organic compounds
2-Amino-4,6-dimethoxypyrimidin-1-ium p-toluenesulfonate
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: tommtrichy@yahoo.co.in
In the title salt, C6H10N3O2+·C7H7O3S−, the 2-amino-4,6-dimethoxypyrimidinium cation interacts with the sulfonate group of the p-toluenesulfonate anion via a pair of N—H⋯O hydrogen bonds, forming a cyclic hydrogen-bonded R22(8) motif, which in the crystal is linked by further intemolecular N—H⋯O hydrogen bonds, forming supramolecular chains along the c axis. Furthermore, neighboring chains are interlinked via weak C—H⋯O hydrogen bonds and C—H⋯π interactions, forming layers.
Related literature
For background to crystal engineering and supramolecular chemistry, see: Desiraju (1989). For the role of aminopyrimidine–carboxylate interactions in protein-nuleic acid recognition and protein-drug binding, see: Hunt et al. (1980); Baker & Santi (1965). For the role of sulfate–protein interactions, see: Pflugrath & Quiocho (1985); Jacobson & Quiocho (1988). For information on carboxylic acid interactions with a 2-amino heterocyclic ring system, see: Etter & Adsmond (1990); Lynch & Jones (2004); Allen et al. (1998). For a survey of hydrogen-bonding patterns involving sulfonate salts, see: Haynes et al. (2004). For hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes, see: Russell et al. (1994); Cai et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For related structures, see: Low et al. (2002); Arora & Sundaralingam (1971); Balasubramani et al. (2007); Hemamalini et al. (2005); Thanigaimani et al. (2007, 2008); Ebenezer & Muthiah (2010).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON.
Supporting information
https://doi.org/10.1107/S160053681103755X/lh5333sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681103755X/lh5333Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S160053681103755X/lh5333Isup3.cml
A hot ethanolic solution (20 ml) of 2-amino-4,6-dimethoxypyrimidine (38 mg, Aldrich) and p-toluene sulfonic acid (47 mg, Loba Chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature; after a few days, colorless prismatic crystals were obtained.
All hydrogen atoms were positioned geometrically and were refined using a riding model. The N—H and C—H bond lengths are 0.86 and 0.93–0.96 Å, respectively [Uiso(H)=1.2-1.5Ueq (parent atom)].
A study of non-covalent interactions, such as hydrogen bonding, plays a key role in molecular recognition and crystal engineering (Desiraju, 1989). Pyrimidines and aminopyrimidine derivatives are biologically important compounds and they manifest themselves in nature as components of
Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Their interactions with are of utmost importance since they are involved in protein-nucleic acid recognition and drug-protein recognition processes, where the pyrimidine moiety of a drug forms hydrogen bonding with the carboxyl group of the protein. Aminopyrimidines readily pair up with to form a wide variety of 1:1 adducts with mono and dicarboxylic acids (Etter & Adsmond, 1990). The R22(8) motif is a robust synthon which is frequently observed when a carboxylic acid interacts with a 2-amino heterocyclic ring system (Lynch & Jones, 2004). This motif is also recognized to be one of the top 5 motifs among the 24 commonly occurring motifs in crystal structures (Allen et al., 1998). In a sulfate-binding protein, the sulfate anion is bound mainly by seven hydrogen bonds, five of which are from the main chain peptide NH groups (Pflugrath & Quiocho, 1985; Jacobson & Quiocho, 1988). Hydrogen bonding patterns involving sulfonate groups in biological systems and metal complexes are of current interest (Russell et al., 1994; Cai et al., 2001). Such interactions can be used for designing supramolecular architectures.The crystal structures of 2-amino-4, 6-dimethoxy pyrimidine (Low et al., 2002) and p-toluene sulfonic acid monohydrate (Arora & Sundaralingam, 1971) have already been reported. Investigations of a fairly large number of
of 2-amino-4,6-dimethoxy/dimethyl pyrimidine salts and co crystals involving carboxylates (Thanigaimani et al., 2007; Thanigaimani et al., 2008; Ebenezer & Muthiah, 2010) and a few sulfonates (Balasubramani et al., 2007; Hemamalini et al., 2005) have already been reported from our laboratory. They reveal the formation of certain robust motifs and a variety of supramolecular architectures. A survey by Haynes et al. (2004) on the sulfonate salts, revealed various hydrogen bonding patterns and their preferences with specific functional groups. As part of our investigation to gain more insight into hydrogen bonding interactions involving aminopyrimidine and sulfonates, the of title compound is presented herein.The
of the title compound (I) (Fig. 1) contains one 2-amino-4,6-dimethoxypyrimidinium cation and one p-toluenesulfonate anion. The 2- amino-4,6-dimethoxy pyrimidinium cation is protonated at N1. Protonation of the pyrimidine base on the N1 site is reflected by an increase in bond angle. The C2—N3—C4 angle of the unprotonated atom N3 is 116.52 (12)° while for protonated atom N1, the C2—N1—C6 angle is 120.64 (11)°. The sulfonate group of the p-toluenesulfonate anion interacts with 2-amino-4,6-dimethoxypyrimidinium cation via a pair of N—H···O hydrogen bonds, forming a hydrogen bonded ring motif with graph-set notation R22(8) (Etter, 1990; Bernstein et al., 1995). The sulfonate group mimics the carboxylate anion's mode of association, which is more commonly seen when binding with 2-aminopyrimidines. The R22(8) motif links O3 and O4 atoms of sulfonate anion with the protonated atom N1 and the 2- amino group of the pyrimidinium cation.This motif is further interlinked by an N—H···O hydrogen bond, involving 2- amino group of the 2-amino-4,6-dimethoxy pyrimidinium cation and O3i (symmetry code: i - x,-y,-1/2 + z)) atom of p-toluenesulfonate anion to form a supramolecular chain along the c axis (Fig. 2). The neighboring supramolecular chain is further interlinked via C—H···O hydrogen bond involving a methoxy group (C8) of cation and O5ii (symmetry code: 1/2 - x, y, -1/2 + z) atom of sulfonate anion. Thus intermolecular hydrogen bonds generate a 2-D supramolecular network. The π interaction. The C—H···π interaction is observed between the methoxy group (C7—H7A) of pyrimidinium cation with phenyl ring of p-toluenesulfonate anion (C—H···π = 3.7815 (18) Å, 145°). The identification of such supramolecular patterns will help us design and construct preferred hydrogen bonding patterns on drug like molecules.
is further stabilized by C—H···For background to crystal engineering and supramolecular chemistry, see: Desiraju (1989). For the role of aminopyrimidine–carboxylate interactions in protein-nuleic acid recognition and protein-drug binding, see: Hunt et al. (1980); Baker & Santi (1965). For the role of sulfate–protein interactions, see: Pflugrath & Quiocho (1985); Jacobson & Quiocho (1988). For information on carboxylic acid interactions with a 2-amino heterocyclic ring system, see: Etter & Adsmond (1990); Lynch & Jones (2004); Allen et al. (1998). For a survey of hydrogen-bonding patterns involving sulfonate salts, see: Haynes et al. (2004). For hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes, see: Russell et al. (1994); Cai et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For related structures, see: Low et al. (2002); Arora & Sundaralingam (1971); Balasubramani et al. (2007); Hemamalini et al. (2005); Thanigaimani et al. (2007, 2008); Ebenezer & Muthiah (2010).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009).C6H10N3O2+·C7H7O3S− | F(000) = 688 |
Mr = 327.37 | Dx = 1.410 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 5264 reflections |
a = 15.2116 (2) Å | θ = 1.7–31.9° |
b = 12.1422 (2) Å | µ = 0.24 mm−1 |
c = 8.3497 (1) Å | T = 296 K |
V = 1542.21 (4) Å3 | Prism, colourless |
Z = 4 | 0.20 × 0.18 × 0.15 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 5264 independent reflections |
Radiation source: fine-focus sealed tube | 4257 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 31.9°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −21→22 |
Tmin = 0.954, Tmax = 0.965 | k = −17→18 |
35029 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0019P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
5264 reflections | Δρmax = 0.21 e Å−3 |
202 parameters | Δρmin = −0.23 e Å−3 |
1 restraint | Absolute structure: Flack (1983) 2449, Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (6) |
C6H10N3O2+·C7H7O3S− | V = 1542.21 (4) Å3 |
Mr = 327.37 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 15.2116 (2) Å | µ = 0.24 mm−1 |
b = 12.1422 (2) Å | T = 296 K |
c = 8.3497 (1) Å | 0.20 × 0.18 × 0.15 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 5264 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 4257 reflections with I > 2σ(I) |
Tmin = 0.954, Tmax = 0.965 | Rint = 0.032 |
35029 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.098 | Δρmax = 0.21 e Å−3 |
S = 1.04 | Δρmin = −0.23 e Å−3 |
5264 reflections | Absolute structure: Flack (1983) 2449, Friedel pairs |
202 parameters | Absolute structure parameter: −0.01 (6) |
1 restraint |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.19507 (6) | 0.22303 (9) | 0.38465 (14) | 0.0511 (3) | |
O2 | 0.11421 (6) | −0.06832 (9) | 0.04130 (13) | 0.0501 (3) | |
N1 | 0.29344 (7) | 0.11712 (9) | 0.26107 (13) | 0.0402 (3) | |
N2 | 0.40346 (7) | 0.01635 (11) | 0.14147 (18) | 0.0496 (4) | |
N3 | 0.25982 (7) | −0.03173 (10) | 0.08987 (14) | 0.0404 (3) | |
C2 | 0.31858 (9) | 0.03320 (10) | 0.16420 (17) | 0.0390 (3) | |
C4 | 0.17567 (9) | −0.00833 (12) | 0.11384 (17) | 0.0403 (4) | |
C5 | 0.14437 (8) | 0.07733 (12) | 0.21022 (17) | 0.0428 (3) | |
C6 | 0.20693 (8) | 0.13947 (11) | 0.28454 (15) | 0.0400 (4) | |
C7 | 0.14081 (10) | −0.16405 (13) | −0.0479 (2) | 0.0540 (4) | |
C8 | 0.10582 (10) | 0.25880 (15) | 0.4142 (2) | 0.0563 (5) | |
S1 | 0.50030 (2) | 0.23323 (3) | 0.42863 (6) | 0.0428 (1) | |
O3 | 0.52077 (8) | 0.12267 (9) | 0.37468 (16) | 0.0570 (4) | |
O4 | 0.41176 (7) | 0.26565 (10) | 0.3831 (2) | 0.0647 (5) | |
O5 | 0.51823 (10) | 0.24747 (13) | 0.59809 (18) | 0.0739 (5) | |
C9 | 0.57224 (9) | 0.32344 (11) | 0.32795 (17) | 0.0422 (3) | |
C10 | 0.66162 (10) | 0.30482 (15) | 0.3425 (2) | 0.0591 (5) | |
C11 | 0.72049 (13) | 0.37635 (17) | 0.2707 (3) | 0.0705 (6) | |
C12 | 0.69171 (15) | 0.46724 (14) | 0.1854 (2) | 0.0648 (6) | |
C13 | 0.60373 (15) | 0.48291 (15) | 0.1698 (3) | 0.0698 (6) | |
C14 | 0.54237 (12) | 0.41230 (13) | 0.2414 (2) | 0.0601 (5) | |
C15 | 0.7578 (2) | 0.54823 (18) | 0.1173 (3) | 0.0919 (9) | |
H1 | 0.33270 | 0.15660 | 0.30810 | 0.0480* | |
H2A | 0.42080 | −0.03590 | 0.07950 | 0.0600* | |
H2B | 0.44140 | 0.05760 | 0.18870 | 0.0600* | |
H5 | 0.08460 | 0.09110 | 0.22280 | 0.0510* | |
H7A | 0.16740 | −0.21650 | 0.02330 | 0.0810* | |
H7B | 0.18250 | −0.14290 | −0.12860 | 0.0810* | |
H7C | 0.09030 | −0.19660 | −0.09800 | 0.0810* | |
H8A | 0.07310 | 0.19980 | 0.46210 | 0.0840* | |
H8B | 0.07880 | 0.27950 | 0.31480 | 0.0840* | |
H8C | 0.10640 | 0.32090 | 0.48540 | 0.0840* | |
H10 | 0.68200 | 0.24450 | 0.40020 | 0.0710* | |
H11 | 0.78050 | 0.36310 | 0.27980 | 0.0850* | |
H13 | 0.58360 | 0.54230 | 0.10970 | 0.0840* | |
H14 | 0.48240 | 0.42530 | 0.23060 | 0.0720* | |
H15A | 0.72930 | 0.59500 | 0.04060 | 0.1380* | |
H15B | 0.80450 | 0.50860 | 0.06570 | 0.1380* | |
H15C | 0.78160 | 0.59230 | 0.20230 | 0.1380* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0369 (5) | 0.0605 (6) | 0.0559 (6) | 0.0002 (4) | −0.0028 (4) | −0.0136 (5) |
O2 | 0.0340 (4) | 0.0573 (6) | 0.0589 (6) | −0.0034 (4) | −0.0075 (4) | −0.0086 (5) |
N1 | 0.0323 (5) | 0.0477 (6) | 0.0407 (5) | −0.0051 (4) | −0.0035 (4) | 0.0014 (4) |
N2 | 0.0311 (5) | 0.0558 (7) | 0.0619 (8) | −0.0011 (5) | −0.0030 (5) | −0.0073 (6) |
N3 | 0.0325 (5) | 0.0456 (5) | 0.0431 (5) | −0.0023 (4) | −0.0030 (4) | 0.0026 (4) |
C2 | 0.0337 (5) | 0.0427 (6) | 0.0405 (6) | −0.0006 (4) | −0.0012 (5) | 0.0067 (5) |
C4 | 0.0327 (6) | 0.0474 (7) | 0.0409 (6) | −0.0038 (5) | −0.0056 (5) | 0.0060 (5) |
C5 | 0.0299 (5) | 0.0512 (7) | 0.0473 (6) | −0.0002 (5) | −0.0042 (5) | 0.0005 (6) |
C6 | 0.0363 (6) | 0.0466 (7) | 0.0370 (6) | −0.0005 (5) | −0.0020 (5) | 0.0043 (5) |
C7 | 0.0480 (7) | 0.0532 (7) | 0.0609 (9) | −0.0052 (6) | −0.0075 (7) | −0.0063 (7) |
C8 | 0.0427 (7) | 0.0624 (9) | 0.0638 (9) | 0.0085 (6) | −0.0062 (7) | −0.0131 (8) |
S1 | 0.0333 (1) | 0.0475 (2) | 0.0477 (2) | −0.0056 (1) | −0.0002 (1) | −0.0003 (2) |
O3 | 0.0512 (5) | 0.0429 (5) | 0.0770 (8) | −0.0034 (4) | −0.0008 (5) | 0.0019 (5) |
O4 | 0.0348 (5) | 0.0570 (7) | 0.1024 (11) | −0.0026 (4) | −0.0073 (6) | −0.0052 (6) |
O5 | 0.0665 (8) | 0.1106 (12) | 0.0446 (6) | −0.0298 (7) | 0.0061 (6) | 0.0007 (6) |
C9 | 0.0424 (6) | 0.0414 (6) | 0.0427 (6) | −0.0060 (5) | −0.0025 (5) | −0.0021 (5) |
C10 | 0.0417 (7) | 0.0613 (9) | 0.0742 (11) | −0.0056 (6) | 0.0011 (7) | 0.0173 (9) |
C11 | 0.0507 (9) | 0.0794 (12) | 0.0814 (12) | −0.0191 (8) | 0.0087 (9) | 0.0105 (10) |
C12 | 0.0847 (13) | 0.0603 (9) | 0.0493 (8) | −0.0265 (8) | 0.0092 (8) | 0.0011 (8) |
C13 | 0.0933 (14) | 0.0511 (9) | 0.0649 (10) | −0.0095 (8) | −0.0067 (10) | 0.0150 (8) |
C14 | 0.0591 (10) | 0.0530 (8) | 0.0682 (10) | 0.0010 (7) | −0.0086 (8) | 0.0096 (8) |
C15 | 0.123 (2) | 0.0774 (13) | 0.0754 (13) | −0.0454 (14) | 0.0247 (14) | 0.0022 (11) |
S1—O4 | 1.4538 (12) | C7—H7B | 0.9600 |
S1—O5 | 1.4513 (16) | C7—H7C | 0.9600 |
S1—C9 | 1.7618 (14) | C8—H8B | 0.9600 |
S1—O3 | 1.4498 (12) | C8—H8C | 0.9600 |
O1—C6 | 1.3269 (17) | C8—H8A | 0.9600 |
O1—C8 | 1.4466 (18) | C9—C10 | 1.384 (2) |
O2—C7 | 1.4386 (19) | C9—C14 | 1.376 (2) |
O2—C4 | 1.3310 (17) | C10—C11 | 1.384 (3) |
N1—C2 | 1.3560 (17) | C11—C12 | 1.385 (3) |
N1—C6 | 1.3579 (16) | C12—C13 | 1.358 (3) |
N2—C2 | 1.3210 (17) | C12—C15 | 1.517 (3) |
N3—C4 | 1.3264 (17) | C13—C14 | 1.401 (3) |
N3—C2 | 1.3438 (18) | C10—H10 | 0.9300 |
N1—H1 | 0.8600 | C11—H11 | 0.9300 |
N2—H2B | 0.8600 | C13—H13 | 0.9300 |
N2—H2A | 0.8600 | C14—H14 | 0.9300 |
C4—C5 | 1.399 (2) | C15—H15A | 0.9600 |
C5—C6 | 1.3638 (18) | C15—H15B | 0.9600 |
C5—H5 | 0.9300 | C15—H15C | 0.9600 |
C7—H7A | 0.9600 | ||
S1···H2B | 3.0600 | C10···H7Aiv | 2.8700 |
S1···H2Ai | 2.9600 | C10···H7Bi | 3.0900 |
S1···H1 | 2.8900 | C11···H7Aiv | 2.9500 |
O1···C2ii | 3.2870 (17) | C11···H15Bix | 2.9600 |
O2···O3iii | 3.1944 (17) | C15···H8Cx | 2.8300 |
O3···C5iv | 3.3642 (18) | H1···O4 | 1.9000 |
O3···N2 | 2.9398 (18) | H1···S1 | 2.8900 |
O3···N2i | 3.0233 (19) | H1···H2B | 2.2700 |
O3···O2iv | 3.1944 (17) | H2A···O5vii | 2.7400 |
O4···N1 | 2.7441 (16) | H2A···O3vii | 2.2000 |
O5···C5ii | 3.356 (2) | H2A···S1vii | 2.9600 |
O5···C8ii | 3.248 (2) | H2B···O2iv | 2.9100 |
O1···H15Av | 2.8100 | H2B···O3 | 2.1200 |
O2···H2Biii | 2.9100 | H2B···H1 | 2.2700 |
O3···H10 | 2.8700 | H2B···S1 | 3.0600 |
O3···H2B | 2.1200 | H2B···H8Aviii | 2.5700 |
O3···H2Ai | 2.2000 | H5···C8 | 2.6100 |
O4···H14 | 2.5600 | H5···H8A | 2.4000 |
O4···H1 | 1.9000 | H5···H8B | 2.4100 |
O5···H5ii | 2.6700 | H5···O5viii | 2.6700 |
O5···H8Bii | 2.3700 | H7A···N3 | 2.7100 |
O5···H2Ai | 2.7400 | H7A···C11iii | 2.9500 |
O5···H7Cvi | 2.8300 | H7A···C10iii | 2.8700 |
N1···O4 | 2.7441 (16) | H7A···H10vii | 2.5300 |
N1···C4ii | 3.3492 (18) | H7B···C10vii | 3.0900 |
N2···O3vii | 3.0233 (19) | H7B···N3 | 2.5600 |
N2···O3 | 2.9398 (18) | H7B···H10vii | 2.4100 |
N3···C6viii | 3.3281 (17) | H7B···N3viii | 2.8500 |
N2···H8Aviii | 2.7100 | H7B···C2viii | 2.7500 |
N3···H7B | 2.5600 | H7C···H8Axiii | 2.5400 |
N3···H7A | 2.7100 | H7C···O5xiv | 2.8300 |
N3···H7Bii | 2.8500 | H7C···C8xiii | 3.0800 |
C2···O1viii | 3.2870 (17) | H8A···C5 | 2.7900 |
C2···C7ii | 3.449 (2) | H8A···H5 | 2.4000 |
C2···C6viii | 3.4445 (19) | H8A···H7Cxii | 2.5400 |
C4···N1viii | 3.3492 (18) | H8A···N2ii | 2.7100 |
C5···O5viii | 3.356 (2) | H8A···H2Bii | 2.5700 |
C5···O3iii | 3.3642 (18) | H8B···H5 | 2.4100 |
C6···C2ii | 3.4445 (19) | H8B···O5viii | 2.3700 |
C6···N3ii | 3.3281 (17) | H8B···C5 | 2.7900 |
C7···C2viii | 3.449 (2) | H8C···H15Bv | 2.5600 |
C7···C10vii | 3.577 (2) | H8C···C15v | 2.8300 |
C8···C15v | 3.559 (3) | H10···O3 | 2.8700 |
C8···O5viii | 3.248 (2) | H10···C7i | 2.9000 |
C10···C7i | 3.577 (2) | H10···H7Ai | 2.5300 |
C11···C15ix | 3.583 (3) | H10···H7Bi | 2.4100 |
C15···C8x | 3.559 (3) | H11···H15B | 2.5400 |
C15···C11xi | 3.583 (3) | H11···C7i | 3.0600 |
C2···H7Bii | 2.7500 | H13···H15A | 2.3800 |
C5···H8A | 2.7900 | H14···O4 | 2.5600 |
C5···H8B | 2.7900 | H15A···H13 | 2.3800 |
C7···H11vii | 3.0600 | H15A···O1x | 2.8100 |
C7···H10vii | 2.9000 | H15B···H11 | 2.5400 |
C8···H7Cxii | 3.0800 | H15B···H8Cx | 2.5600 |
C8···H5 | 2.6100 | H15B···C11xi | 2.9600 |
O5—S1—C9 | 105.93 (8) | H7B—C7—H7C | 109.00 |
O3—S1—C9 | 107.10 (7) | H8B—C8—H8C | 109.00 |
O3—S1—O4 | 111.62 (8) | O1—C8—H8A | 109.00 |
O3—S1—O5 | 111.89 (9) | O1—C8—H8B | 109.00 |
O4—S1—O5 | 113.38 (9) | O1—C8—H8C | 109.00 |
O4—S1—C9 | 106.40 (7) | H8A—C8—H8B | 110.00 |
C6—O1—C8 | 117.69 (11) | H8A—C8—H8C | 109.00 |
C4—O2—C7 | 118.70 (11) | S1—C9—C10 | 117.83 (11) |
C2—N1—C6 | 120.64 (11) | S1—C9—C14 | 122.21 (12) |
C2—N3—C4 | 116.52 (12) | C10—C9—C14 | 119.92 (14) |
C6—N1—H1 | 120.00 | C9—C10—C11 | 119.68 (16) |
C2—N1—H1 | 120.00 | C10—C11—C12 | 121.23 (18) |
C2—N2—H2B | 120.00 | C11—C12—C13 | 118.21 (18) |
C2—N2—H2A | 120.00 | C11—C12—C15 | 120.0 (2) |
H2A—N2—H2B | 120.00 | C13—C12—C15 | 121.76 (18) |
N2—C2—N3 | 119.53 (12) | C12—C13—C14 | 121.99 (18) |
N1—C2—N2 | 118.54 (12) | C9—C14—C13 | 118.94 (17) |
N1—C2—N3 | 121.92 (12) | C9—C10—H10 | 120.00 |
O2—C4—N3 | 119.47 (13) | C11—C10—H10 | 120.00 |
N3—C4—C5 | 125.08 (13) | C10—C11—H11 | 119.00 |
O2—C4—C5 | 115.45 (12) | C12—C11—H11 | 119.00 |
C4—C5—C6 | 115.83 (12) | C12—C13—H13 | 119.00 |
O1—C6—N1 | 112.06 (11) | C14—C13—H13 | 119.00 |
N1—C6—C5 | 120.00 (12) | C9—C14—H14 | 121.00 |
O1—C6—C5 | 127.94 (12) | C13—C14—H14 | 121.00 |
C4—C5—H5 | 122.00 | C12—C15—H15A | 110.00 |
C6—C5—H5 | 122.00 | C12—C15—H15B | 109.00 |
H7A—C7—H7B | 109.00 | C12—C15—H15C | 110.00 |
H7A—C7—H7C | 109.00 | H15A—C15—H15B | 109.00 |
O2—C7—H7A | 109.00 | H15A—C15—H15C | 110.00 |
O2—C7—H7B | 109.00 | H15B—C15—H15C | 109.00 |
O2—C7—H7C | 109.00 | ||
O4—S1—C9—C10 | −175.52 (13) | C4—N3—C2—N2 | −177.98 (13) |
O3—S1—C9—C10 | −56.03 (14) | C2—N3—C4—O2 | 178.80 (12) |
O3—S1—C9—C14 | 126.16 (13) | O2—C4—C5—C6 | −179.77 (12) |
O5—S1—C9—C14 | −114.27 (14) | N3—C4—C5—C6 | −0.5 (2) |
O4—S1—C9—C14 | 6.66 (15) | C4—C5—C6—N1 | 0.8 (2) |
O5—S1—C9—C10 | 63.54 (14) | C4—C5—C6—O1 | −178.16 (13) |
C8—O1—C6—N1 | 177.13 (12) | S1—C9—C10—C11 | −177.39 (15) |
C8—O1—C6—C5 | −3.9 (2) | C14—C9—C10—C11 | 0.5 (3) |
C7—O2—C4—N3 | 6.4 (2) | S1—C9—C14—C13 | 177.50 (14) |
C7—O2—C4—C5 | −174.33 (13) | C10—C9—C14—C13 | −0.3 (2) |
C2—N1—C6—C5 | −0.07 (18) | C9—C10—C11—C12 | 0.6 (3) |
C2—N1—C6—O1 | 179.01 (12) | C10—C11—C12—C13 | −1.9 (3) |
C6—N1—C2—N2 | 178.19 (13) | C10—C11—C12—C15 | 175.99 (19) |
C6—N1—C2—N3 | −1.0 (2) | C11—C12—C13—C14 | 2.1 (3) |
C4—N3—C2—N1 | 1.2 (2) | C15—C12—C13—C14 | −175.73 (19) |
C2—N3—C4—C5 | −0.4 (2) | C12—C13—C14—C9 | −1.1 (3) |
Symmetry codes: (i) −x+1, −y, z+1/2; (ii) −x+1/2, y, z+1/2; (iii) x−1/2, −y, z; (iv) x+1/2, −y, z; (v) −x+1, −y+1, z+1/2; (vi) x+1/2, −y, z+1; (vii) −x+1, −y, z−1/2; (viii) −x+1/2, y, z−1/2; (ix) −x+3/2, y, z+1/2; (x) −x+1, −y+1, z−1/2; (xi) −x+3/2, y, z−1/2; (xii) −x, −y, z+1/2; (xiii) −x, −y, z−1/2; (xiv) x−1/2, −y, z−1. |
Cg is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.86 | 1.90 | 2.7441 (16) | 169 |
N2—H2A···O3vii | 0.86 | 2.20 | 3.0233 (19) | 161 |
N2—H2B···O3 | 0.86 | 2.12 | 2.9398 (18) | 159 |
C8—H8B···O5viii | 0.96 | 2.37 | 3.248 (2) | 152 |
C7—H7A···Cgiii | 0.96 | 2.96 | 3.7815 (18) | 145 |
Symmetry codes: (iii) x−1/2, −y, z; (vii) −x+1, −y, z−1/2; (viii) −x+1/2, y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H10N3O2+·C7H7O3S− |
Mr | 327.37 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 296 |
a, b, c (Å) | 15.2116 (2), 12.1422 (2), 8.3497 (1) |
V (Å3) | 1542.21 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.20 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.954, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35029, 5264, 4257 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.743 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.098, 1.04 |
No. of reflections | 5264 |
No. of parameters | 202 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.23 |
Absolute structure | Flack (1983) 2449, Friedel pairs |
Absolute structure parameter | −0.01 (6) |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and POV-RAY (Cason, 2004), PLATON (Spek, 2009).
Cg is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.86 | 1.90 | 2.7441 (16) | 169 |
N2—H2A···O3i | 0.86 | 2.20 | 3.0233 (19) | 161 |
N2—H2B···O3 | 0.86 | 2.12 | 2.9398 (18) | 159 |
C8—H8B···O5ii | 0.96 | 2.37 | 3.248 (2) | 152 |
C7—H7A···Cgiii | 0.96 | 2.96 | 3.7815 (18) | 145 |
Symmetry codes: (i) −x+1, −y, z−1/2; (ii) −x+1/2, y, z−1/2; (iii) x−1/2, −y, z. |
Acknowledgements
The authors thank the DST-India (FIST programme) for the use ofthe diffractometer at the School of Chemistry, Bharathidasan University. Tiruchirappalli, Tamilnadu, India
References
Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044. Web of Science CrossRef Google Scholar
Arora, S. K. & Sundaralingam, M. (1971). Acta Cryst. B27, 1293–1298. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257. CrossRef CAS PubMed Web of Science Google Scholar
Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2007). Chem. Cent. J. 1, article number 28. Web of Science CSD CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, J., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137–1142. Web of Science CSD CrossRef Google Scholar
Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org. Google Scholar
Desiraju, G. R. (1989). in Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2634–o2635. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589–591. CrossRef Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Haynes, D. A., Chisholm, J. A., Jones, W. & Motherwell, W. D. S. (2004). CrystEngComm, 6, 584–588. Web of Science CrossRef CAS Google Scholar
Hemamalini, M., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536. CrossRef CAS PubMed Web of Science Google Scholar
Jacobson, B. L. & Quiocho, F. A. (1988). J. Mol. Biol. 204, 783–787. CrossRef CAS PubMed Web of Science Google Scholar
Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pflugrath, J. W. & Quiocho, F. A. (1985). Nature (London), 314, 257–260. CrossRef CAS PubMed Web of Science Google Scholar
Russell, V. A., Etter, M. C. & &Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941–1952. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. C63, o295–o300. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2008). Acta Cryst. E64, o107–o108. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A study of non-covalent interactions, such as hydrogen bonding, plays a key role in molecular recognition and crystal engineering (Desiraju, 1989). Pyrimidines and aminopyrimidine derivatives are biologically important compounds and they manifest themselves in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Their interactions with carboxylic acids are of utmost importance since they are involved in protein-nucleic acid recognition and drug-protein recognition processes, where the pyrimidine moiety of a drug forms hydrogen bonding with the carboxyl group of the protein. Aminopyrimidines readily pair up with carboxylic acids to form a wide variety of 1:1 adducts with mono and dicarboxylic acids (Etter & Adsmond, 1990). The R22(8) motif is a robust synthon which is frequently observed when a carboxylic acid interacts with a 2-amino heterocyclic ring system (Lynch & Jones, 2004). This motif is also recognized to be one of the top 5 motifs among the 24 commonly occurring motifs in crystal structures (Allen et al., 1998). In a sulfate-binding protein, the sulfate anion is bound mainly by seven hydrogen bonds, five of which are from the main chain peptide NH groups (Pflugrath & Quiocho, 1985; Jacobson & Quiocho, 1988). Hydrogen bonding patterns involving sulfonate groups in biological systems and metal complexes are of current interest (Russell et al., 1994; Cai et al., 2001). Such interactions can be used for designing supramolecular architectures.
The crystal structures of 2-amino-4, 6-dimethoxy pyrimidine (Low et al., 2002) and p-toluene sulfonic acid monohydrate (Arora & Sundaralingam, 1971) have already been reported. Investigations of a fairly large number of crystal structure of 2-amino-4,6-dimethoxy/dimethyl pyrimidine salts and co crystals involving carboxylates (Thanigaimani et al., 2007; Thanigaimani et al., 2008; Ebenezer & Muthiah, 2010) and a few sulfonates (Balasubramani et al., 2007; Hemamalini et al., 2005) have already been reported from our laboratory. They reveal the formation of certain robust motifs and a variety of supramolecular architectures. A survey by Haynes et al. (2004) on the sulfonate salts, revealed various hydrogen bonding patterns and their preferences with specific functional groups. As part of our investigation to gain more insight into hydrogen bonding interactions involving aminopyrimidine and sulfonates, the crystal structure of title compound is presented herein.
The asymmetric unit of the title compound (I) (Fig. 1) contains one 2-amino-4,6-dimethoxypyrimidinium cation and one p-toluenesulfonate anion. The 2- amino-4,6-dimethoxy pyrimidinium cation is protonated at N1. Protonation of the pyrimidine base on the N1 site is reflected by an increase in bond angle. The C2—N3—C4 angle of the unprotonated atom N3 is 116.52 (12)° while for protonated atom N1, the C2—N1—C6 angle is 120.64 (11)°. The sulfonate group of the p-toluenesulfonate anion interacts with 2-amino-4,6-dimethoxypyrimidinium cation via a pair of N—H···O hydrogen bonds, forming a hydrogen bonded ring motif with graph-set notation R22(8) (Etter, 1990; Bernstein et al., 1995). The sulfonate group mimics the carboxylate anion's mode of association, which is more commonly seen when binding with 2-aminopyrimidines. The R22(8) motif links O3 and O4 atoms of sulfonate anion with the protonated atom N1 and the 2- amino group of the pyrimidinium cation.
This motif is further interlinked by an N—H···O hydrogen bond, involving 2- amino group of the 2-amino-4,6-dimethoxy pyrimidinium cation and O3i (symmetry code: i - x,-y,-1/2 + z)) atom of p-toluenesulfonate anion to form a supramolecular chain along the c axis (Fig. 2). The neighboring supramolecular chain is further interlinked via C—H···O hydrogen bond involving a methoxy group (C8) of cation and O5ii (symmetry code: 1/2 - x, y, -1/2 + z) atom of sulfonate anion. Thus intermolecular hydrogen bonds generate a 2-D supramolecular network. The crystal structure is further stabilized by C—H··· π interaction. The C—H···π interaction is observed between the methoxy group (C7—H7A) of pyrimidinium cation with phenyl ring of p-toluenesulfonate anion (C—H···π = 3.7815 (18) Å, 145°). The identification of such supramolecular patterns will help us design and construct preferred hydrogen bonding patterns on drug like molecules.