organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4,6-dimeth­­oxy­pyrimidin-1-ium p-toluene­sulfonate

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 7 September 2011; accepted 14 September 2011; online 17 September 2011)

In the title salt, C6H10N3O2+·C7H7O3S, the 2-amino-4,6-dimeth­oxy­pyrimidinium cation inter­acts with the sulfonate group of the p-toluene­sulfonate anion via a pair of N—H⋯O hydrogen bonds, forming a cyclic hydrogen-bonded R22(8) motif, which in the crystal is linked by further intemolecular N—H⋯O hydrogen bonds, forming supra­molecular chains along the c axis. Furthermore, neighboring chains are inter­linked via weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers.

Related literature

For background to crystal engineering and supra­molecular chemistry, see: Desiraju (1989[Desiraju, G. R. (1989). in Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). For the role of amino­pyrimidine–carboxyl­ate inter­actions in protein-nuleic acid recognition and protein-drug binding, see: Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533-536.]); Baker & Santi (1965[Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.]). For the role of sulfate–protein inter­actions, see: Pflugrath & Quiocho (1985[Pflugrath, J. W. & Quiocho, F. A. (1985). Nature (London), 314, 257-260.]); Jacobson & Quiocho (1988[Jacobson, B. L. & Quiocho, F. A. (1988). J. Mol. Biol. 204, 783-787.]). For information on carb­oxy­lic acid inter­actions with a 2-amino heterocyclic ring system, see: Etter & Adsmond (1990[Etter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589-591.]); Lynch & Jones (2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]); Allen et al. (1998[Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043-1044.]). For a survey of hydrogen-bonding patterns involving sulfonate salts, see: Haynes et al. (2004[Haynes, D. A., Chisholm, J. A., Jones, W. & Motherwell, W. D. S. (2004). CrystEngComm, 6, 584-588.]). For hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes, see: Russell et al. (1994[Russell, V. A., Etter, M. C. & &Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941-1952.]); Cai et al. (2001[Cai, J., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For related structures, see: Low et al. (2002[Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289-o294.]); Arora & Sundaralingam (1971[Arora, S. K. & Sundaralingam, M. (1971). Acta Cryst. B27, 1293-1298.]); Balasubramani et al. (2007[Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2007). Chem. Cent. J. 1, article number 28.]); Hemamalini et al. (2005[Hemamalini, M., Mu­thiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95-o97.]); Thanigaimani et al. (2007[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. C63, o295-o300.], 2008[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2008). Acta Cryst. E64, o107-o108.]); Ebenezer & Muthiah (2010[Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2634-o2635.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N3O2+·C7H7O3S

  • Mr = 327.37

  • Orthorhombic, P c a 21

  • a = 15.2116 (2) Å

  • b = 12.1422 (2) Å

  • c = 8.3497 (1) Å

  • V = 1542.21 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.965

  • 35029 measured reflections

  • 5264 independent reflections

  • 4257 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.04

  • 5264 reflections

  • 202 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) 2449, Friedel pairs

  • Flack parameter: −0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 1.90 2.7441 (16) 169
N2—H2A⋯O3i 0.86 2.20 3.0233 (19) 161
N2—H2B⋯O3 0.86 2.12 2.9398 (18) 159
C8—H8B⋯O5ii 0.96 2.37 3.248 (2) 152
C7—H7ACgiii 0.96 2.96 3.7815 (18) 145
Symmetry codes: (i) [-x+1, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and POV-RAY (Cason, 2004)[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org.]; software used to prepare material for publication: PLATON.

Supporting information


Comment top

A study of non-covalent interactions, such as hydrogen bonding, plays a key role in molecular recognition and crystal engineering (Desiraju, 1989). Pyrimidines and aminopyrimidine derivatives are biologically important compounds and they manifest themselves in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Their interactions with carboxylic acids are of utmost importance since they are involved in protein-nucleic acid recognition and drug-protein recognition processes, where the pyrimidine moiety of a drug forms hydrogen bonding with the carboxyl group of the protein. Aminopyrimidines readily pair up with carboxylic acids to form a wide variety of 1:1 adducts with mono and dicarboxylic acids (Etter & Adsmond, 1990). The R22(8) motif is a robust synthon which is frequently observed when a carboxylic acid interacts with a 2-amino heterocyclic ring system (Lynch & Jones, 2004). This motif is also recognized to be one of the top 5 motifs among the 24 commonly occurring motifs in crystal structures (Allen et al., 1998). In a sulfate-binding protein, the sulfate anion is bound mainly by seven hydrogen bonds, five of which are from the main chain peptide NH groups (Pflugrath & Quiocho, 1985; Jacobson & Quiocho, 1988). Hydrogen bonding patterns involving sulfonate groups in biological systems and metal complexes are of current interest (Russell et al., 1994; Cai et al., 2001). Such interactions can be used for designing supramolecular architectures.

The crystal structures of 2-amino-4, 6-dimethoxy pyrimidine (Low et al., 2002) and p-toluene sulfonic acid monohydrate (Arora & Sundaralingam, 1971) have already been reported. Investigations of a fairly large number of crystal structure of 2-amino-4,6-dimethoxy/dimethyl pyrimidine salts and co crystals involving carboxylates (Thanigaimani et al., 2007; Thanigaimani et al., 2008; Ebenezer & Muthiah, 2010) and a few sulfonates (Balasubramani et al., 2007; Hemamalini et al., 2005) have already been reported from our laboratory. They reveal the formation of certain robust motifs and a variety of supramolecular architectures. A survey by Haynes et al. (2004) on the sulfonate salts, revealed various hydrogen bonding patterns and their preferences with specific functional groups. As part of our investigation to gain more insight into hydrogen bonding interactions involving aminopyrimidine and sulfonates, the crystal structure of title compound is presented herein.

The asymmetric unit of the title compound (I) (Fig. 1) contains one 2-amino-4,6-dimethoxypyrimidinium cation and one p-toluenesulfonate anion. The 2- amino-4,6-dimethoxy pyrimidinium cation is protonated at N1. Protonation of the pyrimidine base on the N1 site is reflected by an increase in bond angle. The C2—N3—C4 angle of the unprotonated atom N3 is 116.52 (12)° while for protonated atom N1, the C2—N1—C6 angle is 120.64 (11)°. The sulfonate group of the p-toluenesulfonate anion interacts with 2-amino-4,6-dimethoxypyrimidinium cation via a pair of N—H···O hydrogen bonds, forming a hydrogen bonded ring motif with graph-set notation R22(8) (Etter, 1990; Bernstein et al., 1995). The sulfonate group mimics the carboxylate anion's mode of association, which is more commonly seen when binding with 2-aminopyrimidines. The R22(8) motif links O3 and O4 atoms of sulfonate anion with the protonated atom N1 and the 2- amino group of the pyrimidinium cation.

This motif is further interlinked by an N—H···O hydrogen bond, involving 2- amino group of the 2-amino-4,6-dimethoxy pyrimidinium cation and O3i (symmetry code: i - x,-y,-1/2 + z)) atom of p-toluenesulfonate anion to form a supramolecular chain along the c axis (Fig. 2). The neighboring supramolecular chain is further interlinked via C—H···O hydrogen bond involving a methoxy group (C8) of cation and O5ii (symmetry code: 1/2 - x, y, -1/2 + z) atom of sulfonate anion. Thus intermolecular hydrogen bonds generate a 2-D supramolecular network. The crystal structure is further stabilized by C—H··· π interaction. The C—H···π interaction is observed between the methoxy group (C7—H7A) of pyrimidinium cation with phenyl ring of p-toluenesulfonate anion (C—H···π = 3.7815 (18) Å, 145°). The identification of such supramolecular patterns will help us design and construct preferred hydrogen bonding patterns on drug like molecules.

Related literature top

For background to crystal engineering and supramolecular chemistry, see: Desiraju (1989). For the role of aminopyrimidine–carboxylate interactions in protein-nuleic acid recognition and protein-drug binding, see: Hunt et al. (1980); Baker & Santi (1965). For the role of sulfate–protein interactions, see: Pflugrath & Quiocho (1985); Jacobson & Quiocho (1988). For information on carboxylic acid interactions with a 2-amino heterocyclic ring system, see: Etter & Adsmond (1990); Lynch & Jones (2004); Allen et al. (1998). For a survey of hydrogen-bonding patterns involving sulfonate salts, see: Haynes et al. (2004). For hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes, see: Russell et al. (1994); Cai et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For related structures, see: Low et al. (2002); Arora & Sundaralingam (1971); Balasubramani et al. (2007); Hemamalini et al. (2005); Thanigaimani et al. (2007, 2008); Ebenezer & Muthiah (2010).

Experimental top

A hot ethanolic solution (20 ml) of 2-amino-4,6-dimethoxypyrimidine (38 mg, Aldrich) and p-toluene sulfonic acid (47 mg, Loba Chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature; after a few days, colorless prismatic crystals were obtained.

Refinement top

All hydrogen atoms were positioned geometrically and were refined using a riding model. The N—H and C—H bond lengths are 0.86 and 0.93–0.96 Å, respectively [Uiso(H)=1.2-1.5Ueq (parent atom)].

Structure description top

A study of non-covalent interactions, such as hydrogen bonding, plays a key role in molecular recognition and crystal engineering (Desiraju, 1989). Pyrimidines and aminopyrimidine derivatives are biologically important compounds and they manifest themselves in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Their interactions with carboxylic acids are of utmost importance since they are involved in protein-nucleic acid recognition and drug-protein recognition processes, where the pyrimidine moiety of a drug forms hydrogen bonding with the carboxyl group of the protein. Aminopyrimidines readily pair up with carboxylic acids to form a wide variety of 1:1 adducts with mono and dicarboxylic acids (Etter & Adsmond, 1990). The R22(8) motif is a robust synthon which is frequently observed when a carboxylic acid interacts with a 2-amino heterocyclic ring system (Lynch & Jones, 2004). This motif is also recognized to be one of the top 5 motifs among the 24 commonly occurring motifs in crystal structures (Allen et al., 1998). In a sulfate-binding protein, the sulfate anion is bound mainly by seven hydrogen bonds, five of which are from the main chain peptide NH groups (Pflugrath & Quiocho, 1985; Jacobson & Quiocho, 1988). Hydrogen bonding patterns involving sulfonate groups in biological systems and metal complexes are of current interest (Russell et al., 1994; Cai et al., 2001). Such interactions can be used for designing supramolecular architectures.

The crystal structures of 2-amino-4, 6-dimethoxy pyrimidine (Low et al., 2002) and p-toluene sulfonic acid monohydrate (Arora & Sundaralingam, 1971) have already been reported. Investigations of a fairly large number of crystal structure of 2-amino-4,6-dimethoxy/dimethyl pyrimidine salts and co crystals involving carboxylates (Thanigaimani et al., 2007; Thanigaimani et al., 2008; Ebenezer & Muthiah, 2010) and a few sulfonates (Balasubramani et al., 2007; Hemamalini et al., 2005) have already been reported from our laboratory. They reveal the formation of certain robust motifs and a variety of supramolecular architectures. A survey by Haynes et al. (2004) on the sulfonate salts, revealed various hydrogen bonding patterns and their preferences with specific functional groups. As part of our investigation to gain more insight into hydrogen bonding interactions involving aminopyrimidine and sulfonates, the crystal structure of title compound is presented herein.

The asymmetric unit of the title compound (I) (Fig. 1) contains one 2-amino-4,6-dimethoxypyrimidinium cation and one p-toluenesulfonate anion. The 2- amino-4,6-dimethoxy pyrimidinium cation is protonated at N1. Protonation of the pyrimidine base on the N1 site is reflected by an increase in bond angle. The C2—N3—C4 angle of the unprotonated atom N3 is 116.52 (12)° while for protonated atom N1, the C2—N1—C6 angle is 120.64 (11)°. The sulfonate group of the p-toluenesulfonate anion interacts with 2-amino-4,6-dimethoxypyrimidinium cation via a pair of N—H···O hydrogen bonds, forming a hydrogen bonded ring motif with graph-set notation R22(8) (Etter, 1990; Bernstein et al., 1995). The sulfonate group mimics the carboxylate anion's mode of association, which is more commonly seen when binding with 2-aminopyrimidines. The R22(8) motif links O3 and O4 atoms of sulfonate anion with the protonated atom N1 and the 2- amino group of the pyrimidinium cation.

This motif is further interlinked by an N—H···O hydrogen bond, involving 2- amino group of the 2-amino-4,6-dimethoxy pyrimidinium cation and O3i (symmetry code: i - x,-y,-1/2 + z)) atom of p-toluenesulfonate anion to form a supramolecular chain along the c axis (Fig. 2). The neighboring supramolecular chain is further interlinked via C—H···O hydrogen bond involving a methoxy group (C8) of cation and O5ii (symmetry code: 1/2 - x, y, -1/2 + z) atom of sulfonate anion. Thus intermolecular hydrogen bonds generate a 2-D supramolecular network. The crystal structure is further stabilized by C—H··· π interaction. The C—H···π interaction is observed between the methoxy group (C7—H7A) of pyrimidinium cation with phenyl ring of p-toluenesulfonate anion (C—H···π = 3.7815 (18) Å, 145°). The identification of such supramolecular patterns will help us design and construct preferred hydrogen bonding patterns on drug like molecules.

For background to crystal engineering and supramolecular chemistry, see: Desiraju (1989). For the role of aminopyrimidine–carboxylate interactions in protein-nuleic acid recognition and protein-drug binding, see: Hunt et al. (1980); Baker & Santi (1965). For the role of sulfate–protein interactions, see: Pflugrath & Quiocho (1985); Jacobson & Quiocho (1988). For information on carboxylic acid interactions with a 2-amino heterocyclic ring system, see: Etter & Adsmond (1990); Lynch & Jones (2004); Allen et al. (1998). For a survey of hydrogen-bonding patterns involving sulfonate salts, see: Haynes et al. (2004). For hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes, see: Russell et al. (1994); Cai et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For related structures, see: Low et al. (2002); Arora & Sundaralingam (1971); Balasubramani et al. (2007); Hemamalini et al. (2005); Thanigaimani et al. (2007, 2008); Ebenezer & Muthiah (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. A view of supramolecular chain running along the c axis. [symmetry code: (i)1 - x,-y,-1/2 + z]
2-Amino-4,6-dimethoxypyrimidin-1-ium p-toluenesulfonate top
Crystal data top
C6H10N3O2+·C7H7O3SF(000) = 688
Mr = 327.37Dx = 1.410 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 5264 reflections
a = 15.2116 (2) Åθ = 1.7–31.9°
b = 12.1422 (2) ŵ = 0.24 mm1
c = 8.3497 (1) ÅT = 296 K
V = 1542.21 (4) Å3Prism, colourless
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5264 independent reflections
Radiation source: fine-focus sealed tube4257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 31.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2122
Tmin = 0.954, Tmax = 0.965k = 1718
35029 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0019P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5264 reflectionsΔρmax = 0.21 e Å3
202 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983) 2449, Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C6H10N3O2+·C7H7O3SV = 1542.21 (4) Å3
Mr = 327.37Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 15.2116 (2) ŵ = 0.24 mm1
b = 12.1422 (2) ÅT = 296 K
c = 8.3497 (1) Å0.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5264 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4257 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.965Rint = 0.032
35029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.23 e Å3
5264 reflectionsAbsolute structure: Flack (1983) 2449, Friedel pairs
202 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19507 (6)0.22303 (9)0.38465 (14)0.0511 (3)
O20.11421 (6)0.06832 (9)0.04130 (13)0.0501 (3)
N10.29344 (7)0.11712 (9)0.26107 (13)0.0402 (3)
N20.40346 (7)0.01635 (11)0.14147 (18)0.0496 (4)
N30.25982 (7)0.03173 (10)0.08987 (14)0.0404 (3)
C20.31858 (9)0.03320 (10)0.16420 (17)0.0390 (3)
C40.17567 (9)0.00833 (12)0.11384 (17)0.0403 (4)
C50.14437 (8)0.07733 (12)0.21022 (17)0.0428 (3)
C60.20693 (8)0.13947 (11)0.28454 (15)0.0400 (4)
C70.14081 (10)0.16405 (13)0.0479 (2)0.0540 (4)
C80.10582 (10)0.25880 (15)0.4142 (2)0.0563 (5)
S10.50030 (2)0.23323 (3)0.42863 (6)0.0428 (1)
O30.52077 (8)0.12267 (9)0.37468 (16)0.0570 (4)
O40.41176 (7)0.26565 (10)0.3831 (2)0.0647 (5)
O50.51823 (10)0.24747 (13)0.59809 (18)0.0739 (5)
C90.57224 (9)0.32344 (11)0.32795 (17)0.0422 (3)
C100.66162 (10)0.30482 (15)0.3425 (2)0.0591 (5)
C110.72049 (13)0.37635 (17)0.2707 (3)0.0705 (6)
C120.69171 (15)0.46724 (14)0.1854 (2)0.0648 (6)
C130.60373 (15)0.48291 (15)0.1698 (3)0.0698 (6)
C140.54237 (12)0.41230 (13)0.2414 (2)0.0601 (5)
C150.7578 (2)0.54823 (18)0.1173 (3)0.0919 (9)
H10.332700.156600.308100.0480*
H2A0.420800.035900.079500.0600*
H2B0.441400.057600.188700.0600*
H50.084600.091100.222800.0510*
H7A0.167400.216500.023300.0810*
H7B0.182500.142900.128600.0810*
H7C0.090300.196600.098000.0810*
H8A0.073100.199800.462100.0840*
H8B0.078800.279500.314800.0840*
H8C0.106400.320900.485400.0840*
H100.682000.244500.400200.0710*
H110.780500.363100.279800.0850*
H130.583600.542300.109700.0840*
H140.482400.425300.230600.0720*
H15A0.729300.595000.040600.1380*
H15B0.804500.508600.065700.1380*
H15C0.781600.592300.202300.1380*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0369 (5)0.0605 (6)0.0559 (6)0.0002 (4)0.0028 (4)0.0136 (5)
O20.0340 (4)0.0573 (6)0.0589 (6)0.0034 (4)0.0075 (4)0.0086 (5)
N10.0323 (5)0.0477 (6)0.0407 (5)0.0051 (4)0.0035 (4)0.0014 (4)
N20.0311 (5)0.0558 (7)0.0619 (8)0.0011 (5)0.0030 (5)0.0073 (6)
N30.0325 (5)0.0456 (5)0.0431 (5)0.0023 (4)0.0030 (4)0.0026 (4)
C20.0337 (5)0.0427 (6)0.0405 (6)0.0006 (4)0.0012 (5)0.0067 (5)
C40.0327 (6)0.0474 (7)0.0409 (6)0.0038 (5)0.0056 (5)0.0060 (5)
C50.0299 (5)0.0512 (7)0.0473 (6)0.0002 (5)0.0042 (5)0.0005 (6)
C60.0363 (6)0.0466 (7)0.0370 (6)0.0005 (5)0.0020 (5)0.0043 (5)
C70.0480 (7)0.0532 (7)0.0609 (9)0.0052 (6)0.0075 (7)0.0063 (7)
C80.0427 (7)0.0624 (9)0.0638 (9)0.0085 (6)0.0062 (7)0.0131 (8)
S10.0333 (1)0.0475 (2)0.0477 (2)0.0056 (1)0.0002 (1)0.0003 (2)
O30.0512 (5)0.0429 (5)0.0770 (8)0.0034 (4)0.0008 (5)0.0019 (5)
O40.0348 (5)0.0570 (7)0.1024 (11)0.0026 (4)0.0073 (6)0.0052 (6)
O50.0665 (8)0.1106 (12)0.0446 (6)0.0298 (7)0.0061 (6)0.0007 (6)
C90.0424 (6)0.0414 (6)0.0427 (6)0.0060 (5)0.0025 (5)0.0021 (5)
C100.0417 (7)0.0613 (9)0.0742 (11)0.0056 (6)0.0011 (7)0.0173 (9)
C110.0507 (9)0.0794 (12)0.0814 (12)0.0191 (8)0.0087 (9)0.0105 (10)
C120.0847 (13)0.0603 (9)0.0493 (8)0.0265 (8)0.0092 (8)0.0011 (8)
C130.0933 (14)0.0511 (9)0.0649 (10)0.0095 (8)0.0067 (10)0.0150 (8)
C140.0591 (10)0.0530 (8)0.0682 (10)0.0010 (7)0.0086 (8)0.0096 (8)
C150.123 (2)0.0774 (13)0.0754 (13)0.0454 (14)0.0247 (14)0.0022 (11)
Geometric parameters (Å, º) top
S1—O41.4538 (12)C7—H7B0.9600
S1—O51.4513 (16)C7—H7C0.9600
S1—C91.7618 (14)C8—H8B0.9600
S1—O31.4498 (12)C8—H8C0.9600
O1—C61.3269 (17)C8—H8A0.9600
O1—C81.4466 (18)C9—C101.384 (2)
O2—C71.4386 (19)C9—C141.376 (2)
O2—C41.3310 (17)C10—C111.384 (3)
N1—C21.3560 (17)C11—C121.385 (3)
N1—C61.3579 (16)C12—C131.358 (3)
N2—C21.3210 (17)C12—C151.517 (3)
N3—C41.3264 (17)C13—C141.401 (3)
N3—C21.3438 (18)C10—H100.9300
N1—H10.8600C11—H110.9300
N2—H2B0.8600C13—H130.9300
N2—H2A0.8600C14—H140.9300
C4—C51.399 (2)C15—H15A0.9600
C5—C61.3638 (18)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C7—H7A0.9600
S1···H2B3.0600C10···H7Aiv2.8700
S1···H2Ai2.9600C10···H7Bi3.0900
S1···H12.8900C11···H7Aiv2.9500
O1···C2ii3.2870 (17)C11···H15Bix2.9600
O2···O3iii3.1944 (17)C15···H8Cx2.8300
O3···C5iv3.3642 (18)H1···O41.9000
O3···N22.9398 (18)H1···S12.8900
O3···N2i3.0233 (19)H1···H2B2.2700
O3···O2iv3.1944 (17)H2A···O5vii2.7400
O4···N12.7441 (16)H2A···O3vii2.2000
O5···C5ii3.356 (2)H2A···S1vii2.9600
O5···C8ii3.248 (2)H2B···O2iv2.9100
O1···H15Av2.8100H2B···O32.1200
O2···H2Biii2.9100H2B···H12.2700
O3···H102.8700H2B···S13.0600
O3···H2B2.1200H2B···H8Aviii2.5700
O3···H2Ai2.2000H5···C82.6100
O4···H142.5600H5···H8A2.4000
O4···H11.9000H5···H8B2.4100
O5···H5ii2.6700H5···O5viii2.6700
O5···H8Bii2.3700H7A···N32.7100
O5···H2Ai2.7400H7A···C11iii2.9500
O5···H7Cvi2.8300H7A···C10iii2.8700
N1···O42.7441 (16)H7A···H10vii2.5300
N1···C4ii3.3492 (18)H7B···C10vii3.0900
N2···O3vii3.0233 (19)H7B···N32.5600
N2···O32.9398 (18)H7B···H10vii2.4100
N3···C6viii3.3281 (17)H7B···N3viii2.8500
N2···H8Aviii2.7100H7B···C2viii2.7500
N3···H7B2.5600H7C···H8Axiii2.5400
N3···H7A2.7100H7C···O5xiv2.8300
N3···H7Bii2.8500H7C···C8xiii3.0800
C2···O1viii3.2870 (17)H8A···C52.7900
C2···C7ii3.449 (2)H8A···H52.4000
C2···C6viii3.4445 (19)H8A···H7Cxii2.5400
C4···N1viii3.3492 (18)H8A···N2ii2.7100
C5···O5viii3.356 (2)H8A···H2Bii2.5700
C5···O3iii3.3642 (18)H8B···H52.4100
C6···C2ii3.4445 (19)H8B···O5viii2.3700
C6···N3ii3.3281 (17)H8B···C52.7900
C7···C2viii3.449 (2)H8C···H15Bv2.5600
C7···C10vii3.577 (2)H8C···C15v2.8300
C8···C15v3.559 (3)H10···O32.8700
C8···O5viii3.248 (2)H10···C7i2.9000
C10···C7i3.577 (2)H10···H7Ai2.5300
C11···C15ix3.583 (3)H10···H7Bi2.4100
C15···C8x3.559 (3)H11···H15B2.5400
C15···C11xi3.583 (3)H11···C7i3.0600
C2···H7Bii2.7500H13···H15A2.3800
C5···H8A2.7900H14···O42.5600
C5···H8B2.7900H15A···H132.3800
C7···H11vii3.0600H15A···O1x2.8100
C7···H10vii2.9000H15B···H112.5400
C8···H7Cxii3.0800H15B···H8Cx2.5600
C8···H52.6100H15B···C11xi2.9600
O5—S1—C9105.93 (8)H7B—C7—H7C109.00
O3—S1—C9107.10 (7)H8B—C8—H8C109.00
O3—S1—O4111.62 (8)O1—C8—H8A109.00
O3—S1—O5111.89 (9)O1—C8—H8B109.00
O4—S1—O5113.38 (9)O1—C8—H8C109.00
O4—S1—C9106.40 (7)H8A—C8—H8B110.00
C6—O1—C8117.69 (11)H8A—C8—H8C109.00
C4—O2—C7118.70 (11)S1—C9—C10117.83 (11)
C2—N1—C6120.64 (11)S1—C9—C14122.21 (12)
C2—N3—C4116.52 (12)C10—C9—C14119.92 (14)
C6—N1—H1120.00C9—C10—C11119.68 (16)
C2—N1—H1120.00C10—C11—C12121.23 (18)
C2—N2—H2B120.00C11—C12—C13118.21 (18)
C2—N2—H2A120.00C11—C12—C15120.0 (2)
H2A—N2—H2B120.00C13—C12—C15121.76 (18)
N2—C2—N3119.53 (12)C12—C13—C14121.99 (18)
N1—C2—N2118.54 (12)C9—C14—C13118.94 (17)
N1—C2—N3121.92 (12)C9—C10—H10120.00
O2—C4—N3119.47 (13)C11—C10—H10120.00
N3—C4—C5125.08 (13)C10—C11—H11119.00
O2—C4—C5115.45 (12)C12—C11—H11119.00
C4—C5—C6115.83 (12)C12—C13—H13119.00
O1—C6—N1112.06 (11)C14—C13—H13119.00
N1—C6—C5120.00 (12)C9—C14—H14121.00
O1—C6—C5127.94 (12)C13—C14—H14121.00
C4—C5—H5122.00C12—C15—H15A110.00
C6—C5—H5122.00C12—C15—H15B109.00
H7A—C7—H7B109.00C12—C15—H15C110.00
H7A—C7—H7C109.00H15A—C15—H15B109.00
O2—C7—H7A109.00H15A—C15—H15C110.00
O2—C7—H7B109.00H15B—C15—H15C109.00
O2—C7—H7C109.00
O4—S1—C9—C10175.52 (13)C4—N3—C2—N2177.98 (13)
O3—S1—C9—C1056.03 (14)C2—N3—C4—O2178.80 (12)
O3—S1—C9—C14126.16 (13)O2—C4—C5—C6179.77 (12)
O5—S1—C9—C14114.27 (14)N3—C4—C5—C60.5 (2)
O4—S1—C9—C146.66 (15)C4—C5—C6—N10.8 (2)
O5—S1—C9—C1063.54 (14)C4—C5—C6—O1178.16 (13)
C8—O1—C6—N1177.13 (12)S1—C9—C10—C11177.39 (15)
C8—O1—C6—C53.9 (2)C14—C9—C10—C110.5 (3)
C7—O2—C4—N36.4 (2)S1—C9—C14—C13177.50 (14)
C7—O2—C4—C5174.33 (13)C10—C9—C14—C130.3 (2)
C2—N1—C6—C50.07 (18)C9—C10—C11—C120.6 (3)
C2—N1—C6—O1179.01 (12)C10—C11—C12—C131.9 (3)
C6—N1—C2—N2178.19 (13)C10—C11—C12—C15175.99 (19)
C6—N1—C2—N31.0 (2)C11—C12—C13—C142.1 (3)
C4—N3—C2—N11.2 (2)C15—C12—C13—C14175.73 (19)
C2—N3—C4—C50.4 (2)C12—C13—C14—C91.1 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x1/2, y, z; (iv) x+1/2, y, z; (v) x+1, y+1, z+1/2; (vi) x+1/2, y, z+1; (vii) x+1, y, z1/2; (viii) x+1/2, y, z1/2; (ix) x+3/2, y, z+1/2; (x) x+1, y+1, z1/2; (xi) x+3/2, y, z1/2; (xii) x, y, z+1/2; (xiii) x, y, z1/2; (xiv) x1/2, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.902.7441 (16)169
N2—H2A···O3vii0.862.203.0233 (19)161
N2—H2B···O30.862.122.9398 (18)159
C8—H8B···O5viii0.962.373.248 (2)152
C7—H7A···Cgiii0.962.963.7815 (18)145
Symmetry codes: (iii) x1/2, y, z; (vii) x+1, y, z1/2; (viii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC6H10N3O2+·C7H7O3S
Mr327.37
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)15.2116 (2), 12.1422 (2), 8.3497 (1)
V3)1542.21 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.954, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
35029, 5264, 4257
Rint0.032
(sin θ/λ)max1)0.743
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.04
No. of reflections5264
No. of parameters202
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23
Absolute structureFlack (1983) 2449, Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and POV-RAY (Cason, 2004), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.902.7441 (16)169
N2—H2A···O3i0.862.203.0233 (19)161
N2—H2B···O30.862.122.9398 (18)159
C8—H8B···O5ii0.962.373.248 (2)152
C7—H7A···Cgiii0.962.963.7815 (18)145
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1/2, y, z1/2; (iii) x1/2, y, z.
 

Acknowledgements

The authors thank the DST-India (FIST programme) for the use ofthe diffractometer at the School of Chemistry, Bharathidasan University. Tiruchirappalli, Tamilnadu, India

References

First citationAllen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.  Web of Science CrossRef Google Scholar
First citationArora, S. K. & Sundaralingam, M. (1971). Acta Cryst. B27, 1293–1298.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBaker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBalasubramani, K., Muthiah, P. T. & Lynch, D. E. (2007). Chem. Cent. J. 1, article number 28.  Web of Science CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137–1142.  Web of Science CSD CrossRef Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org.  Google Scholar
First citationDesiraju, G. R. (1989). in Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2634–o2635.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589–591.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaynes, D. A., Chisholm, J. A., Jones, W. & Motherwell, W. D. S. (2004). CrystEngComm, 6, 584–588.  Web of Science CrossRef CAS Google Scholar
First citationHemamalini, M., Mu­thiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJacobson, B. L. & Quiocho, F. A. (1988). J. Mol. Biol. 204, 783–787.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLow, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPflugrath, J. W. & Quiocho, F. A. (1985). Nature (London), 314, 257–260.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRussell, V. A., Etter, M. C. & &Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941–1952.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. C63, o295–o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2008). Acta Cryst. E64, o107–o108.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds