H, J = 8.48 Hz), 6.72 (d, 2H, J = 8.48 Hz), 2.84 (m, 3H), 0.92 (dd,1 H, J = 14.5, 3.5 Hz), 0.914 (dd, 1 H, J = 14.5, 11.0 Hz), -0.26 (s, 9H) Mass spec: 207 (M—NH3Cl), 172, 165, 149, 134, 91, 73 13C NMR (DMSO-d6, 100 MHz): δ (p.p.m.) = 156.55, 132.53, 129.22, 115.97, 47.80, 39.39, 21.50, -.836.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 to 0.97 Å, and O—H distance of 0.82 Å, and N—H distances of 0.89 Å and Uiso(H) = 1.2Ueq(C, N, O) [Uiso(H) = 1.5Ueq(CH3)].

Structure description top

The title compound is a substituted α-phenyethylaminium chloride. Phenylethyl amines are substrates for dopamine-β-hydroxylase and are of biological importance. Silicon substituted phenylethyl amines have been investigated for biological activity and use as insecticides and have applications as pharmaceuticals (Frankel et al. 1968). These compounds can be viewed as substituted 3-silylpropylamines, where they have application in monolayer construction and nanotechnology (Li et al. 2009) and use in oil recovery via reverse ionic liquids (Blasucci et al., 2010). Phenylethyl amines are important building blocks in isoquinoline alkaloid synthesis via Pictet–Spengler (Lorenz et al. 2010). A related structure has been reported (Hijji et al., 2011).

In view of the importance of these compounds the structure of 4-(2-ammonium-1-trimethylsilanylmethyl-ethyl)-phenol chloride, is reported herein. The title compound is a hydrochloride salt and the Cl- anion forms hydrogen bonds with both the NH3+ and phenol groups forming R24(22) ring motifs (Bernstein et al., 1995) as shown in Fig. 2. In the crystal, anions and cations are linked via O—H···Cl, N—H···Cl and N—H···O hydrogen bonds to form a two-dimensional network parallel to (101) as is shown in Fig. 3. The bond lengths (Allen et al., 1987) and angles are in normal ranges.

For silicon-substituted β-phenylethyl amines and their biological activity, see: Frankel et al. (1968). For applications of β-phenylethyl amine in alkaloid synthesis via the Pictet–Spengler reaction, see: Lorenz et al. (2010). For the uses and applications of 3-amino-propylsilanes in nanotechnology and self-assembled monolayers, see: Li et al. (2009). For the uses and applications in reverse ionic liquids in oil extraction, see: Blasucci et al. (2010). For a related structure, see: Hijji et al. (2011). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. A hydrogen bond is shown by a dashed line (30% atomic displacement parameters).
[Figure 2] Fig. 2. Diagram showing the R24(22) ring motif as well as an additional NH3+···Cl- hydrogen bond [molecule A generated by symmetry code; 2 - x, -y, 1 - z, and molecule B by; 3/2 - x, y - 1/2, 3/2 - z]. Hydrogen bonds are shown by dashed lines.
[Figure 3] Fig. 3. The molecular packing showing the 2-D network of ions linked by O—H···Cl- and N—H···.Cl- hydrogen bonds (shown by dashed lines).
2-(4-Hydroxyphenyl)-3-(trimethylsilyl)propanaminium chloride top
Crystal data top
C12H22NOSi+·ClF(000) = 560
Mr = 259.85Dx = 1.117 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 1894 reflections
a = 14.2611 (4) Åθ = 5.5–75.6°
b = 6.7587 (2) ŵ = 2.79 mm1
c = 16.0316 (9) ÅT = 295 K
β = 91.252 (3)°Needle, colorless
V = 1544.86 (11) Å30.44 × 0.18 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3065 independent reflections
Radiation source: Enhance (Cu) X-ray Source2023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.5081 pixels mm-1θmax = 75.8°, θmin = 5.5°
ω scansh = 1715
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 85
Tmin = 0.713, Tmax = 1.000l = 1720
5741 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.244H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1021P)2 + 1.2793P]
where P = (Fo2 + 2Fc2)/3
3065 reflections(Δ/σ)max = 0.002
146 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C12H22NOSi+·ClV = 1544.86 (11) Å3
Mr = 259.85Z = 4
Monoclinic, P21/nCu Kα radiation
a = 14.2611 (4) ŵ = 2.79 mm1
b = 6.7587 (2) ÅT = 295 K
c = 16.0316 (9) Å0.44 × 0.18 × 0.06 mm
β = 91.252 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3065 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2023 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 1.000Rint = 0.034
5741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.244H-atom parameters constrained
S = 1.14Δρmax = 0.42 e Å3
3065 reflectionsΔρmin = 0.46 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.79604 (9)0.16189 (18)0.66227 (8)0.0740 (4)
Si0.60028 (10)0.1988 (3)0.36494 (9)0.0772 (5)
O11.0447 (2)0.4507 (5)0.3547 (2)0.0716 (9)
H11.07730.35220.34840.107*
N10.7889 (3)0.2955 (6)0.6591 (2)0.0607 (9)
H1A0.78480.35260.70900.091*
H1B0.83990.33910.63400.091*
H1C0.79260.16490.66540.091*
C10.8001 (3)0.3071 (6)0.4778 (2)0.0532 (9)
C20.8626 (3)0.1619 (7)0.4569 (3)0.0631 (11)
H2A0.84980.03120.47060.076*
C30.9446 (3)0.2058 (7)0.4155 (3)0.0672 (12)
H3A0.98560.10490.40110.081*
C40.9650 (3)0.3994 (7)0.3960 (3)0.0566 (10)
C50.9045 (3)0.5478 (7)0.4181 (3)0.0611 (10)
H5A0.91850.67890.40600.073*
C60.8227 (3)0.5012 (7)0.4584 (3)0.0627 (11)
H6A0.78190.60230.47280.075*
C70.7046 (3)0.3453 (7)0.6075 (3)0.0654 (11)
H7A0.69920.48800.60290.078*
H7B0.64910.29650.63480.078*
C80.7093 (3)0.2553 (7)0.5201 (3)0.0636 (11)
H8A0.70770.11110.52640.076*
C90.6207 (4)0.3158 (8)0.4699 (3)0.0745 (13)
H9A0.62250.45800.46220.089*
H9B0.56680.28680.50370.089*
C100.6136 (6)0.0743 (10)0.3729 (5)0.119 (2)
H10A0.60380.13270.31880.179*
H10B0.56830.12570.41060.179*
H10C0.67560.10550.39340.179*
C110.4808 (4)0.2622 (16)0.3295 (6)0.156 (4)
H11A0.46860.20450.27560.234*
H11B0.47480.40340.32570.234*
H11C0.43670.21190.36850.234*
C120.6839 (5)0.2972 (12)0.2874 (4)0.108 (2)
H12A0.67250.23430.23440.163*
H12B0.74710.27040.30610.163*
H12C0.67530.43740.28160.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0907 (9)0.0624 (7)0.0700 (7)0.0036 (6)0.0276 (6)0.0015 (5)
Si0.0625 (8)0.0911 (11)0.0776 (9)0.0034 (7)0.0070 (6)0.0219 (8)
O10.0607 (18)0.075 (2)0.080 (2)0.0050 (16)0.0195 (15)0.0089 (18)
N10.067 (2)0.062 (2)0.0531 (18)0.0084 (18)0.0123 (16)0.0044 (16)
C10.053 (2)0.061 (2)0.0455 (19)0.0004 (18)0.0028 (15)0.0042 (17)
C20.071 (3)0.053 (2)0.066 (3)0.004 (2)0.010 (2)0.001 (2)
C30.072 (3)0.058 (2)0.072 (3)0.004 (2)0.013 (2)0.001 (2)
C40.054 (2)0.066 (2)0.050 (2)0.0039 (19)0.0031 (16)0.0018 (18)
C50.073 (3)0.054 (2)0.056 (2)0.002 (2)0.0016 (19)0.0050 (19)
C60.069 (3)0.060 (2)0.059 (2)0.010 (2)0.0017 (19)0.002 (2)
C70.073 (3)0.068 (3)0.056 (2)0.001 (2)0.009 (2)0.006 (2)
C80.068 (3)0.066 (3)0.057 (2)0.005 (2)0.0051 (19)0.006 (2)
C90.071 (3)0.082 (3)0.070 (3)0.002 (3)0.001 (2)0.012 (3)
C100.139 (6)0.090 (5)0.130 (6)0.005 (5)0.014 (5)0.019 (4)
C110.042 (3)0.243 (11)0.182 (8)0.042 (4)0.031 (4)0.097 (8)
C120.127 (6)0.128 (6)0.070 (3)0.010 (5)0.005 (3)0.007 (4)
Geometric parameters (Å, º) top
Si—C111.835 (6)C5—H5A0.9300
Si—C101.860 (7)C6—H6A0.9300
Si—C121.865 (7)C7—C81.532 (6)
Si—C91.876 (5)C7—H7A0.9700
O1—C41.372 (5)C7—H7B0.9700
O1—H10.8200C8—C91.537 (7)
N1—C71.484 (6)C8—H8A0.9800
N1—H1A0.8900C9—H9A0.9700
N1—H1B0.8900C9—H9B0.9700
N1—H1C0.8900C10—H10A0.9600
C1—C21.373 (6)C10—H10B0.9600
C1—C61.389 (6)C10—H10C0.9600
C1—C81.516 (6)C11—H11A0.9600
C2—C31.388 (6)C11—H11B0.9600
C2—H2A0.9300C11—H11C0.9600
C3—C41.379 (6)C12—H12A0.9600
C3—H3A0.9300C12—H12B0.9600
C4—C51.375 (6)C12—H12C0.9600
C5—C61.381 (6)
C11—Si—C10110.2 (4)N1—C7—H7B109.3
C11—Si—C12108.3 (4)C8—C7—H7B109.3
C10—Si—C12109.5 (4)H7A—C7—H7B107.9
C11—Si—C9107.7 (3)C1—C8—C7111.8 (4)
C10—Si—C9110.1 (3)C1—C8—C9113.9 (4)
C12—Si—C9111.1 (3)C7—C8—C9108.7 (4)
C4—O1—H1109.5C1—C8—H8A107.3
C7—N1—H1A109.5C7—C8—H8A107.3
C7—N1—H1B109.5C9—C8—H8A107.3
H1A—N1—H1B109.5C8—C9—Si117.8 (3)
C7—N1—H1C109.5C8—C9—H9A107.9
H1A—N1—H1C109.5Si—C9—H9A107.9
H1B—N1—H1C109.5C8—C9—H9B107.9
C2—C1—C6117.7 (4)Si—C9—H9B107.9
C2—C1—C8120.7 (4)H9A—C9—H9B107.2
C6—C1—C8121.6 (4)Si—C10—H10A109.5
C1—C2—C3121.5 (4)Si—C10—H10B109.5
C1—C2—H2A119.2H10A—C10—H10B109.5
C3—C2—H2A119.2Si—C10—H10C109.5
C4—C3—C2119.7 (4)H10A—C10—H10C109.5
C4—C3—H3A120.2H10B—C10—H10C109.5
C2—C3—H3A120.2Si—C11—H11A109.5
O1—C4—C5118.1 (4)Si—C11—H11B109.5
O1—C4—C3122.0 (4)H11A—C11—H11B109.5
C5—C4—C3119.8 (4)Si—C11—H11C109.5
C4—C5—C6119.7 (4)H11A—C11—H11C109.5
C4—C5—H5A120.2H11B—C11—H11C109.5
C6—C5—H5A120.2Si—C12—H12A109.5
C5—C6—C1121.5 (4)Si—C12—H12B109.5
C5—C6—H6A119.2H12A—C12—H12B109.5
C1—C6—H6A119.2Si—C12—H12C109.5
N1—C7—C8111.7 (4)H12A—C12—H12C109.5
N1—C7—H7A109.3H12B—C12—H12C109.5
C8—C7—H7A109.3
C6—C1—C2—C31.7 (7)C6—C1—C8—C763.8 (5)
C8—C1—C2—C3177.7 (4)C2—C1—C8—C9119.4 (5)
C1—C2—C3—C41.0 (7)C6—C1—C8—C960.0 (6)
C2—C3—C4—O1179.6 (4)N1—C7—C8—C152.4 (5)
C2—C3—C4—C50.5 (7)N1—C7—C8—C9179.1 (4)
O1—C4—C5—C6178.8 (4)C1—C8—C9—Si62.4 (5)
C3—C4—C5—C61.3 (7)C7—C8—C9—Si172.2 (4)
C4—C5—C6—C10.5 (7)C11—Si—C9—C8169.6 (5)
C2—C1—C6—C51.0 (7)C10—Si—C9—C849.4 (5)
C8—C1—C6—C5178.4 (4)C12—Si—C9—C872.0 (5)
C2—C1—C8—C7116.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cli0.822.233.012 (4)160
N1—H1A···Clii0.892.393.146 (3)143
N1—H1B···O1iii0.892.182.941 (5)143
N1—H1C···Cl0.892.213.093 (4)172
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H22NOSi+·Cl
Mr259.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)14.2611 (4), 6.7587 (2), 16.0316 (9)
β (°) 91.252 (3)
V3)1544.86 (11)
Z4
Radiation typeCu Kα
µ (mm1)2.79
Crystal size (mm)0.44 × 0.18 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.713, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5741, 3065, 2023
Rint0.034
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.244, 1.14
No. of reflections3065
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.46

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cli0.822.233.012 (4)160.4
N1—H1A···Clii0.892.393.146 (3)143.2
N1—H1B···O1iii0.892.182.941 (5)143.4
N1—H1C···Cl0.892.213.093 (4)172.0
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x+2, y+1, z+1.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer. YMH acknowledges partial support from the NSF Rise award (grant No. HRD 0627276).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlasucci, V., Hart, R., Mestre, V. L., Hahne, D. J., Burlager, M., Huttenhower, H., Thio, B. J. R., Pollet, P., Liotta, C. L. & Eckert, C. A. (2010). Fuel, 89, 1315–1319.  Web of Science CrossRef CAS Google Scholar
First citationFrankel, M., Broze, M., Gertner, D., Rotman, A., Shenhar, A. & Zilkha, A. (1968). J. Med. Chem. 11, 857–860.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHijji, Y. M., Butcher, R. J., Jasinski, J. P., White, Z. & Rosenberg, R. C. (2011). Acta Cryst. E67, o2553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-R., Lusker, K. L., Yu, J.-J. & Garno, J. C. (2009). ACS Nano, 3, 2023–2035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLorenz, M., Linn, M. L. V. & Cook, J. M. (2010). Curr. Org. Synth. 7, 189–223.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds