organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(4-Di­methyl­amino-2-methyl-5-phenyl­furan-3-yl)meth­yl]di­ethyl­methyl­aza­nium iodide

aMolecule Structure Research Center, Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences, Republic of Armenia, Azatutyan Ave. 26, Yerevan 0014, Armenia
*Correspondence e-mail: armen@msrc.am

(Received 7 September 2011; accepted 15 September 2011; online 20 September 2011)

In the title compound, C19H29N2O+·I, the dihedral angle between the mean planes of the essentially planar furan (r.m.s. deviation = 0.007 Å) and phenyl rings is 48.4 (1)°. In the crystal, cations and anions are arranged in layers lying parallel to (100).

Related literature

For the biological activities of furan derivatives, see: Chen et al. (2006[Chen, Y. L., Zhao, Y. L., Lu, C. M., Tzeng, C. C. & Wang, J. P. (2006). Bioorg. Med. Chem. 14, 4373-4378.]); Meotti et al. (2003[Meotti, F. S., Silva, D. O., Dos Santos, A. R. S., Zeni, G., Rocha, J. B. T. & Nogueira, C. W. (2003). Environ. Toxicol. Pharmacol. 37, 37-44.]); Kazuo et al. (2001[Kazuo, K., Akiko, Y., Tomokazu, N., Hiroshi, M., Yoshihito, F. & Masato, N. (2001). J. Antibacter. Antifung. Agents, 29, 689-696.]). For details of the synthesis, see: Manukyan et al. (2007[Manukyan, M. O., Babakhanyan, A. V., Panosyan, H. A., Gyulnazaryan, A. Kh. & Kocharyan, S. T. (2007). Russ. J. Gen. Chem. 77, 1291-1294.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H29N2O+·I

  • Mr = 428.34

  • Monoclinic, P 21 /c

  • a = 17.905 (4) Å

  • b = 7.2458 (14) Å

  • c = 15.732 (3) Å

  • β = 94.84 (3)°

  • V = 2033.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 293 K

  • 0.4 × 0.36 × 0.3 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.395, Tmax = 0.430

  • 6119 measured reflections

  • 5911 independent reflections

  • 4370 reflections with I > 2σ(I)

  • Rint = 0.013

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 0.99

  • 5911 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1988[Enraf-Nonius (1988). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SETANG in CAD-4 Software (Enraf–Nonius, 1988[Enraf-Nonius (1988). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.]); data reduction: HELENA (Spek, 1997[Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Compounds containing furan rings are distinguished by a number of interesting biological properties. In particular, the certain representatives of this family show antibacterial, antioxidant and anti-inflammatory activities (Chen et al., 2006, Meotti et al., 2003, Kazuo et al., 2001). Such a diversity of biological properties of these materials stimulates the interest in their structural studies. The asymmetric unit of title compound is shown in Fig.1. The molecule contains one quaternary N+ cation, the positive charge on which is balanced by an iodide anion. All bond lengths (Allen et al., 1987) and angles in good agreement with their standard values. In the crystal, cations and anions are arranged in layers parallel to (100) with N+···I- distances in the range 4.429 (1) Å–5.332 (1) Å (see Fig. 2).

Related literature top

For the biological activities of furan derivatives, see: Chen et al. (2006); Meotti et al. (2003); Kazuo et al. (2001). For details of the synthesis, see: Manukyan et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized via Stevens rearrangement by the interaction of methyl iodide and 2-phenyl-3-dimethylamino-4-diethylamino-5-methylfuran (Manukyan et al., 2007). Single crystals were grown by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement top

H atom positions (except of those belonging to methyl groups) were located in difference Fourier maps and their positions and Uiso values were freely refined. H atoms of methyl groups were positioned geometrically and refined using a riding model with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Structure description top

Compounds containing furan rings are distinguished by a number of interesting biological properties. In particular, the certain representatives of this family show antibacterial, antioxidant and anti-inflammatory activities (Chen et al., 2006, Meotti et al., 2003, Kazuo et al., 2001). Such a diversity of biological properties of these materials stimulates the interest in their structural studies. The asymmetric unit of title compound is shown in Fig.1. The molecule contains one quaternary N+ cation, the positive charge on which is balanced by an iodide anion. All bond lengths (Allen et al., 1987) and angles in good agreement with their standard values. In the crystal, cations and anions are arranged in layers parallel to (100) with N+···I- distances in the range 4.429 (1) Å–5.332 (1) Å (see Fig. 2).

For the biological activities of furan derivatives, see: Chen et al. (2006); Meotti et al. (2003); Kazuo et al. (2001). For details of the synthesis, see: Manukyan et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1988); cell refinement: SETANG in CAD-4 Software (Enraf–Nonius, 1988); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement displacement ellipsoids drawn at the 50% probability level (H atoms are omitted for clarity).
[Figure 2] Fig. 2. Part of the crystal structure emphasizing arrangement of cations and anions with dashed lines.
[(4-Dimethylamino-2-methyl-5-phenylfuran-3-yl)methyl]diethylmethylazanium iodide top
Crystal data top
C19H29N2O+·IF(000) = 872
Mr = 428.34Dx = 1.399 Mg m3
Monoclinic, P21/cMelting point: 353 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.905 (4) ÅCell parameters from 25 reflections
b = 7.2458 (14) Åθ = 13.9–16.3°
c = 15.732 (3) ŵ = 1.58 mm1
β = 94.84 (3)°T = 293 K
V = 2033.7 (7) Å3Prism, red
Z = 40.4 × 0.36 × 0.3 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
4370 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 30.0°, θmin = 1.1°
θ/2θ scansh = 2525
Absorption correction: ψ scan
(PLATON; Spek, 2009)
k = 100
Tmin = 0.395, Tmax = 0.430l = 022
6119 measured reflections3 standard reflections every 60 min
5911 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.9333P]
where P = (Fo2 + 2Fc2)/3
5911 reflections(Δ/σ)max = 0.002
258 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C19H29N2O+·IV = 2033.7 (7) Å3
Mr = 428.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.905 (4) ŵ = 1.58 mm1
b = 7.2458 (14) ÅT = 293 K
c = 15.732 (3) Å0.4 × 0.36 × 0.3 mm
β = 94.84 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4370 reflections with I > 2σ(I)
Absorption correction: ψ scan
(PLATON; Spek, 2009)
Rint = 0.013
Tmin = 0.395, Tmax = 0.4303 standard reflections every 60 min
6119 measured reflections intensity decay: none
5911 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.67 e Å3
5911 reflectionsΔρmin = 0.55 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.360258 (9)0.60153 (2)0.329552 (12)0.05986 (7)
O10.17460 (9)0.8773 (2)0.27018 (10)0.0496 (4)
C20.22386 (12)1.0199 (3)0.26901 (15)0.0467 (5)
C30.23667 (11)1.0608 (3)0.18794 (14)0.0440 (5)
C40.19021 (11)0.9379 (3)0.13392 (14)0.0444 (5)
C50.15362 (12)0.8279 (4)0.18675 (14)0.0465 (5)
C60.10368 (12)0.6681 (4)0.17655 (15)0.0497 (5)
C70.03983 (15)0.6718 (5)0.1197 (2)0.0673 (7)
H70.0271 (19)0.788 (5)0.089 (2)0.092 (11)*
C80.00691 (18)0.5198 (6)0.1117 (2)0.0806 (10)
H80.046 (2)0.519 (5)0.073 (2)0.094 (11)*
C90.0084 (2)0.3651 (5)0.1599 (3)0.0834 (11)
H90.020 (2)0.259 (5)0.154 (2)0.091 (11)*
C100.0716 (2)0.3597 (5)0.2157 (3)0.0831 (10)
H100.0835 (19)0.267 (5)0.249 (2)0.083 (11)*
C110.11910 (17)0.5108 (4)0.2253 (2)0.0659 (7)
H110.1584 (17)0.506 (5)0.2656 (19)0.070 (9)*
N120.18903 (11)0.9401 (3)0.04386 (13)0.0568 (5)
C130.19220 (18)0.7624 (5)0.00155 (19)0.0816 (10)
H13A0.22600.68240.03480.122*
H13B0.20960.77920.05400.122*
H13C0.14310.70830.00410.122*
C140.1351 (2)1.0677 (6)0.0018 (2)0.0916 (11)
H14A0.08551.01870.00340.137*
H14B0.14591.08390.05650.137*
H14C0.13841.18450.03060.137*
C150.28935 (12)1.2003 (3)0.15767 (16)0.0465 (5)
H15A0.2958 (15)1.312 (4)0.1934 (17)0.061 (7)*
H15B0.2725 (13)1.242 (3)0.0983 (16)0.049 (7)*
N160.36958 (10)1.1291 (2)0.15215 (12)0.0445 (4)
C170.41598 (14)1.2812 (4)0.11586 (18)0.0551 (6)
H17A0.4678 (15)1.232 (4)0.1215 (16)0.058 (7)*
H17B0.4089 (17)1.395 (4)0.154 (2)0.072 (9)*
C180.39221 (18)1.3347 (5)0.02513 (19)0.0740 (8)
H18A0.39491.22880.01110.111*
H18B0.42491.42940.00710.111*
H18C0.34171.38000.02150.111*
C190.36726 (14)0.9537 (4)0.09966 (19)0.0543 (6)
H19A0.3403 (15)0.988 (4)0.0445 (18)0.059 (7)*
H19B0.3352 (17)0.867 (4)0.1319 (18)0.065 (8)*
C200.44255 (16)0.8662 (4)0.0897 (2)0.0725 (8)
H20A0.47700.95880.07360.109*
H20B0.43720.77280.04640.109*
H20C0.46130.81140.14280.109*
C210.40518 (14)1.0903 (4)0.24027 (16)0.0552 (6)
H21A0.37860.99210.26550.083*
H21B0.40321.19930.27470.083*
H21C0.45651.05450.23690.083*
C220.25056 (17)1.0946 (4)0.35412 (16)0.0636 (7)
H22A0.28531.00940.38260.095*
H22B0.20861.11180.38750.095*
H22C0.27501.21090.34720.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.05869 (10)0.04681 (9)0.07390 (12)0.00165 (7)0.00458 (8)0.00206 (8)
O10.0473 (8)0.0588 (10)0.0431 (8)0.0070 (7)0.0066 (6)0.0025 (7)
C20.0431 (11)0.0487 (12)0.0484 (12)0.0015 (9)0.0054 (9)0.0034 (10)
C30.0374 (10)0.0457 (11)0.0484 (12)0.0002 (8)0.0015 (8)0.0017 (9)
C40.0362 (9)0.0547 (13)0.0422 (11)0.0021 (9)0.0022 (8)0.0031 (9)
C50.0379 (10)0.0556 (13)0.0463 (12)0.0044 (9)0.0044 (8)0.0045 (10)
C60.0397 (11)0.0609 (14)0.0496 (12)0.0104 (10)0.0109 (9)0.0038 (11)
C70.0503 (14)0.082 (2)0.0690 (17)0.0184 (14)0.0016 (12)0.0006 (16)
C80.0576 (16)0.105 (3)0.078 (2)0.0328 (18)0.0029 (15)0.012 (2)
C90.073 (2)0.084 (2)0.097 (2)0.0362 (18)0.0300 (18)0.020 (2)
C100.081 (2)0.069 (2)0.103 (3)0.0127 (17)0.026 (2)0.0092 (19)
C110.0575 (15)0.0672 (18)0.0736 (19)0.0084 (14)0.0094 (14)0.0031 (15)
N120.0507 (11)0.0776 (15)0.0419 (10)0.0121 (10)0.0028 (8)0.0029 (10)
C130.082 (2)0.106 (3)0.0587 (16)0.0292 (19)0.0181 (14)0.0309 (17)
C140.090 (2)0.119 (3)0.0623 (18)0.009 (2)0.0130 (16)0.0278 (19)
C150.0423 (11)0.0432 (12)0.0536 (13)0.0004 (9)0.0014 (9)0.0028 (10)
N160.0387 (8)0.0426 (10)0.0517 (10)0.0046 (7)0.0017 (7)0.0016 (8)
C170.0491 (13)0.0508 (13)0.0653 (15)0.0121 (11)0.0036 (11)0.0034 (12)
C180.0786 (19)0.077 (2)0.0674 (18)0.0070 (16)0.0140 (15)0.0166 (16)
C190.0459 (12)0.0503 (13)0.0667 (16)0.0031 (10)0.0048 (11)0.0124 (12)
C200.0537 (14)0.0706 (19)0.095 (2)0.0021 (13)0.0139 (14)0.0185 (16)
C210.0529 (12)0.0562 (14)0.0546 (13)0.0000 (11)0.0075 (10)0.0025 (11)
C220.0742 (17)0.0670 (17)0.0497 (13)0.0135 (14)0.0061 (12)0.0102 (13)
Geometric parameters (Å, º) top
O1—C21.360 (3)C14—H14B0.9600
O1—C51.382 (3)C14—H14C0.9600
C2—C31.348 (3)C15—N161.536 (3)
C2—C221.485 (3)C15—H15A0.99 (3)
C3—C41.445 (3)C15—H15B1.00 (2)
C3—C151.488 (3)N16—C211.503 (3)
C4—C51.359 (3)N16—C191.514 (3)
C4—N121.415 (3)N16—C171.520 (3)
C5—C61.463 (3)C17—C181.505 (4)
C6—C111.388 (4)C17—H17A0.99 (3)
C6—C71.391 (4)C17—H17B1.04 (3)
C7—C81.383 (4)C18—H18A0.9600
C7—H70.99 (4)C18—H18B0.9600
C8—C91.369 (6)C18—H18C0.9600
C8—H80.88 (4)C19—C201.510 (4)
C9—C101.371 (6)C19—H19A0.99 (3)
C9—H90.92 (4)C19—H19B1.02 (3)
C10—C111.387 (5)C20—H20A0.9600
C10—H100.86 (3)C20—H20B0.9600
C11—H110.91 (3)C20—H20C0.9600
N12—C131.452 (4)C21—H21A0.9600
N12—C141.455 (4)C21—H21B0.9600
C13—H13A0.9600C21—H21C0.9600
C13—H13B0.9600C22—H22A0.9600
C13—H13C0.9600C22—H22B0.9600
C14—H14A0.9600C22—H22C0.9600
C2—O1—C5107.99 (17)C3—C15—H15A114.9 (16)
C3—C2—O1110.01 (19)N16—C15—H15A104.0 (16)
C3—C2—C22134.9 (2)C3—C15—H15B110.6 (14)
O1—C2—C22115.1 (2)N16—C15—H15B105.0 (14)
C2—C3—C4106.6 (2)H15A—C15—H15B107 (2)
C2—C3—C15128.0 (2)C21—N16—C19109.63 (19)
C4—C3—C15125.4 (2)C21—N16—C17106.23 (18)
C5—C4—N12130.6 (2)C19—N16—C17113.2 (2)
C5—C4—C3106.6 (2)C21—N16—C15109.68 (19)
N12—C4—C3122.8 (2)C19—N16—C15109.27 (17)
C4—C5—O1108.81 (19)C17—N16—C15108.73 (18)
C4—C5—C6135.9 (2)C18—C17—N16115.0 (2)
O1—C5—C6115.1 (2)C18—C17—H17A111.4 (15)
C11—C6—C7119.0 (3)N16—C17—H17A104.1 (16)
C11—C6—C5119.9 (2)C18—C17—H17B107.9 (17)
C7—C6—C5121.1 (3)N16—C17—H17B105.2 (17)
C8—C7—C6120.1 (3)H17A—C17—H17B113 (2)
C8—C7—H7121 (2)C17—C18—H18A109.5
C6—C7—H7118 (2)C17—C18—H18B109.5
C9—C8—C7120.7 (3)H18A—C18—H18B109.5
C9—C8—H8119 (3)C17—C18—H18C109.5
C7—C8—H8120 (3)H18A—C18—H18C109.5
C10—C9—C8119.6 (3)H18B—C18—H18C109.5
C10—C9—H9118 (2)C20—C19—N16115.2 (2)
C8—C9—H9123 (2)C20—C19—H19A112.9 (16)
C9—C10—C11120.8 (4)N16—C19—H19A104.9 (17)
C9—C10—H10124 (2)C20—C19—H19B109.8 (16)
C11—C10—H10115 (2)N16—C19—H19B103.7 (16)
C10—C11—C6119.8 (3)H19A—C19—H19B110 (2)
C10—C11—H11119 (2)C19—C20—H20A109.5
C6—C11—H11121 (2)C19—C20—H20B109.5
C4—N12—C13116.8 (2)H20A—C20—H20B109.5
C4—N12—C14114.6 (2)C19—C20—H20C109.5
C13—N12—C14113.9 (3)H20A—C20—H20C109.5
N12—C13—H13A109.5H20B—C20—H20C109.5
N12—C13—H13B109.5N16—C21—H21A109.5
H13A—C13—H13B109.5N16—C21—H21B109.5
N12—C13—H13C109.5H21A—C21—H21B109.5
H13A—C13—H13C109.5N16—C21—H21C109.5
H13B—C13—H13C109.5H21A—C21—H21C109.5
N12—C14—H14A109.5H21B—C21—H21C109.5
N12—C14—H14B109.5C2—C22—H22A109.5
H14A—C14—H14B109.5C2—C22—H22B109.5
N12—C14—H14C109.5H22A—C22—H22B109.5
H14A—C14—H14C109.5C2—C22—H22C109.5
H14B—C14—H14C109.5H22A—C22—H22C109.5
C3—C15—N16114.28 (18)H22B—C22—H22C109.5
C5—O1—C2—C31.5 (3)C6—C7—C8—C90.7 (5)
C5—O1—C2—C22178.2 (2)C7—C8—C9—C101.2 (6)
O1—C2—C3—C41.8 (3)C8—C9—C10—C111.6 (6)
C22—C2—C3—C4177.9 (3)C9—C10—C11—C61.5 (5)
O1—C2—C3—C15176.7 (2)C7—C6—C11—C101.0 (4)
C22—C2—C3—C153.7 (4)C5—C6—C11—C10179.8 (3)
C2—C3—C4—C51.4 (3)C5—C4—N12—C1343.1 (4)
C15—C3—C4—C5177.2 (2)C3—C4—N12—C13134.8 (2)
C2—C3—C4—N12179.7 (2)C5—C4—N12—C1493.7 (3)
C15—C3—C4—N121.2 (4)C3—C4—N12—C1488.3 (3)
N12—C4—C5—O1178.6 (2)C2—C3—C15—N1686.9 (3)
C3—C4—C5—O10.5 (3)C4—C3—C15—N1691.3 (3)
N12—C4—C5—C63.9 (5)C3—C15—N16—C2167.4 (2)
C3—C4—C5—C6174.3 (3)C3—C15—N16—C1952.8 (3)
C2—O1—C5—C40.6 (3)C3—C15—N16—C17176.8 (2)
C2—O1—C5—C6176.6 (2)C21—N16—C17—C18176.8 (2)
C4—C5—C6—C11128.8 (3)C19—N16—C17—C1856.4 (3)
O1—C5—C6—C1145.7 (3)C15—N16—C17—C1865.2 (3)
C4—C5—C6—C752.4 (4)C21—N16—C19—C2059.0 (3)
O1—C5—C6—C7133.1 (3)C17—N16—C19—C2059.4 (3)
C11—C6—C7—C80.5 (4)C15—N16—C19—C20179.2 (2)
C5—C6—C7—C8179.4 (3)

Experimental details

Crystal data
Chemical formulaC19H29N2O+·I
Mr428.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.905 (4), 7.2458 (14), 15.732 (3)
β (°) 94.84 (3)
V3)2033.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.4 × 0.36 × 0.3
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(PLATON; Spek, 2009)
Tmin, Tmax0.395, 0.430
No. of measured, independent and
observed [I > 2σ(I)] reflections
6119, 5911, 4370
Rint0.013
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 0.99
No. of reflections5911
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.55

Computer programs: SETANG in CAD-4 Software (Enraf–Nonius, 1988), HELENA (Spek, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004).

 

Acknowledgements

The title compound was provided by M. O. Manukyan, synthesized within the framework of State Committee of Science of Armenia (grant No. 11B-1d024).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationChen, Y. L., Zhao, Y. L., Lu, C. M., Tzeng, C. C. & Wang, J. P. (2006). Bioorg. Med. Chem. 14, 4373–4378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1988). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKazuo, K., Akiko, Y., Tomokazu, N., Hiroshi, M., Yoshihito, F. & Masato, N. (2001). J. Antibacter. Antifung. Agents, 29, 689–696.  Google Scholar
First citationManukyan, M. O., Babakhanyan, A. V., Panosyan, H. A., Gyulnazaryan, A. Kh. & Kocharyan, S. T. (2007). Russ. J. Gen. Chem. 77, 1291–1294.  Web of Science CrossRef Google Scholar
First citationMeotti, F. S., Silva, D. O., Dos Santos, A. R. S., Zeni, G., Rocha, J. B. T. & Nogueira, C. W. (2003). Environ. Toxicol. Pharmacol. 37, 37–44.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds